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Abstract Random coefficient-dependent (RCD) missingness
is a non-ignorable mechanism through which missing data can
arise in longitudinal designs. RCD, for which we cannot test,
is a problematic form of missingness that occurs if subject-
specific random effects correlate with propensity for
missingness or dropout. Particularly when covariate
missingness is a problem, investigators typically handle miss-
ing longitudinal data by using single-level multiple imputation
procedures implemented with long-format data, which ignores
within-person dependency entirely, or implemented with
wide-format (i.e., multivariate) data, which ignores some as-
pects of within-person dependency. When either of these stan-
dard approaches to handling missing longitudinal data is used,
RCD missingness leads to parameter bias and incorrect infer-
ence. We explain why multilevel multiple imputation (MMI)
should alleviate bias induced by a RCD missing data mecha-
nism under conditions that contribute to stronger determinacy
of random coefficients. We evaluate our hypothesis with a
simulation study. Three design factors are considered:
intraclass correlation (ICC; ranging from .25 to .75), number
of waves (ranging from 4 to 8), and percent of missing data
(ranging from 20 to 50%). We find that MMI greatly outper-
forms the single-level wide-format (multivariate) method for
imputation under a RCD mechanism. For the MMI analyses,
bias was most alleviated when the ICC is high, there were
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more waves of data, and when there was less missing data.
Practical recommendations for handling longitudinal missing
data are suggested.

Keywords Multilevel multiple imputation - Longitudinal
missing data - Random coefficient dependent - Determinacy

Language that researchers use to describe their assumptions
about missing data tends to be imprecise. It is common to read
that missing data were “handled using full-information maxi-
mum likelihood,” the implication being that maximum likeli-
hood protects parameter estimates from bias as long as miss-
ing data are missing at random (MAR) conditional on ob-
served data. However, such language underscores a small
but fundamental misunderstanding about missing data that
pervades social sciences. An intricacy that is lost in much of
the discussion around missing data is that missing data as-
sumptions apply to specific types of variables within specific
models (Enders 2013; Graham 2009).

We define explicitly what the MAR assumption means
when common approaches to handling missing data are used,
and we show when this assumption has the potential to be
problematic, focusing on a non-ignorable missing data mech-
anism that may arise when using multilevel models to analyze
longitudinal data: random coefficient-dependent (RCD)
missingness. We suggest that data conditions resulting in high
determinacy of latent growth factors may minimize parameter
bias that arises from violating missing data assumptions if
multilevel multiple imputation models (MMIs) are used in-
stead of single-level imputation models.

First, we briefly review our notation for multilevel growth
models and then describe the RCD missingness mechanism.
Next, we explain how RCD missingness might induce param-
eter bias when data are analyzed in a typical manner. We
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describe how the concept of growth factor score determinacy
relates to RCD missingness and how MMIs might be lever-
aged to alleviate parameter bias without necessitating the for-
mation of an explicit model for missing data. We test our
hypotheses with a simulation design comparing parameter
recovery when MMI is used with RCD missingness versus
when a single-level imputation model is used to handle
RCD missingness under a variety of data conditions that in-
fluence the level of growth factor determinacy.

Multilevel growth models follow the general form for per-
son i: Y;=X;b+Zu;+ ¢;, where Y, is an outcome vector of
length 7' x 1 (T'is the number of waves) and X;isa 7' x (K+ 1)
design matrix for the fixed effects in b, which is of dimension
(K+1)x 1. Typically, there are fixed effects for an intercept
and K predictors, including time (and potentially higher-order
functions of time), along with time-invariant and time-varying
covariates. Z; is a T'x M matrix usually containing a column
of 1’s as well as subset of time-varying variables, such as time
itself, from X, that have heterogeneous effects across subjects
(i.e., random effects). w; is a M x 1 vector of latent subject-
specific effects, which correspond to the columns of Z,;, and
are assumed to be distributed according to a multivariate nor-
mal distribution with unstructured covariance matrix T:
(u;~MVN(O0, T)). Finally, ¢; is a 7x 1 vector of normally
distributed occasion-specific residuals (¢; ~ MVN(O0, 1)) .

