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Abstract We review a number of issues regarding missing
data treatments for intervention and prevention researchers.
Many of the common missing data practices in prevention
research are still, unfortunately, ill-advised (e.g., use of
listwise and pairwise deletion, insufficient use of auxiliary
variables). Our goal is to promote better practice in the han-
dling of missing data. We review the current state of missing
data methodology and recent missing data reporting in pre-
vention research. We describe antiquated, ad hoc missing data
treatments and discuss their limitations. We discuss two mod-
ern, principled missing data treatments: multiple imputation
and full information maximum likelihood, and we offer prac-
tical tips on how to best employ these methods in prevention
research. The principled missing data treatments that we dis-
cuss are couched in terms of how they improve causal and
statistical inference in the prevention sciences. Our recom-
mendations are firmly grounded in missing data theory and
well-validated statistical principles for handling the missing
data issues that are ubiquitous in biosocial and prevention
research. We augment our broad survey of missing data anal-
ysis with references to more exhaustive resources.
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Principled Missing Data Treatments

Missing data are a common problem for prevention re-
search and improperly handling missing data can severely
compromise the validity of a study’s inferences. The situ-
ation, however, is not as bleak as it may seem at the
outset. Though not trivial, missing data analysis is a ubiq-
uitous component of applied data analysis for which many
powerful methods have been developed (e.g., multiple im-
putation (MI)—Rubin 1978, 1987; full information maxi-
mum likelihood (FIML)—Anderson 1957 and multiple im-
putation with chained equations (MICE)—Raghunathan et
al. 2001; van Buuren et al. 2006). When applied correctly,
these principled missing data treatments can help recover
the underlying inferential model and maximize a study’s
validity, even in the presence of high rates of nonresponse
(Little et al. 2016).

We review current best practice in missing data analysis, by
which we mean both the process of elucidating the extant
missing data problem (i.e., missing data diagnostics) and the
act of addressing the missing data themselves (i.e., missing
data treatment). We focus our discussion on applications in
the prevention sciences, although we note that the missing
data problems encountered by prevention researchers are not
substantially different from those encountered in other social
and behavioral science research.

Treating missing data correctly is absolutely necessary to
ensure the validity of scientific research because improperly
handling nonresponse can substantially compromise a study’s
inferences. We argue that correctly addressing nonresponse is
an obligation, and not a choice, of all research scientists. This
view is especially true for prevention scientists because pre-
vention research tends to directly impact a large swath of
stakeholders. We have compiled the following material with
three primary goals in mind: (1) to give a high-level overview
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of the current state of missing data methods; (2) to illustrate
why prevention researchers should prefer modern, principled
missing data treatments over other antiquated, yet still com-
mon, approaches, with an emphasis on how modern missing
data tools can be especially useful in addressing some of the
difficult missing data problems that arise in intervention stud-
ies and randomized controlled trials; and (3) to highlight the
importance of planning for missing data early in a study’s
design phase and to show how doing so can dramatically
improve the quality of a study’s inferences by maximizing
the chance that important assumptions of the missing data
methods are met. The methods we discuss below are easily
implemented and well suited to the types of analysis that are
common in prevention research (Enders 2010; Graham 2012;
van Buuren 2012).

We first review missing data treatments reported in recent
issues of Prevention Science. We then highlight important
characteristics of applied missing data problems and introduce
the two flagship methods of modern missing data analysis,
namely, explicit model-based MI and FIML estimation. We
will emphasize the superiority of these modern methods by
contrasting them with four less optimal (yet still commonly
employed) approaches: deletion-based techniques, single im-
putation methods, last observation carried forward (LOCF),
and nonresponse weighting. We conclude by offering some
practical guidance for researchers implementing MI and
FIML.

Review of Missing Data Reporting

Our review of recent Prevention Science articles indicates a
need for improved missing data treatment in prevention re-
search. Specifically, we reviewed the missing data treatments
reported in Prevention Science from February 2013 (Volume
14, Issue 1) to July 2015 (Volume 16, Issue 5). This window
included 240 potential papers. We excluded articles that did
not report empirical research studies (e.g., commentaries, lit-
erature reviews, errata), papers that employed qualitative
methodologies, meta-analyses, and methodological papers.
These exclusion criteria produced a final sample of 169 valid
articles for review. All articles were coded by trained raters for
two key features: (1) missing data reporting (e.g., acknowl-
edgment of missing data, explicit reports of nonresponse
rates) and (2) missing data treatment (e.g., methods used to
treat the missing data, use of auxiliary variables). The raters’
coding was confirmed by the first author.

The majority of articles (n=123, 72.8 %) explicitly ac-
knowledged missing data and explicitly reported some mea-
sure of the nonresponse rate (e.g., percent missing, attrition
rates, covariance coverage). Several papers (n=19, 11.2 %)
acknowledged the presence of missing data but did not pro-
vide any explicit indication of the nonresponse rate. A total of

27 papers (16.0 %) made no mention of missing data, at all.
No articles mentioned the fraction of missing information or
any related quantity (e.g., relative increase in variance due to
nonresponse).

