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Abstract In prevention trials, outcomes of interest frequently
include data that are best quantified as proportion scores. In
some cases, however, proportion scores may violate the sta-
tistical assumptions underlying common analytic methods. In
this paper, we provide guidelines for analyzing frequency and
proportion data as primary outcomes. We describe standard
methods including generalized linear regression models to
compare mean proportion scores and examine tools for testing
normality and other assumptions for each model.
Recommendations are made for instances when the assump-
tions are not met, including transformations for proportion
scores that are non-normal. We also discuss more sophisticat-
ed analytical tools to model change in proportion scores over
time. The guidelines provide ready-to-use analytical strategies
for frequency and proportion data that are commonly encoun-
tered in prevention science.
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In prevention studies, we often encounter proportion data. For
example, instruments are often divided into several domains or
subscales, and proportions of subscale scores are computed
relative to the total scores (e.g., Chamberlain et al. 2008;
Lindhiem et al. 2014; Schuhmann et al. 1998). Due to the
intrinsic nature of proportions, it is critical to analyze such data

properly. In this paper, we review existing methods for analyz-
ing proportional data and provide practical statistical guide-
lines. Moreover, we illustrate how to apply linear and general-
ized mixed-effects models to longitudinal proportion data to
model changes in proportion scores or frequencies over time.
In order to enhance the integration of this special series, these
concepts and analytic methods are illustrated using proportion
data from the Services for Kids in Primary Care (SKIP2) study
described in this special series (Shaffer et al. this issue).

Overview of Proportion Data

The main feature of proportion data is that they are
bounded by the interval [0, 1]. Consequently, the data
often exhibit heterogeneity in variance (i.e., the variabil-
ity tends to be higher for data values in the middle range
than that toward the boundaries). When studying the as-
sociation with a continuous predictor, the relationship
often deviates from linearity toward the boundaries. If
one ignores this special feature of proportion data, the
untransformed proportion data can be analyzed using
standard methods such as the analysis of variance
(ANOVA) and ordinary least squares regression.
However, some statistical assumptions underlying these
models, such as linearity, normality, and homogeneous
errors, might be violated due to these special features
of proportion data. Another issue with untransformed da-
ta is that the predicted values, as well as prediction in-
tervals, could give rise to values outside of the range [0,
1]. A common practice to resolve these issues is to trans-
form proportion data. While transformation can map [0,
1] data onto unbounded real values, this practice does
not take the intrinsic probability characteristics of pro-
portion data into account. Furthermore, studies have
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shown that data transformations might be inefficient with
lower power, and, perhaps more importantly, the results
are difficult to interpret (e.g., Warton and Hui 2011).

The generalized linear model, an alternative to the transfor-
mation methods, has become more prevalent in analyzing
proportion data in clinical studies. The model naturally han-
dles non-normality and heterogeneity issues, and the use of a
link function guarantees that the fitted values will be exactly
within the desired range [0, 1]. For example, logistic regres-
sion, a common generalized linear model, is suitable for a
binomial outcome, where the proportion is computed as the
ratio of the number of target events to the total number of
trials, Bny out of n.^ The fitted logistic model is often more
interpretable than a transformed model and reflects the under-
lying characteristics of the data better than linear regression.
For another type of proportional data, where the values are
between 0 and 1 but are not exactly binomial, one may use an
over-dispersed logistic model or beta regression model, which
allows more flexible variance structures.

To illustrate the methods, throughout the paper, we will use
sample proportion data from the SKIP2 study (Kolko et al.
2014; Shaffer et al. this issue). One of the goals of the SKIP2
program was to examine how a Doctor-Office Collaborative
Care (DOCC) treatment improves parent-reported disciplinary
practices as compared to Enhanced Usual Care (EUC). For
illustration purpose, in this paper, we focus primarily on the
proportion of using corporal punishment among all disciplin-
ary practices, estimated from the Alabama Parenting
Questionnaire (APQ; Shelton et al. 1996), as this proportion
is in general smaller than 0.2 and serves to illustrate many of
the concepts and guidelines.We will first examine the analysis
of these proportion data using linear regression, the transfor-
mation methods, and the generalized linear models. Then, we
will briefly discuss linear and generalized linear mixed-effects
models for evaluating the changes in these proportion data
over both the acute and maintenance phases of treatment.