RCD missingness occurs when the probability that X;; or Y,
is missing for person, i, at wave, ¢, depends entirely or partially
on the individual’s random coefficient values contained in the
subject-specific, random effects, w;. The RCD mechanism re-
sults in a systematically skewed observation of X; and Y,
which in turn produce biased parameter estimates when fitting
a standard multilevel growth model. The nature of the bias
depends upon the precise selection pressures exerted by this
MNAR mechanism. The extent of the bias depends upon the
severity of the selection pressure and upon the reliability with
which the random coefficients are determined by observed
data (Gottfredson 2011). It is not possible to determine with
certainty whether any MNAR mechanism is contributing to
missing data, so the plausibility and potential consequences of
the existence of such a mechanism must be considered (e.g.,
Enders 2011).

Strategies for Handling Missing Data with Multilevel
Growth Models

Maximum likelihood (ML)-based estimators that make use of
all available data (e.g., full ML, restricted ML, and quasi-ML)
identify parameter values to optimize concordance between
the outcome variable for an individual, 7, Yj, and its expected
value under the fitted model conditional on predictors, denot-
ed by Y, (Laird and Ware 1982; McCulloch 1997). Software
used to estimate these regression models typically treat

predictors (X;) as exogenous. Hence, no distributional as-
sumptions are made about predictors in X; and mean and
(co)variance parameters for predictors in X are not estimated.

In contrast, software used to model longitudinal structural
equation models tends to give the analyst the option of includ-
ing the distribution of X in the likelihood (i.e., making X;
endogenous; Bollen 2014). This is not the default option in
common SEM software (e.g. Mplus), nor is it always a desir-
able choice; however, to our knowledge, this option is not
possible with conventional multilevel modeling software.
Thus, when using multilevel modeling software, the common-
ly cited assumption that missing data are MAR only applies to
missing outcome variables (Y;™*), and not to missing predic-
tors in X; (X;™). Rather, observations with missing predictors
are entirely omitted (i.e., deleted listwise) from the model
likelihood. This is a problem for longitudinal studies, espe-
cially those with time-varying predictors that may be missing
on some occasions, because it requires missing values in X;™*
to be missing completely at random (MCAR), a condition that
would typically only occur if missing data are missing by
design (Rubin 1976), or missing exclusively due to observed
covariates (Little and Zhang 2011).

To avoid listwise deletion resulting from missing predic-
tors, an analyst may choose to multiply impute missing pre-
dictors (and outcomes, if desired) prior to analysis. When
missing data are imputed to form complete datasets, one need
only assume that missing outcomes and predictors are MAR
given all observed data in the imputation model. The analyst’s
goal is to approach conditionally random missingness as
closely as possible, reducing potential sources of bias to the
fullest extent possible (Graham 2009). It is therefore essential
to follow an inclusive imputation strategy by incorporating as
many auxiliary variables and statistical interactions as can
reasonably be accommodated into the imputation model
(Collins et al. 2001).

Longitudinal data adds complexity in the multiple imputa-
tion procedure. Leaving the data in “long” format but using a
single-level imputation approach and ignoring within-person
correlation in the multiple imputation procedure is unprinci-
pled; it results in over- or underestimation of the importance of
covariates, underestimation of random effect variance, and
conflation of within-person and between-person effects
(Lidtke et al. 2016; van Buuren 2011). However, because
software options for imputing multilevel data have been lim-
ited historically, an analyst might be tempted to use the ad hoc
approach of imputing missing data from a saturated imputa-
tion model using a “wide” (multivariate) data structure in a
single-level multiple imputation program (e.g., SAS Proc MI)
in order to incorporate autocorrelation of the within-person
data. Such an approach is preferable to assuming indepen-
dence of all observations within person, but it is still poten-
tially problematic for a couple of reasons. First, the “wide”
approach does not explicitly incorporate information about the
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timing of repeated measures. Second, the covariance structure
in the saturated “wide” imputation model may not be suffi-
ciently general to reflect the hypothesized model-implied co-
variance structure; for instance, covariance features involving
random slopes of predictors with individual-specific values
(such as Xj;; Wu et al. 2009) may not be fully accounted for
during imputation. Both of these limitations of the “wide”
imputation approach may lead to substantial inefficiencies in
the imputation model and may lead to biased variability esti-
mates. All of the aforementioned, common methods for han-
dling missing data require the MAR assumption, which is the
limitation that we address in this manuscript.