The most commonly reported missing data treatment was
listwise or pairwise deletion (n=50, 29.6 %), followed by
FIML (n=46, 27.2 %), MI (n=22, 13.0 %), single imputation
(n=13, 7.7 %), coding missing values as a categorical re-
sponse level (n=3, 1.8 %), nonresponse weighting (n= 2,
1.2 %), and LOCF (n=2, 1.2 %). Surprisingly, 39 (23.1 %)
studies gave no explicit description of how they addressed
missing data. Of these 39 studies, 12 explicitly acknowledge
the presence of nonresponse in their data. These 12 studies can
reasonably be assumed to have employed a deletion-based
treatment (i.e., listwise or pairwise deletion). Under this as-
sumption, the number of deletion-based missing data treat-
ments rises to 62 (36.7 %) and clearly dominates the distribu-
tion of approaches employed. A number of studies (n=12,
7.1 %) employed multiple missing data treatments, so the
counts reported above exceed 169.

Although the rates of missing data reporting and use of
modern missing data treatments (i.e., MI and FIML) are
higher in this review than other recently published surveys
of missing data reporting practices (e.g., Bodner 2006; Little
et al. 2014; Peugh and Enders 2004), our findings still suggest
considerable room for improvement in the missing data
methods employed by prevention researchers. First and fore-
most, deletion-based techniques (i.e., listwise and pairwise
deletion) remain the most frequently employed treatment for
nonresponse. This practice is troubling because these methods
are well-known to be among the poorest choices of missing
data treatment (Wilkinson and Task Force on Statistical
Inference 1999). Also, although the rates of FIML usage were
promisingly high, only 3 of the 46 studies that employed
FIML used auxiliary variables or covariates that were explic-
itly included to support the fundamental assumptions of miss-
ing data analysis. The very low rate at which auxiliary vari-
ables were employed suggests that many authors may simply
have relied on software defaults without giving much thought
to their missing data problem (a possibility also noted by
Little et al. 2014). Finally, although the rates of basic
missing data reporting were high (72.8 %), this number
should be 100.00 %. At a bare minimum, all authors
should honestly report the extent of the missing data in
their study, regardless of how they treat those missing
data. If no missing data are present, this fact should be
clearly stated.

Important Considerations forMissing Data Analyses

There are several critical characteristics of a missing data
problem that must be considered before the missing data
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themselves can be addressed. We first discuss those aspects of
missing data problems that play the largest role in applied
missing data analyses.

Nonresponse Pattern

One of the most basic features of a missing data problem is its
nonresponse pattern, which simply refers to the spatial ar-
rangement of the empty cells in an incomplete data set. The
simplest of these patterns is univariate nonresponse in which
missing data occur on only one variable. A second nonre-
sponse pattern is the so-called monotone nonresponse pattern,
which occurs when the rows and columns of a data set can be
ordered by decreasing completeness so that the observed por-
tions form a Bstaircase^ pattern in which, when traversing
rows or columns, every entry following the first missing da-
tum is also missing. Such patterns are common in longitudinal
research where they arise from attrition (i.e., participants per-
manently dropping out of the study), although they almost
always present in addition to the final nonresponse pattern:
arbitrary nonresponse. This pattern occurs when cells of the
data set are missing in an arbitrary, apparently random, ar-
rangement—though this evident randomness is rarely truly
random, as we discuss below.

There is an alternative classification of nonresponse that
can also help guide the design of a missing data analysis.
This classification, which originated in the literature on sam-
ple surveys, differentiates between item nonresponse and unit
nonresponse. Unit nonresponse occurs when an entire obser-
vational unit (e.g., a participant in an intervention study) fails
to give any data. Unit nonresponse leads to entire rows of data
sets being missing. Item nonresponse occurs when individual
cells in a data set are empty but each row contains at least one
observed data element. Unit nonresponse is a degenerate spe-
cial case of monotone nonresponse, while item nonresponse
subsumes the typical presentations of univariate, monotone,
and arbitrary nonresponse.

Nonresponse Rate and Fraction of Missing Information

Another characteristic that must be accounted for when plan-
ning a missing data analysis is the actual nonresponse rate.
That is, exactly how much of the anticipated sample size has
been lost to missing data? There are several ways to quantify
the nonresponse rate for any given missing data problem. The
simplest of these measures is the percentage of missing data
(or percent missing), which is the percentage of the total cells
in a data set that are missing. A closely related quantity is the
attrition ratewhich simply quantifies the proportion of partic-
ipants in a longitudinal study who permanently Bdrop out^ at
each measurement occasion. Percent missing and attrition rate
are important early screening measures that give a rough idea
of the severity of the missing data problem. Yet, neither

percent missing nor attrition rate give much information on
how well the missing data treatment will perform or how the
missing data model should be parameterized because neither
of these metrics account for how well the observed data can
help recover the missing values. Another simple measure of
nonresponse rate is the so-called covariance coverage. The
covariance coverage gives the proportion of observations that
are available to estimate each pairwise relationship.
Covariance coverage is important because low coverage indi-
cates that the observed data offer little information to help the
estimation process. Relationships with low coverage values
tend to be poorly recovered by most missing data treatments.