Regression Analysis

Linear Models for Untransformed Data

Let us consider a common case, where for each subject (i), we
observe some outcome or response (Yi) ranging between 0 and
1 and explanatory variables (Xi). In this case, the linear model
for our untransformed data would be

Y i ¼ XT
i βþ ϵi;

whereXi represents values for our explanatory variables,β the
coefficients describing the linear relationship between Xi and
Yi, and ϵi the error in predicting our outcome of interest. Error
values are assumed to be independent and identically

distributed, that is, values for particular individuals are
not expected to be related to those of others (e.g., they
are not influenced by a common cause such as system-
atic measurement error) and they are expected to share a
common distribution. ANOVA is a special case of this
kind of model, where the explanatory variables are cate-
gorical. The main concerns of modeling untransformed
data are twofold. First, proportion data often violate
model assumptions, including linearity, normality, and
homogeneity of errors, especially for data points that
are toward the boundaries. The distribution of Y is usu-
ally a mixture of distributions with different means for
all the observations. Therefore, we would like to empha-
size that the check of normality is for the residual values.
Second, the model does not take into account the range
restriction inherent in use of proportion scores and pre-
dicted values and intervals could fall outside of [0, 1]. In
practice, one needs to first examine the histogram of the
response data Y and check the residual plots after model
fitting. Since the deviation from linearity and constant
variance for proportion data is most severe toward
boundaries 0 and 1, it is relatively safe to use untrans-
formed normal model for datasets that values fall mainly
between 0.2 and 0.8, although the residual distribution
should also be examined. Plots describing the residual
distribution can be obtained in most statistical packages,
such as SAS, R, Stata, and SPSS. The Q-Q plot is a
quantile plot, which compares the sorted obtained resid-
ual values with quantiles from a normal distribution. If
we observe an approximate straight line using the Q-Q
plot, we obtain support for the assumption that our re-
siduals are normally distributed.

In addition to the Q-Q plot, we can also look at a residual
plot compared to the predicted plot. This residual vs. predicted
plot compares the value of our residuals to predicted values of
our outcome variable and shows us whether there is greater
variability in error at higher or lower values. Generally, as our
model assumes that errors are identically distributed, we hope
that the spread of error appears similar across predicted out-
come values. Statistical tests of normality, such as Shapiro-
Wilk (available in SAS, R, Stata, and SPSS), may also be
performed to assess whether the distribution of error values
deviates from normality. However, findings of statistical sig-
nificance are more likely in larger samples, and visual exam-
ination of plots should also be conducted. If the assumptions
described above are met, it is usually safe to proceed with
untransformed data, but appropriate diagnostics (see examples
below) are still necessary as in regular linear regression. If the
residual distribution is substantially skewed, however, our sta-
tistical tests and confidence intervals (based on the normal
assumption) will be invalid.

In our data example, there are three outcome values,
PROPcp (proportions of corporal punishment), PROPpp
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(proportion of positive parenting), and PROPid (proportion of
inconsistent discipline). By definition, the three proportions
add up to 1. The outcomes were measured longitudinally at
baseline and again at 6, 12, and 18 months after baseline. We
first would like to evaluate the short-term treatment effect by
focusing on the proportions at time 2 (i.e., after 6 months of
treatment). Figure 1 shows the histograms of the three out-
come variables (from left to right: PROPcp2, PROPpp2, and
PROPid2). We can see that the distributions of PROPpp2 and
PROPid2 are quite normal and their values range mainly from
0.2 to 0.8. As we mentioned earlier, it is relatively safe to
proceed with untransformed normal models for PROPpp2
and PROPid2. We hence fit linear regression models for these
two outcomes on the primary variable of interest, the group
assignment, while accounting for age and gender, as well as
the corresponding proportion score at baseline. The residual
plots for these two outcome variables look quite reasonable
(see Fig. 2).