Fortunately, software for conducting multiple imputation
with multilevel data is advancing rapidly. Enders et al.
(2016) summarized and compared two classes of multilevel
multiple imputation (MMI) modeling approaches, and associ-
ated software, from which analysts may choose joint models
(Asparouhov and Muthén 2010; Schafer and Yucel 2002) and
chained equations (van Buuren 2011). Presently, categorical
data can be accommodated in joint MMI modeling software,
but not in software that uses chained equations. While we
expect that technology will progress quickly, in this paper,
we use the joint MMI modeling approach (specifically, the
approach described in Schafer and Yucel 2002) due to this
limitation of chained equations and its slower rate of conver-
gence (the latter problem is a concern mainly for simulation
studies such as ours).

Although MMI is slightly more complicated than tradition-
al multiple imputation from the longitudinal analyst’s perspec-
tive, it may confer the unique benefit of mitigating bias in the
presence of the non-ignorable RCD missing data mechanism,
and it may do this without requiring explicit modeling of the
missing data mechanism. MNAR models, including multilev-
el growth model allowing for RCD missingness (Albert and
Follmann 2009; Gottfredson et al. 2014; Tsonaka et al. 2009;
Vonesh et al. 2006), require untestable assumptions and are
sensitive to misspecification (Little 1993; Roy 2003). When
missing longitudinal data are imputed using a multilevel mod-
el, empirical Bayes estimates of the unobserved random ef-
fects in u,, are generated and imputed values are conditioned
on these estimated latent values (Schafer and Yucel 2002).
Thus, the MMI inherently accounts for missingness due to a
RCD mechanism in proportion to the determinacy of the
growth factors.

However, there is an important limitation to MMI’s poten-
tial for mitigating bias resulting from RCD missingness: MMI
software cannot condition imputations on random coefficients
corresponding to time-varying covariates with missing values
(Enders et al. 2016; Grund et al. 2016). Consequently, MMI
will be useful in reducing bias from non-ignorable RCD
missingness only if the mechanism involves the random inter-
cept, a random slope for time (because time is always known),
or a random slope corresponding to a time-varying covariate
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that is completely observed. Unfortunately, the third situation
may be unlikely in longitudinal designs because observations
that are collected simultaneously on a given wave tend to be
missing together. However, there are many exceptions (e.g.,
item-level missingness; when the source of outcome data dif-
fers from the source of predictor data; when predictors are
lagged and the earlier time point is observed).

Study Overview

Under various realistic data scenarios, we conduct a simula-
tion study to examine the performance of MMI relative to its
most principled alternative: single-level, multivariate “wide”
MI (SWMI). Simulation methodology is appropriate for ad-
dressing our research questions because the MMI model is not
intended to handle MNAR missingness, so its performance
under realistic conditions is unknown. First, we hypothesize
that MMIs will mitigate bias that is due to non-ignorable,
RCD missingness. Second, we hypothesize that conditions
related to determinacy of the growth factors will affect how
well the MMI approach is able to recover true parameter esti-
mates. We do not expect the same to be true for SWMI be-
cause random effects are not incorporated into the imputation
model. To test these hypotheses, we evaluate and compare
performance of MMI and SWMI under varying degrees of
determinacy (c.f. factor score determinacy; Grice 2001). In
multilevel modeling, growth factor determinacy relates to
the multiple correlations between the random coefficients
and the repeated measures. We can therefore experimentally
manipulate determinacy through the intraclass correlation
(ICC) amongst repeated measures and number of repeated
waves. We hypothesize that, when missing data are handled
with MMI, bias resulting from a RCD missing data mecha-
nism will be least severe when the ICC is relatively high and
when there are more repeated measures. In a follow-up simu-
lation, we evaluate how another factor related to growth factor
determinacy, percentage of missing data, affects performance
of MMI in the presence of an RCD mechanism.