The most important measure of nonresponse rate is the
fraction of missing information (FMI). FMI quantifies the
amount of a parameter’s information that is lost to nonre-
sponse. Because information and variance are inversely
proportional quantities, the FMI also quantifies the in-
crease in a parameter’s sampling variability due to the
missing data (Rubin 1987). In this sense, the FMI can
be viewed as analogous to an R2 statistic for the missing
data (Enders 2010). The FMI underlies many important
components of a missing data analysis, including statistical
power lost to nonresponse (Savalei and Rhemtulla 2012),
the convergence rates of missing data algorithms (Schafer
1997), and the number of imputations required when using
multiple imputation (Graham et al. 2007). The FMI can be
readily estimated as a byproduct of both MI- and FIML-
based missing data analyses (Savalei and Rhemtulla 2012).
When reporting a missing data analysis, the FMI of im-
portant parameter estimates should be presented to facili-
tate the reader’s ability to judge the missing data’s impact
on the inferences presented. As mentioned, the FMI was
not reported in any of the articles reviewed for this paper.

Nonresponse Mechanism

Each study variable (e.g., gender, body mass index) can be
augmented with a binary random variable coding nonre-
sponse. These nonresponse indicators represent the
missingness of the respective variables. Some of the most
crucial assumptions underlying modern missing data analysis
pertain to the way that the missingness is related to the ob-
served and missing components of the study variables. These
nonresponse mechanisms are a set of probability statements
that describe the interrelations of the missingness (i.e., the
binary nonresponse indicators) and the study variables.
There are three such mechanisms: missing at random
(MAR), missing completely at random (MCAR), and missing
not at random (MNAR).

MAR missingness can be predicted by the observed com-
ponents of other variables on the data set, but, after controlling
for these observed predictors, MAR missingness is not pre-
dictable by the missing components of any study variables.
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Note that a variable’s nonresponse indicator will be constant
for the nonmissing elements of that variable, so MAR
missingness must, by definition, be independent of the study
variable whose missing data it encodes, after controlling for
other predictors on the data set. MCAR missingness is actu-
ally a special case of MAR missingness that occurs when the
nonresponse is a purely random sample of the complete data.
Thus, MCAR missingness is independent of both the ob-
served and missing components of all study variables.
MNAR missingness occurs when the missingness remains
predictable by the missing components of some study vari-
ables (possibly the variable whose missing data it encodes),
even after controlling for the observed portions of all variables
on the data set. MNAR missingness is nearly impossible to
treat well because the missing values are not sufficiently pre-
dicted by the observed portions of the data set, so the observed
data cannot provide enough information to adequately ap-
proximate the missing data’s distribution.

The residual dependence that characterizes the MNAR
mechanism can be induced through multiple processes; con-
sequently, Enders (2010) distinguishes between direct and
indirect MNAR mechanisms. Direct MNAR occurs as de-
scribed above: the participants’ latent levels of the missing
components of the study variables are directly associated with
their propensity to respond. The indirect MNAR case, on the
other hand, is actually a corrupted MCAR mechanism that
arises from the proverbial third variable problem. Under indi-
rect MNAR, there is no true relationship between the study
variables’ missing components and the missingness, but both
of these variables are related to an unmeasured third variable
that induces a spurious association that manifests as an
MNAR mechanism.

By way of example, consider a hypothetical study of an
intervention to prevent teen pregnancy by promoting condom
usage among high school students. If some religious students
dropped out of the study because they were offended by the
subject matter, their attrition would be MAR. As long as the
study data included some measure of religiosity, controlling
for religiosity would account for any differences between
completers and dropouts in the post-drop out levels of the
study variables. If some students dropped out of the study
because they moved out of the intervention area, then their
attrition would be MCAR. As long as these moves were not
associated with some aspect of the intervention, these
students’ hypothetical post-drop out values would be
stochastically equivalent to the rest of the students’
values. If some students dropped out of the study be-
cause they became pregnant, then their attrition would be
MNAR. This missingness would remain associated with an
unmeasured outcome (i.e., the students’ pregnancies) even
after accounting for all measured variables. If the study did
not measure religiosity, then the MAR example given above
would degrade into an indirect MNAR situation. Students

who dropped out because of religious objections may also
have low rates of condom usage and correspondingly high
rates of teen pregnancy. Without controlling for religiosity,
these students’ attrition would remain associated with unmea-
sured variables (i.e., condom usage and pregnancy), after ac-
counting for all measured variables. Optimizing the chance
that the inevitable missing data will be MAR (as opposed to
MNAR) is the primary reason to proactively plan for missing
data. Including likely correlates of the missingness in the data
collection minimizes the chances of encountering indirect
MNAR in scientific studies.