In contrast, PROPcp2 is obviously right skewed with
most values between 0.05 and 0.2 (compared to PROPpp2
and PROPid2 in Fig. 1). Nevertheless, we performed lin-
ear regression for the untransformed data for illustration
purpose (Table 1). One data point with PROPcp2 of 0.25
was identified as an outlier from regression diagnostic
plots and was removed from the current analysis (further
detail on data cleaning and examination for regression
analyses can be found in Tabachnick and Fidell 2007).
Information on residuals and predicted and observed
values of PROPcp2 can be seen in Fig. 3. The residual
vs. predicted value plot in the left panel of Fig. 3 suggests
that as PROPcp2 values increase, so does their variance

(termed a variance on mean relationship). The normal Q-
Q plot for residuals (the middle panel of Fig. 3) shows a
slight deviation from normality, although the Shapiro-
Wilk test for normality of residuals is not significant.

On the right panel of Fig. 3, we plot the observed and

predicted PROPcp2 against the linear predictor X β̂
(representing the effect of treatment). Large values among
the observed and predicted PROPcp2 scores do not match
well. After accounting for significant prediction by
PROPcp1 and other variables, the influence of DOCC treat-
ment on PROPcp2 is not significant compared to EUC.

Transformation Model

To partially overcome some of the data issues mentioned
above, one possibility is to transform the data. The transfor-
mation model assumes that

h Y ið Þ ¼ XT
i βþ ϵi;

where h is some known transformation function (e.g., such as
taking the square root of Y). In some fields, such as ecology,
the arcsine square root transformation has long been a com-
mon practice to transform proportional data. Arcsine square
root can stabilize the variance when the proportional data are
of binomial distribution, computed as Bny out of n^ (Gotelli
and Ellison 2004; Sokal and Rohlf 1995; Zar 1998). However,
the arcsine square root transformation is not monotone, which
makes the interpretation of coefficients obscure. Monotone
functions preserve the rank order of data points, and the ab-
sence of such ordering can make it difficult to draw

Fig. 1 Histograms for three outcomes. PROPcp2 corporal punishment proportion score at 6-month assessment, PROPpp2 positive parenting proportion
score at 6-month assessment, PROPid2 inconsistent discipline proportion score at 6-month assessment
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conclusions from transformed data. Also, several recent pa-
pers (Warton and Hui 2011; Wilson and Hardy 2002) have
reported that logistic regression (discussed in the next section)
is more powerful than arcsine square root for binomial pro-
portional data. Another popular transformation is the comple-
mentary log-log, i.e., log(−log(1−p)), which is a monotone
function widely used for transforming percentile data in the
survival analysis literature.

For illustration, we applied the arscine square root and
complementary log-log transformations to the PROPcp2
data. The residual plots and normal Q-Q plots for regres-
sion after the arcsine square root transformation are
shown in the top left panel of Fig. 4. The residual vs.

predicted value plot has improved slightly over the un-
transformed model (as reflected by less residual increase
at higher predicted values, Fig. 4 and Table 2) but still
shows some heteroscedasticity in variance. This is as
expected, since our proportion data are not binomial.
The complementary log-log transformation is found to
be a little bit better than the arcsine square root transfor-
mation in terms of stabilizing variance, as seen in the
residual plots and Q-Q normal plots for linear regression
after the complementary log-log transformation (Fig. 4,
right panel).

In practice, it is often difficult to find a reasonably
simple transformation that could simultaneously stabilize

Fig. 2 Residual plots for
PROPpp2 (left) and PROPid2
(right). PROPpp2 positive
parenting proportion score at 6-
month assessment, PROPid2 in-
consistent discipline proportion
score at 6-month assessment

Table 1 Estimation for untransformed normal model (left) and beta regression with identity link (right)

Variable Untransformed normal model Beta regression with identity link

Estimate Standard error df t-value Prob> |t| Estimate Standard error df t-value Prob> |t|

Intercept 0.020 0.008 1 2.57 0.011 0.022 0.008 251 2.93 0.004

Child age 0.000 0.001 1 0.71 0.481 0.001 0.001 251 0.92 0.359

Child gender −0.001 0.003 1 −0.54 0.589 0.000 0.003 251 0.10 0.922

PROPcp1 0.719 0.043 1 16.73 <0.000 0.674 0.043 251 15.61 <0.000

Treatment condition −0.004 0.003 1 −1.50 0.134 −0.002 0.003 251 −0.87 0.385

df degrees of freedom, Prob probability, PROPcp1 corporal punishment proportion score at baseline
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the error variance, ease the violation of normality for the
error term, and maintain the modeling efficiency. Perhaps
more importantly, coefficients may only be interpreted
using the transformed values, a major consideration for
drawing conclusions. Software outputs, such as predicted
values, confidence intervals, and prediction intervals, are

all in the transformed scale and need to be transformed
back to the original scale. The estimated coefficients are
shown in Table 2. The R-squared values for both trans-
formed models are still 0.5. The significance results re-
main the same, while the fitted coefficients are not di-
rectly comparable to the untransformed normal model.