Simulation Study
Data Generation

We generated 500 replicated datasets per experimental condi-
tion using R software (R Core Team 2015). There were 1000
clusters (i.c., level 2 units or “subjects”) in all conditions.

In the primary simulation study, two factors were crossed:
the ICC (.25 and .75) and the number of waves (four and
eight). ICC levels were chosen to reflect the range from mod-
est, but non-negligible, nesting (.25) to high levels of nesting
that would be observed in an intensive longitudinal study (.75;
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Bauer and Sterba 2011). Approximately 30% of data were
missing across all conditions in the first part of the simulation.
The two alternative numbers of waves were sampled from a
realistic range that would be observed in most panel design
studies or in short intensive longitudinal studies.

In the follow-up simulation, we held ICC constant at .5 and
number of waves constant at 6 and we varied percent of miss-
ing data from fairly low but not negligible (20%), to moder-
ately large (33%), and to extensive (50%) (Collins et al. 2001;
Enders 2010).

Data were generated using the following multilevel model,
where time was coded to start with 0 and increase one unit
with each wave (0:3, 0:5, or 0:7 for four, six, and eight waves,
respectively), and X; followed a standard normal distribution:

Vi = bo + bitime,; + by X i + ug; + uyitimey; + uxlX i + €4,

Uo; 0 T00

uy |[~MVN| |0, |70 Tn )

uy; 0 Too T2l T2
En‘NN(O,O'Z).

(1)

Parameters were chosen to optimize several criteria. First,
ICCs had to equal to .25, .5, or .75 when time and X,; were
equal to zero, and the ICCs were required to remain within
reasonable bounds of these values at all levels of time and X;:

icc X“'7 time,;
Too + timerz,-rn +Xf,-'rzz + 2time; o1 + 2X ;iTop + 2time; X ;iT1o
Too + time,zl-Tn +X121722 + 2time, Ty + 2X yTop + 2timey X T2 + 02

(2)

We aimed to have a R)z)t of .5 to retain constancy across all

conditions. Finally, we maintained proportionality for values
in b and T across all conditions (e.g., the ratio of 71 to 799 was
.06 regardless of ICC); also, each fixed effect explained the
same proportion of variance in all conditions.

Waves of data were randomly selected to be missing based
on a probabilistic RCD mechanism in which the log odds of
missingness depended on subject-specific values of the random
intercept (o;) and the random slope for time (u;;). The intercept
of the logit equation for missingness was varied to determine
the total amount of missing information. Coefficients corre-
sponding to the random effects varied by ICC condition; the
correlation between the random effects and the missingness
probability was approximately .15 across all conditions.

Data Analysis

We used the MplusAutomation package in R to analyze the
simulated data using the MMI procedure (Hallquist and Wiley
2014). The Mplus input imputation script was modified from

script presented in Enders et al.’s Appendix A (2016). X, and
time; were listed as “within” variables. The imputation model
included a random intercept and a random time coefficient, but it
necessarily excluded the random coefficient for the effect of X;;
because random coefficients are not permitted for covariates with
missing values (as discussed previously; see also Grund et al.
2016). X;; and time were treated as endogenous in the imputation
model to avoid listwise deletion of missing waves of data.
Twenty complete-case datasets were imputed for each replica-
tion. For comparison, we used PROC MI in SAS version 9.4 to
generate 20 imputations per replication with a SWMI model. The
MCMC method imputed missing data to match mean and co-
variance data from the saturated model for all observed X; and Y;.