Ignorability of the Nonresponse Mechanism

MAR and MCAR are ignorable mechanisms because their
effects on bias, validity, precision, and power can be mitigated
without explicitly modeling the nonresponse mechanism (i.e.,
by using MI or FIML). Thus, MCAR and MAR are ignorable
nonresponse mechanisms in the same way that simple random
sampling is an ignorable sampling mechanism. MNAR, on
the other hand, is nonignorable (in the sameway that stratified
random sampling is a nonignorable sample mechanism) be-
cause it will lead to biased results unless the missing data
analysis incorporates an explicit, and correct, model for the
nonresponse mechanism or additional variables are intro-
duced that correlate strongly enough with the missingness to
induce a MAR mechanism. By planning for missing data and
proactively measuring potential correlates of the missingness,
researchers can approximate a MAR mechanism and thereby
reduce bias and increase validity (Enders 2010).

Antiquated Missing Data Treatments

To highlight the strengths of the modern missing data treat-
ments that we discuss below, we will first describe several
antiquated ad hoc approaches that remain common in the lit-
erature. Due to space limitations, our discussion of these tech-
niques is limited. Readers are encouraged to consult Enders
(2010; Chapter 2), the articles cited therein, and Little and
Rubin (2002; Chapters 3 & 4), for thorough discussions of
the deficiencies inherent in antiquated missing data methods.

Deletion-Based Techniques

Missing data theorists have long decried deletion-based tech-
niques as some of the worst options for treating missing data
(Wilkinson and Task Force on Statistical Inference 1999).
Unfortunately, they still remain common in many scientific
studies (Bodner 2006; Little et al. 2014; Peugh and Enders
2004). Deletion-based techniques come in two flavors,
listwise deletion (or complete case analysis) in which any
incomplete row is deleted and pairwise deletion (or available
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case analysis) in which sufficient statistics are computed using
only those rows for which every constituent variable has been
observed (e.g., the correlation between X and Y is computed
using only rows with no missing on either X or Y). Listwise
deletion has two major problems: (1) it leaves nonresponse
bias unaddressed and thus leads to biased statistical inferences
unless the data are truly MCAR (Little and Rubin 2002) and
(2) it can lead to a substantial loss of power since a large
proportion of the sampled units will tend to be discarded
(Enders 2010). Pairwise deletion will maintain higher power
than listwise deletion will, but, in addition to requiringMCAR
to produce unbiased estimates, pairwise deletion can lead to
sufficient statistics with inconsistent degrees of freedom (since
each statistic can be derived from a different set of observa-
tions). This inconsistency can produce estimated correlations
outside of the interval [−1, 1], sample covariance matrices that
are not positive definite, and biased standard errors that lead to
incorrect inferences, even when the missing data are MCAR
(Little and Rubin 2002). Despite these well-known deficien-
cies, deletion-based techniques were the most common miss-
ing data treatment in the articles reviewed for this paper.

Single Imputation Techniques

Single imputation techniques are not suitable candidates for
general-purpose missing data treatments. There are three com-
mon types of single imputation: unconditional mean
substitution in which each variable’s missing entries are re-
placed with the mean of that variable’s observed portion, de-
terministic regression imputation (i.e., conditional mean
substitution) where each variable’s missing entries are re-
placed with predicted values from a regression equation in
which the incomplete variable acts as the dependent variable,
and stochastic regression imputationwhich adds an additional
random error term to the predicted values imputed by deter-
ministic regression imputation. Unconditional mean substitu-
tion can introduce high levels of bias in the final parameter
estimates by pulling the distribution of the imputed data to-
ward the mean of the observed data (van Buuren 2012).
Deterministic regression imputation will underestimate the
variance of the imputed items and inflate linear associations
involving imputed variables because the imputed values fall
directly on the regression surface (Enders 2010). Finally, sto-
chastic regression imputation will produce unbiased point es-
timates of model parameters, but it can lead to inflated type I
error rates because it does not adequately quantify the uncer-
tainty introduced by the missing data and, thereby, attenuates
standard errors for model parameters (Rubin 1987). Stochastic
regression imputation does incorporate random error into the
imputed values themselves, but it treats the imputation model
as fixed. To achieve proper imputations in the sense of Rubin
(1987), the uncertainty in the imputation model itself must
also be modeled, either via Bayesian simulation or

bootstrapping (Allison 2002; van Buuren 2012), which is
the defining characteristic of MI (see below). Methods are
available to correct the standard errors in stochastic regression
imputation (see Little and Rubin 2002; Chapter 5), but they
are complicated solutions to a problem that MI addresses
automatically.