Fig. 3 Untransformed normal model for corporal punishment proportion score at 6-month assessment (PROPcp2)

Fig. 4 Results for transformation
methods: arcsinesq (left) and
complementary log-log (right)
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Generalized Linear Models

Generalized linear models (Dobson 2002; McCullagh and
Nelder 1989) are a family of models that allow the response
variables to have non-normal distributions, such as exponential,
binomial, Poisson, gamma, and beta distributions. These can be
thought of as a broader and more general application of linear
regression, where a link function (an equation) is added to the
general linear model to describe the relationship between the
predictors and their coefficients and outcome (Olsson 2002).

The normal linear regression is a special case of general-
ized linear models with the identity link function and normal
distribution. The identity link is a special kind of link function,
used when data are suitable for the general linear model anal-
ysis, whereas in generalized linear models, others may be used
depending upon distribution. Logistic regression is a popular
type of generalized linear model, where the outcome distribu-
tion is binomial and the link function is the logit. The logistic
regression model is arguably the best model for proportion
data when it is computed as Bny out of n^ with Y ¼ ny

n . The
number of events is then modeled as binomial, where the
explanatory variables contribute to its prediction through use
of a logit link function. The coefficients in logistic regression
have a natural interpretation, where one unit increase in the
predictor X leads to an increase in the odds (probability an
event will occur/1 probability event will occur) by a factor
of eβ, where β is the regression coefficient for X. When the
data under consideration are proportions of diagnoses or
events out of the total of instrument items or trials, logistic
regression correctly models binomial data and usually is more
efficient and powerful than transformation methods (Warton
and Hui 2011). The use of a logit link function guarantees that
the fitted values will be exactly within the desired range [0, 1].

We would like to note that the use of a logit link
function is different from linear regression after logit
transformation. The logit link in logistic regression is
an integrated modeling component, which allows the
mean function to be non-linear. No transformation is per-
formed on the actual data Y, and there is no requirement
for normality in any forms. However, in the logit

transformed linear regression, we still require approxi-
mate normality after transformation, and moreover, the
logit transformation of data points might encounter prob-
lems when there are exact zeros or ones in the Y and
adjustments are needed for these cases.

When the data are not exactly binomial and there is vari-
ability in outcome beyond that predicted by the model, data
over-dispersion presents problems (Raim and Neerchal 2013).
More specifically, over-dispersion for proportion data Y ¼ ny

n

means that the variance is greater than π 1−πð Þ
n as would be

expected based on a binomial model, where we assume
π=E(Y) has been correctly modeled. Over-dispersed binomial
models account for this issue by including an additional pa-
rameter to more accurately describe outcome variance. On the
other hand, some proportion data are continuous, such as our
proportion score for corporal punishment, and are better
modeled as a continuous variable rather than modeling ny as
discrete binomial variable. This type of outcome may best be
handled using a beta regression. Beta regression is a general-
ized linear model subtype which can handle outcomes ranging
from 0 to 1 and uses a beta distribution to model outcome
(Ferrari and Cribari-Neto 2004). If Y also assumes the ex-
tremes 0 and 1, a useful adjustment in practice is
(Y× (n−1)+0.5)/n, where n is the sample size (Cribari-Neto
and Zeileis 2010; Smithson and Verkuilen 2006). The flexi-
bility inherent in the beta distribution makes this analytic tech-
nique particularly suitable for proportion data; this is because
the shape of the beta distribution can vary widely depending
upon two parameters (Ferrari and Cribari-Neto 2004). The
beta distribution can be symmetric, asymmetric, including
left- and right-skewed, flat-, or bell-shaped (similar to normal
but restricted to values between 0 and 1). The flexibility
makes the beta distribution an attractive alternative for model-
ing proportion data when the exact distribution is unknown.