All imputed data were analyzed using the model shown in
Eq. | with a maximum likelihood estimator. Results were
aggregated according to Rubin’s (2004) pooling formulae to
obtain parameter estimates and standard errors.

We combined information about the bias and efficiency of
fixed effect parameter estimates by constructing the average
95% confidence interval for each parameter using the follow-
ing equation, where k represents a given model parameter, 6
is the true value of a parameter, 6, is its estimate, and R rep-
resents the number of replicated datasets (500):

3 ék/R +1.96%) SE(ék)/R. (3)

Generating parameters varied by condition, so we report
percent relative bias (PRB) instead of average point estimates.
PRB was obtained by subtracting true generating parameters
from the average point estimates and dividing by the true
parameter value, as shown in Eq. 4:

ZR (ék,,—9k>
r=1 -
. RB
PRBy = 100 x — > O /49 BB (4)

R akr

PRB adjusts for scale differences when comparing bias
across differently valued parameters so bias is interpreted rel-
atively, as a percent discrepancy from the true value (as used
in Maas and Hox 2005). The average 95% confidence inter-
vals around point estimates from Eq. 3 were re-scaled into the
PRB metric in order to combine information about parameter
bias with efficiency of the estimates.

Because variance component estimates are bounded at ze-
ro, we used a log transformation to create asymmetric confi-
dence intervals that could not go below zero, analogous to the
procedure used in IBM SPSS MIXED. The 95% confidence
intervals for variance components were calculated as follows:

1n<ZR ék/R> + 1.96*21?: SE(ék)/R/ER: 0 /R (5)
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The upper- and lower- confidence bounds were then back-
transformed by exponentiation before they were re-scaled into
the PRB matric.

We report results for all fixed effects and the random effect
variance parameters. Results regarding random effect covari-
ance parameters are available upon request.

Results

MMI Versus SWMI Performance Under RCD
Mechanism

Figure 1 depicts the average 95% confidence intervals, re-
scaled to PRB metric. The y-axes are scaled differently across
parameters to accommodate different ranges. Dashed horizon-
tal lines at £10% indicate boundaries for what is sometimes
considered an “acceptable” level of bias (e.g., Bollen et al.
2007). We note that although the RCD mechanism involved
the random intercept (uy;) and random slope for time (u;,), bias
was not isolated to by, by, 7o, and 7y, but instead propagated
throughout the model (c.f., Kaplan 1988). Nevertheless, the
parameters involved more directly in the RCD mechanism
were the most affected.

Fixed Effects None of the re-scaled 95% confidence intervals
for fixed effect estimates cover the true parameter value under
the SWMI model (represented as PRB = 0). In contrast, almost
all of the re-scaled 95% confidence intervals for the MMI
models cover the true fixed effect generating values. The
two exceptions are the fixed effect of time (b;) when the
ICC is low. Additionally, the re-scaled upper end of the 95%
confidence interval for b, just reaches the true parameter value
(PSB = 0) when the ICC is high but there are only four waves.
Examining Fig. 1, we see that, with one exception, point esti-
mates for fixed effects generated under MMI are within the
“acceptable” range of PRB. The exception to this is for the
fixed effect of time (b;) when determinacy is lowest
(ICC = .25 and four waves). In contrast, re-scaled 95% confi-
dence intervals for fixed effects generated by the SWMI model
never even overlap with acceptable levels of PRB. This is true
even as confidence intervals are wider in the SWMI models.