Last Observation Carried Forward

LOCF is a deterministic single imputation technique that sim-
ply entails replacing all of a longitudinal observation’s post-
drop out missing values with its last observed value. This
method can seriously compromise a study’s inferences and
lead to highly invalid conclusions (Enders 2010; Little and
Yau 1996; van Buuren 2011). An implicit assumption of
LOCF is that participants who drop out of a study would have
maintained their last observed levels on all variables. This
limitation is often acknowledged and cited as leading to con-
servative conclusions, but LOCF can just as easily lead to
liberal bias. Any intervention that is designed to decrease the
rate of some behavior will be liberally biased by LOCF. If all
participants subject to the intervention are expected to dem-
onstrate a monotonic increase or decrease in some outcome
measure over the course of the study (e.g., increasing frequen-
cy of risky sexual behavior or decreasing school attendance),
and the effect of the intervention is primarily to slow this
progression, then freezing dropouts’ responses at an early
measured level will spuriously inflate the intervention’s esti-
mated effect. The goal of statistical inference is not to be
conservative or liberal but rather as unbiased as possible.

Nonresponse Weighting Approaches

Weighting techniques are not necessarily antiquated or ad hoc,
but they were developed to address unit nonresponse (Little
and Rubin 2002), so their applicability is limited in prevention
research. Nonresponse weighting involves constructing and
applying columns of weights in an effort to remove nonre-
sponse bias from a study’s final inferences. Nonresponse
weighting should not be applied to item nonresponse; on the
other hand, MI and FIML are intractable when facing true unit
nonresponse in which no data are available for some units.
This relatively rare circumstance leaves nonresponse
weighting as one of the only principled missing data methods
available for such problems. Yet, even when a unit gives no
data, there will sometimes be information on that unit avail-
able from an alternative source (e.g., many intervention stud-
ies can access baseline and demographic data collected as part
of the experimental sites’ normal operating procedures).
When such supplementary data are available, they can be
incorporated into the missing data analysis to turn much (or
all) of the unit nonresponse into monotone nonresponse. In
these cases, we recommend using MI or FIML to treat the
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missing units at the same time as any item nonresponse.
Missing units that are unobserved due to a failure to consent
or refusal to participate in the study should be flagged
during the missing data treatment (e.g., with a dummy coded
variable) to ensure that any differences between the groups are
represented in the imputations or the FIML estimates.

Recommended Missing Data Treatments

As intimated throughout, there are two flagship techniques in
modern missing data analysis: MI and FIML. These methods
provide optimal results in the majority of missing data prob-
lems, and we clearly advocate their proper use whenever miss-
ing data occur in applied research. FIML is easily implement-
ed and is particularly well suited to latent variable modeling.
MI is slightly more labor intensive than FIML, but this addi-
tional effort is paid back with extreme flexibility.

Multiple Imputation

MI was originally introduced by Rubin (1978) and later re-
fined by Rubin (1987). It is an incredibly powerful missing
data tool that originates from the Bayesian analysis of large-
scale sample surveys (e.g., national censes). This pedigree is
one of MI’s greatest strengths. Because it was developed from
a Bayesian perspective for use within a randomization-based
framework, the conclusions drawn from a well-implemented
MI analysis are valid from both Bayesian and
Frequentist perspectives and lead to valid model-based or
randomization-based inferences (Little and Rubin 2002).

MI analyses can be broken into three steps: the imputation
phase, the analysis phase, and the pooling phase. The imputa-
tion phase entails create m>1 replacements for the missing
data by takingm random draws from their posterior predictive
distribution. These m replacements are then used to fill in the
missing data to createm imputed data sets. The analysis phase
consists of fittingm replicates of the analysis model to thesem
imputed data sets. Finally, the pooling phase employs Rubin’s
Rules (Rubin 1987, pp. 76–77) to aggregate the m sets of
estimates into the final pooled point estimates and standard
errors that are used for optimally accurate inference.

Full Information Maximum Likelihood

FIML (Anderson 1957; also known as direct maximum
likelihood) is a maximum likelihood estimator that is robust
to ignorable item nonresponse. It is a clever extension
of ordinary maximum likelihood estimation that modifies the
sample log-likelihood function to consider only the observed
elements of the data matrix. In this way, FIML can leverage all
of the available information when fitting a statistical model
(Savalei and Rhemtulla 2012). In practice, FIML has been

shown to perform very well (Arbuckle 1996; Enders 2001;
Enders and Bandalos 2001). Under a MAR nonresponse
mechanism,when a good set of auxiliary variables are includ-
ed in the model (e.g., via the saturated correlates technique,
Graham 2003), FIML will produce optimal estimates that are
asymptotically equivalent to those derived from MI (Savalei
and Rhemtulla 2012). If, however, auxiliary variables are not
employed, the MAR assumption will only hold when all
predictors of the missingness are included in the inferential
model. Whenever this is not the case, the FIML estimates will
be biased (Enders 2010; Graham 2003). Only 3 out of 46
FIML-based analyses reviewed above reported using some
form of auxiliary variables. This finding suggests that the high
rates of FIML adoption among prevention scientists may be
undercut by incorrect applications of the FIML technique that
leave inferences compromised. Yet, these deficiencies can be
easily addressed by planning for the inevitable missing data
and proactively including good auxiliary variables into the
study design.