When a logit link function is used, beta regression has
the same mean and variance relationship as an over-
dispersed logistic regression, and the coefficients of co-
variates follow a similar interpretation as in logistic re-
gression. Moreover, fitting beta regression does not

Table 2 Results for transformation methods: arcsinesq (left) and complementary log-log (right)

Variable Arcsineq c-log-log

df Parameter estimate Standard error t-value Prob > |t| df Parameter estimate Standard error t-value Prob > |t|

Intercept 1 0.187 0.013 14.76 <0.000 1 −3.124 0.080 −39.14 <0.000

Child age 1 0.001 0.001 0.84 0.399 1 0.007 0.007 0.99 0.325

Child gender 1 −0.002 0.004 −0.52 0.601 1 −0.014 0.028 −0.51 0.609

PROPcp1 1 1.167 0.070 16.75 <0.000 1 7.256 0.439 16.54 <0.000

Treatment condition 1 −0.006 0.004 −1.35 0.177 1 −0.031 0.027 −1.16 0.247

df degrees of freedom, Prob probability, PROPcp1 corporal punishment proportion score at baseline
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depend on counting ny out of n, making it suitable for
more general proportional and percentile data. We fit the
beta regression model with the logit link for our data
example. In Fig. 5, top panel, we plot the Pearson residual
(Cribari-Neto and Zeileis 2010) vs. predicted values. This
is a residual plot that mimics the residual plot in linear
regression and can be used for model diagnostics. In the
bottom panel of Fig. 5, the predicted PROPcp2 is plotted
as a function of the linear coefficients and predictor var-
iables, overlaid with the observed PROPcp2. Pearson re-
sidual vs. predicted values in Fig. 5 can be compared with
the PROPcp2 vs. predicted values shown in the right pan-
el of Fig. 3 of the untransformed model. In the untrans-
formed model, the linear predictor is the same as the pre-
dicted values of Y, since the link function is an identity
function. We can see that both the residual plot and the

fitted value plot are improved compared to the untrans-
formed normal model. The fitted coefficients are shown in
Table 3. The fitted coefficients are not directly compara-
ble to the untransformed normal model due to use of the
logit link function. Let μ=E(Y) be the expected propor-
tion of corporal punishment. The model with logit link
establishes that log μi

1−μi
¼ XT

i β. Following the convention

in the logistic regression, μi
1−μi

is the odds of corporal pun-

ishment, and eβ j represents the ratio of the odds of cor-
poral punishment when the jth covariate takes on a value
of xij+ 1 to the odds when the covariate is xij, while fixing
other covariates. Table 3 shows that the estimated coeffi-
cient for the only significant predictor PROPcp1 is 1.167,
which means that the odds of corporal punishment at
6 months is expected to increase by a factor e1.167 = 3.2
for one unit increase in the baseline value of PROPcp.
Usually, it makes more sense to use a link function that
maps the linear predictor onto the desired range [0, 1].
However, for illustration purpose, we also fit beta regres-
sion with identity link and the fitted coefficients are
shown in the right panel of Table 1. The estimated coef-
ficients are similar to the untransformed normal model.
Only the baseline PROPcp score is found to be signifi-
cant. The generalized linear models can be fitted using
proc glimmix in SAS by specifying appropriate link func-
tions and distributions such as binomial or beta. R func-
tion glm (Bstat^) can be used for logistic regression, and R
function betareg (Bbetareg^) can be used for beta
regression.

Analysis for Longitudinal Proportional Data

Linear Mixed Models

We now focus on the longitudinal feature of the propor-
tion data. In our data example, the PROPcp score was
administrated at baseline and again at 6, 12, and
18 months after baseline. The primary goal of this lon-
gitudinal analysis is to evaluate treatment efficacy over

Fig. 5 Beta regression with logit link function

Table 3 Coefficients for beta regression with logit link function

Effect Estimate Standard error df t-value Prob> |t|

Intercept −3.069 0.084 280 −36.57 <0.000

Child age 0.006 0.007 280 0.91 0.361

Child gender −0.013 0.029 280 −0.46 0.648

PROPcp1 7.503 0.439 280 17.11 <0.000

Treatment condition −0.038 0.028 280 −1.37 0.170

df degrees of freedom, Prob probability, PROPcp1 corporal punishment
proportion score at baseline
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time. As one of the outcomes of interest, we would like
to examine if parents in DOCC clinics reported more
reduction in the relative frequency of using corporal pun-
ishment than those parents from EUC clinics (see Shaffer
et al. this issue).