Random Effect Variances As is typical with maximum like-
lihood estimation, covariance parameters are not recovered as
well as fixed effects and tend to be downwardly biased
(Kenward and Roger 1997). The average point estimates gen-
erated under MMI are outside of the acceptable range for 71,
when the ICC is low, and point estimates for 7,, are outside of
the acceptable range for all conditions. However, the re-scaled
95% confidence intervals always cover or nearly cover the
true parameter value (PRB =0). When compared with the
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SWMI results, the MMI model produces less biased and much
more precise confidence intervals for random effect variances
than the SWML.

Effects of ICC and Number of Waves on Parameter
Recovery: Comparison of MMI and SWMI Models

MMI Models Fixed effect estimates were more efficient as
the ICC decreased because each observation necessarily pro-
vided more independent information about the fixed effects.
On the other hand, estimates for random effect variances were
more efficient the ICC increased, and covariance parameter
estimates were less biased with a higher ICC. As expected,
fixed effect estimates were less biased as the number of re-
peated measures increased. As we noted previously, re-scaled
confidence intervals covered the true fixed effect parameters
(PRB =0) in all cases except for the estimate of b, (the effect
of time) when determinacy was low. Specifically, the true
value of b, (PRB =0) was not contained in the re-scaled
95% confidence interval when the ICC was low. The number
of repeated measures did not have a strong influence on re-
covery of random effects when the ICC was high, but having
more repeated measures resulted in more efficient estimates
when the ICC was low.

SWMI Models As expected, higher random coefficient deter-
minacy did not result in systematically improved parameter
estimates in the SWMI models. Having a higher ICC was
worse for recovery of b, and b, and better for recovery of b;.
As with the MMI model, higher ICCs were associated with
more efficient estimation of the random effects. Likewise, there
was no discernable pattern of the effect of number of repeated
measures on recovery of fixed or random effect parameters,
except that confidence intervals for random effects were wider
when there were fewer waves and the ICC was low.

Percent of Missing Data

As has been previously shown with non-randomly missing
data more generally (Collins et al. 2001), we find that having
RCD missing data is associated with biased estimates of gen-
erating parameters. Figure 2 shows re-scaled average 95%
confidence intervals. These results illustrate that the MMI
model cannot accommodate RCD missingness that occurs in
extreme amounts (e.g., 50% with our generating model).
Recovery of random coefficients is worst as missing data in-
creases, both in terms of parameter bias and loss of efficiency.
The effect of missing data on parameter bias is consistent with
our hypothesis that MMI performance under RCD is a func-
tion of determinacy; if performance were unrelated to deter-
minacy, then we would expect to see a loss of efficiency, but
not increased bias, as the amount of missing data increased.
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Fig. 1 Each pair of panels compares the percent relative bias (PRB) of
estimates (solid shape) across data generating conditions (/ight shading:
ICC =.75; dark shading: 1CC = .25; circle: four waves; triangle: eight
waves), as a function of the multiple imputation model. Error bars show

Discussion

Social scientists using longitudinal data have been cautioned
repeatedly about the possibility that MNAR mechanisms may

the average lower and upper bounds of 95% confidence intervals for the
parameters, re-scaled to the PRB metric. Solid horizontal line indicates
zero bias. The area inside of the dashed horizontal lines at £10% repre-
sents “acceptable” bias

cause inferential errors that are impossible to detect empirical-
ly (Enders 2011; Muthén et al. 2011). Many different MNAR
models are available for longitudinal analysts wishing to con-
duct sensitivity analyses (including shared parameter models:

Effect of Percent of Missing Data on Parameter Recovery with Mulilevel Multiple Imputation
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Fig. 2 Each panels displays the percent relative bias (PRB) of estimates
(solid shape) as a function of the percent of missing data when multilevel
multiple imputation is used. Error bars show average lower and upper

bounds of 95% confidence intervals for the parameters, re-scaled to the
PRB metric. Solid horizontal line indicates zero bias. The area inside of
the dashed horizontal lines at £10% represents “acceptable” bias
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Albert and Follmann 2009; pattern mixture models: Little
1995; and seemingly countless extensions thereof).
Unfortunately, none of these models is robust to
misspecification, all require significant assumptions about
the missing data mechanism(s), and there is no empirical
method for evaluating fit of MNAR models.