Suggested Resources

Due to space limitations, we do not provide detailed
guidance on implementing MI or FIML. We strongly
encourage readers to consult Enders (2010) and
Graham (2012) for exhaustive, yet very approachable,
introductions to missing data analysis. More details on
implementing MI can be found in Carpenter and
Kenward (2013) and van Buuren (2012). Finally, Little
and Rubin (1987, 2002), and Schafer (1997) represent
definitive resources for the technical underpinnings of
modern missing data analysis.

Practical Guidance for MI and FIML

MI and FIML are very powerful and versatile missing data
treatments, but there are several practical issues that can arise
when implementing these methods. We now delineate several
pieces of practical advice for researchers who are using MI or
FIML in their own work.

Choosing between FIML and MI

FIML performs very well when its assumptions are met and,
when using modern statistical analysis packages, FIML is
often simpler to implement than MI, but there are several
common circumstances whereMI is preferred. Although there
is no mathematical reason that FIML cannot be applied to
categorical data, this capability remains unavailable in most
statistical software packages outside of the IRT context. At
this time, limited software implementation impedes many re-
searchers’ abilities to apply FIML to nonnormal data, whereas
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many MI software packages, especially those that employ the
MICE framework, readily accommodate categorical distribu-
tions for the missing data. FIML is also limited when the raw,
incomplete, data must be aggregated into composite items
(e.g., scale scores, parcels) before the analysis. FIML simply
partitions the missing data out of the likelihood function while
estimating the analysis model, but it never Bfills in^ any of the
missing cells. Thus, there is no obvious way to aggregate the
incomplete items (how does one compute a sumwhen a subset
of the summands does not exist?). When employing MI, how-
ever, the data can simply be imputed at their lowest level of
granularity and pooled to whatever level of abstraction is con-
venient for the final data analysis. Finally, because FIML is a
maximum likelihood procedure, it cannot be applied to any
modeling enterprise where maximum likelihood estimation is
inapplicable (e.g., ordinary least squares regression, decision
tree modeling, back-propagated neural networks). In these
situations, MI is the preferred missing data method.

Choosing the Imputation Model

Some of the earliest MI approaches employed the multivariate
normal distribution (Rubin 1987). Creating imputations under
the multivariate normal model is the most computationally
expedient approach due to the convenient mathematical prop-
erties of the normal distribution. Unfortunately, much of the
incomplete data in prevention research are not continuous or
normally distributed (e.g., Likert-type questionnaire items,
counts of substance use, indicators of school dropout).
Normal-theory imputation can still be employed in many of
these circumstances, but one must be cognizant of the violated
assumptions and actively scrutinize the appropriateness of a
normal-theory approach.

There is ample evidence for imputing under the normal
model when the discrete measurement level of the items is
not meaningful or when the final analysis model will treat
the items as continuous, anyway. Enders (2010), Honaker
and King (2010), and Schafer (1997) all suggested that imput-
ing under the multivariate normal model can lead to accurate
statistical inference when the final analysis model is naïve to
the true (discrete) measurement level of the incomplete values.
Wu et al. (2015) conducted a study examining how different
imputation models affected the performance of MI for ordinal
items that were aggregated to mean scores for analysis. They
found that imputing under the multivariate normal model can
lead to unbiased and efficient parameter estimates that outper-
form imputation methods that employed discrete distributions
for the missing data (e.g., multinomial logistic regression).

When the categorical measurement level of the nonre-
sponse must be preserved (e.g., when the imputed variable
will be the outcome in a logistic regression model), the
MICE framework can be tailored to use different distributions
for the missing data on a variable-by-variable basis. By

employing an appropriate generalized linear model as the el-
ementary imputation method within the MICE framework,
very good, principled imputations of categorical items can
be created (van Buuren 2012; van Buuren et al. 2006).

Implicit, donor-based imputation methods (e.g., hotdeck
imputation, predictive mean matching, K-nearest neighbors
imputation) are intuitively appealing, but we advise against
relying on donor-based methods as general missing data treat-
ments. Donor-based methods can only perform at their opti-
mum when they have a reasonable pool of donor cases from
which they can sample to create the imputations (Andridge
and Little 2010). In many missing data problems, such a rep-
resentative pool is not possible because the nonresponse can
shrink the observed sample size considerably—thereby pro-
ducing a donor pool that is too homogenous. In such circum-
stances, donor-based methods need to re-use too many donor
observations and the standard errors of the analysis model
parameters will be attenuated (van Buuren 2012).

Addressing Temporal Dependence

When the incomplete data are longitudinal in nature, addition-
al care must be taken to preserve the temporal dependence of
the imputed values (here, we focus on the complications ofMI
because FIML merely requires specifying an adequate longi-
tudinal analysis model). The most principled approach to this
problem entails explicitly modeling time as part of the impu-
tation model. The MI framework can employ essentially any
predictive model to create imputations of the missing data.
This flexibility allows one to impute longitudinal missing data
according to a model that incorporates whatever function of
time is deemed appropriate. Several common MI software
packages offer such capabilities.