Thus, in spite of the existence of a variety of MNAR
models, many analysts prefer to use multiple imputation to
handle missing data because, although multiple imputation
requires the MAR assumption (unless imputing specifically
from a MNAR model, Demirtas and Schafer 2003), it is con-
sidered to be robust and it is straightforward to implement in
commonly used software packages. Given this tendency, it is
fortunate that (under conditions of high-random coefficient
determinacy) MMI methods lead to the benefit of reducing
bias due to a non-ignorable missing data mechanism that
may be common in longitudinal research: RCD missingness.
However, our results also show that failing to account explic-
itly for the multilevel nesting structure during multiple impu-
tation can have severe consequences.

Although researchers can never be sure of the extent to
which an RCD mechanism might be causing missing data, they
can have a good sense of the degree to which random coeffi-
cients are determined. Items with a higher communality (i.e., a
higher ICC and less measurement error) lead to higher determi-
nacy, and having more repeated measures and a higher propor-
tion of observed data (i.e., less missing data) also increases
determinacy. Thus, holding the severity of the RCD mechanism
constant, a researcher with many repeated measures and a fairly
stable, well-measured outcome has reason to be less concerned
about parameter bias than a researcher with fewer repeated
measures, measures that are less stable, and measures that are
not as reliable. When data are more like the latter, we recom-
mend evaluating parameter sensitivity using explicit MNAR
models (e.g., Graham 2012; Sterba and Gottfredson 2015).

MMI software is under development and is being expanded
fairly rapidly (Enders et al. 2016; Lidtke et al. 2016).
Presently, categorical variables can be accommodated only
with a joint MMI model, although this feature may soon be
available with software that uses chained equations. An im-
portant limitation to current MMI software is its inability to
incorporate random slopes for predictors with missing values.
Were this restriction lifted, we would expect to see more bias
reduction under more RCD conditions.

Limitations

In addition to the aforementioned software limitations, our
study was subject to the limitation common to all simulation
studies: conclusions are restricted to the range of simulated
conditions. We sought to maximize generalizability of our find-
ings by considering a range of realistic data conditions, varying
parameters that were the key for testing our hypothesis about
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random coefficient determinacy: ICC, number of waves, and
percent of missing data. Parameters that were fixed across con-
ditions were chosen to be moderate and representatives of a
typical longitudinal study. One limitation of the simulation
study is that we did not vary the response distribution of the
repeated outcomes. We would expect to see the same pattern of
results with non-normal data, whereby higher determinacy re-
lates to less bias. However, because censored or binned items
convey less information than continuous items, we would ex-
pect that reductions in bias might not be as dramatic with such
variables. Second, because MMI models take much longer to
converge with chained equations than with joint modeling, we
did not evaluate parameter recovery using chained equations.
Enders et al. (2016) compared parameter recovery under a
MAR missing data mechanism and found that the joint model
performed better for recovering fixed effects and chained equa-
tions were better for recovering the variance of random effects.
Fixed effect estimates tend to be interpreted more frequently
than variance parameters, so we suspect that most analysts
choosing between joint models and chained equations would
choose the former, all else equal.

Conclusion

Because of complexities inherent in longitudinal data collec-
tion, wave-level or item-level non-response is common.
Multiple imputation is the modus operandi for handling lon-
gitudinal missing data because it protects against listwise de-
letion of cases. Until now, the ability of MMI to accommodate
the RCD MNAR mechanism had not been understood, nor
were the limitations of using SWMI to impute longitudinal
data fully understood. By properly accounting for the multi-
level structure of longitudinal data, analysts may take comfort
in the fact that they will also be mitigating bias resulting from
RCD mechanisms. We hope for continued development of
MMI software, particularly the capability for inclusion of ran-
dom slopes for predictors with missing values.
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