The R package Amelia II (Honaker et al. 2011) implements
a rather general approach by offering the ability to include a
polynomial or spline function of time into the imputation
model. Cross-sectional grouping variables can also be
interacted with this temporal component, so the imputations
are created according to a model that allows each group to
have its own trend. Honaker and King (2010) demonstrated
the effectiveness of this approach for normally distributed
missing data. Amelia II assumes multivariate normality for
all imputed data, which does limit its applicability when the
incomplete variables are categorical.

Longitudinal data can also be viewed as repeated measures
nested within individual, so another convenient class of impu-
tation model is multilevel regression models (also known as
mixed effects models, hierarchical linear models, and growth
curve models). Goldstein et al. (2009, 2014), Liu et al. (2000),
Yucel (2008), and Schafer and Yucel (2002) have all devel-
oped MI methods based on multilevel models that can be
applied to longitudinal nonresponse, and the R packagesmice
(van Buuren and Groothuis-Oudshoorn 2011) and pan (Zhao
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and Schafer 2013) can create multiple imputations from mul-
tilevel models. Imputing from a multilevel regression model
generally produces satisfactory results that are more accurate
than those derived from imputation ignoring the nested data
structure or deletion (van Buuren 2011; Zhao and Yucel
2009).

A more straightforward approach, suggested by Allison
(2002), entails simply applying MI or FIML as usual to the
wide formatted dataset (i.e., a dataset in which rows represent
participants and columns represent repeated measures). This
method implicitly models time by imposing a panel structure
on the data. Thus, imputations derived from this approach can
be considered to arise from a cross-lagged panel model. In
most applications, this approach will produce unbiased impu-
tations because the wide formatting of the data allows the
imputation model to leverage past and future information
when filling-in the missing data. Because this approach can
employ any available MI scheme, it also easily accommodates
nonnormally distributed missing data (e.g., by treating the
wide formatted data with MICE). Naively imputing data in
the tall format (i.e., where rows represent participant by time
intersections) is not generally appropriate because such disag-
gregated models ignore the additional temporal dependence in
the data. This disregard will contribute to imputations with
inaccurate variance estimates that will induce bias in
the standard errors of the analysis model (van Buuren 2011).

The Inclusive PCA Auxiliary Approach

BothMI and FIML can struggle when there are a high number
of variables relative to the number of observations. This prob-
lem is made worse by the fact that missing data analyses are
only optimal when all important interaction and polynomial
terms are included in the missing data model (Graham 2012;
von Hippel 2009). If the number of variables is already rela-
tively large, expanding the data set to include important non-
linearities can lead to an unmanageable number of variables.
Howard et al. (2015) have proposed a powerful solution to this
problem. First, the data set is extended to include all the nec-
essary interaction and polynomial terms, then the missing data
are roughly filled-in using a single, stochastic regression im-
putation; finally, a set of principle component scores are ex-
tracted. Provided that the number of component scores
retained is large enough to capture the majority of the shared
information in the original items, the raw auxiliaries can be
discarded and the principle component scores can act as the
sole auxiliary variables in the imputation model or the FIML
model. This approach can be particularly effective when the
high dimensionality of the data is induced by (1) scales with
many highly correlated items that can be mostly described by
a small number of principle components or (2) a large pool of
potential auxiliary variables for which capturing all of the
information is not important. Fortunately, these two

characteristics describe many practical missing data problems,
and the inclusive PCA auxiliary approach offers a promising
solution to a difficult problem in missing data analysis.

Addressing Nonignorable Missingness

When missingness is nonignorable, only a limited set of op-
tions are available. If there is reasonable knowledge of the
content area to guide decisions, plausible values can be man-
ually substituted for the MNAR data. Alternatively, the addi-
tional information contributed by the nonresponse indicators
can be explicitly included into the missing data treatment by
applying selection modeling (Heckman 1976, 1979) or pat-
tern mixture modeling (Little 1993). These methods can be
difficult to utilize in practice, however, because they are very
sensitive to strong and untestable assumptions (Enders 2010;
Little 1995; Little and Rubin 2002). Yet, even when the data
appear to follow an MNAR mechanism, special modeling
schemes may not be necessary. Collins et al. (2001) showed
that a MNAR mechanism can be effectively transformed into
a MAR mechanism if good Bproxy indicators^ of the
missingness (i.e., variables that contain similar information
to the MNAR variable) are used as auxiliary variables. This
last point again highlights the importance of planning for
missing data when designing scientific studies. Researchers
can create an easily treated missing data problem by consid-
ering plausible predictors of the missingness during the re-
search design phase and proactively including these variables
in the data collection.

Multiple Imputation for Intent-to-Treat Analysis

In addition to salvaging inferences when faced with arbitrary
nonresponse, MI can also be used to facilitate valid intent-to-
treat (ITT) analyses. To implement such an analysis, the out-
come data for those participants who dropped out of the study
must be approximated or implied. This task is one that modern
missing data treatments (especially MI) are ideally suited to
perform. The simplest way to conductMI-based intent-to-treat
analyses is to impute the additional missing data that arise
from attrition along with the arbitrary nonresponse that occurs
elsewhere on the data set. In studies affected by random drop
out (i.e., a type of MAR nonresponse in which the attrition is
not directly associated with the treatment or complications
thereof), employing a principled missing data method and
incorporating correlates of the attrition into the imputation
model will ensure optimal intent-to-treat inferences (Diggle
and Kenward 1994; Little and Yau 1996).

When faced with informative drop out (a type of MNAR
nonresponse in which drop out is directly related to the treat-
ment), simply including treatment as randomized can bias the
final intent-to-treat inferences if the dropouts end up receiving
a different treatment after they leave the study. Consider the
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hypothetical teen pregnancy prevention study presented
above. If intervention group students who drop out of the
study are left in the treatment group (i.e., treatment as random-
ized) for the ITT analysis, then their imputed outcome data
will contaminate the estimated treatment effect. These stu-
dents probably did not maintain exposure to the intervention
after leaving the study, so the possible change in their treat-
ment levels should be overtly incorporated into the imputation
model. Explicit models for MNAR missingness (e.g., pattern
mixture models) can be applied to informative drop out
problems (Little 1995), but they may not be necessary. The
research team will often have expert knowledge to suggest
likely values for unobserved predictors. For example, in this
hypothetical intervention, it might be reasonable to assume
that, after leaving the intervention, students received the same
treatment as the control group. Little and Yau (1996) suggest
deterministically introducing this auxiliary information into
the imputation model (e.g., by moving the dropouts into the
control group for the ITT analysis) in order to increase the
plausibility of ITT inferences. The result’s sensitivity can be
elucidated by repeating the analysis with different extrapolat-
ed treatment levels.

Multiple Imputation with Outcomes and Mediators

The fact that MI is implemented entirely during data pre-
processing is one of its greatest strengths. At the data pre-
processing stage, an imputation model can be specified that
is much more complicated than the final inferential model.
Imputing under a complex model allows the complete data
sufficient statistics to be reproduced as faithfully as possible,
independent of the choice of analysis model (Rubin 1996).
Also, as Honaker and King (2010) discuss, MI is based on
systems of predictive, rather than causal, equations. Predictive
equations make MI agnostic with regard to whether a variable
is a predictor, mediator, or outcome, so it is perfectly accept-
able to impute variables that will enter the final analysis model
as outcome variables or as mediators.

How to Treat Outcome Variables?

It is worth discussing the apparently Bunfair^ advantage that
may be induced by imputing outcome variables as linear com-
binations of their hypothesized predictors. This concern is
valid with single, deterministic regression imputation
that will tend to inflate linear associations between the
imputed variables and those that were used as predictors
in the imputation model (Enders 2010; van Buuren 2012). For
well-implemented MI, however, this inflation is not a prob-
lem. First, by including a large pool of auxiliary variables, the
imputed values will reflect, as generally as possible, the true
patterns in the data, rather than spuriously amplifying the hy-
pothesized associations. Second, because MI quantifies all

sources of uncertainty introduced by the missing data, it em-
ploys a type of implicit Bself-correction^ that mitigates spuri-
ous inflation of the linear associations (Allison 2002).
Consequently, the current consensus among missing data
researchers is to impute incomplete outcome variables
(Allison 2002; Enders 2010; von Hippel 2007).

Limitations of Modern Missing Data Methods

The primary limitation of modern missing data methods is
computational effort. Because MI is a highly iterative algo-
rithm, it will be more demanding than alternative approaches
that require minimal iteration. This limitation, however, does
not outweigh the overwhelming benefits that come with mod-
ern, principled missing data methods. Moreover, FIML esti-
mation does not entail substantially more computation than
other ML-based analyses, so this limitation does not apply
with FIML. MI and FIML also require ignorable missing data
in order to perform optimally, but we reiterate that many
otherwise nonignorable missing data problems can be made
ignorable by including appropriate auxiliary variables in the
missing data analysis. Yet, this possibility will only exist with
careful planning for the inevitable missing data. We strongly
recommend planning for missing data in the initial design
phase and continually considering strategies to minimize the
impact of nonresponse and optimize the final missing data
analysis. The quality of the missing data analysis can impact
the veracity of a study’s conclusions as much as any other
aspect of the research design, so it should certainly be consid-
ered just as carefully.

Conclusion

We have considered many issues that surround missing data
problems in prevention research and have emerged with a
singular recommendation. Prevention research will elevate
the quality of its evidence base for guiding practice and policy
if missing data are proactively anticipated and modern and
principled treatments for missing data are routinely and appro-
priately utilized. Thus, for the sake of the stakeholders, we
recommend that all future publications in journals such as
Prevention Science should be required to implement one of
the principled approaches we have outlined herein, and we
implore all prevention scientists to actively plan their missing
data analyses with the same care that they devote to planning
substantive analyses.
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