Linear mixed-effects models are often the primary analyt-
ical tools for analyzing repeated measures with normally dis-
tributed errors. The use of linear mixed models for proportion
data is generally inappropriate for essentially the same reason
we have discussed in previous sections. We start with the
linear mixedmodel heremainly for comparative and pedagog-
ical purposes. The more suitable generalized linear mixed-
effects models will be discussed in the next section.We briefly
describe the linear mixed-effects model in the following, and
readers who are interested in further details are referred to
Jiang (2007), Littell et al. (2006), and Pinheiro and Bates
(2000). As suggested by the name, mixed-effects models in-
clude both Bfixed^ and Brandom^ effects. The Bfixed^ terms
are similar to explanatory variable terms in linear and gener-
alized linear regression. BRandom effects^ terms are added to
the model to handle the dependence among repeated measures
and to model between- and within-subject response variabili-
ty. Another way to think about these is that fixed effects are the
same across subjects, but random effects can differ between
individuals (Liu et al. 2012). Linear mixed-effects models are
suitable for longitudinal data analysis, as they allow for both
baseline and time varying variable influence to be modeled.

The mixed-effects models can also deal with missing
data, by including all subjects in the analysis as long as
they have at least one data point, under the assumption
of missing at random (MAR). MAR requires that
missingness of data be accountable for by information
within the dataset but allows for missingness of data to
depend upon available variables. Per recommendations
by Schafer and Graham (2002) and Graham (2009), the
MAR assumption is reasonable for this dataset.
Therefore, we first fit the mixed-effects models using
all available data points, assuming normal distributions
for terms representing error. Fixed terms include group
assignment (SettingFam1), time as a factor, and the time
by group interaction, as well as baseline predictors

including child age and child gender. Subject is included
as a random term to account for the dependence among
repeated measures from the same subject.

The type I ANOVA table from the above linear mixed
model is given in Table 4. As in a typical longitudinal study,
there are missing values in our data example. We chose to
compute the denominator degrees of freedom using the
Kenward-Roger method, since Alnosaier (2007) and
Gregory (2011) demonstrated the superiority of the
Kenward-Roger method over other popular methods, such
as the Satterthwaite approximation and the containment meth-
od (interested readers can obtain further information in
Alnosaier (2007) and Gregory (2011)). After adjusting for
child age and child gender, there is a highly significant time
effect, F(3, 843) = 23.7, p< 0.0001. However, neither the
group nor the group by time interaction is significant. This
suggests that parents in both the DOCC and EUC clinics im-
proved over time almost equally in the use of corporal pun-
ishment (see Shaffer et al. this issue). The change from visit 1
to visit 2 (during the acute treatment period) is significant,
t(849)=−6.57, p<0.0001. The change from 6 to 18 months
after baseline is not statistically significant, t(836)=−0.31,
p=0.76. Linear mixed models can be fitted by proc mixed
or proc glimmix (with normal distribution and identity link)
in SAS and function lmer (Blme4^) in R.

Generalized Linear Mixed Models

Generalized linear mixedmodels (or GLMMs) are an extension
of linear mixed models to allow response variables from differ-
ent distributions, such as binomial and beta distributions, which
are useful for proportion data modeling. Alternatively, one
could think of GLMMs as an extension of generalized linear
models to include both fixed and random effects. The discus-
sions about linear mixed models are all applicable to general-
ized linear mixed models. If the proportional data are computed
from binomial variable, we can use mixed-effects logistic re-
gression, which allows for random effects to be included in the
logistic regression model and to account for correlations within
subject data and over repeated measures. If the proportion data

Table 4 Type 1 tests for linear mixed model

Effect Num df Den df F-value Prob >F

Child age 1 315 1.35 0.247

Child gender 1 315 1.17 0.281

Treatment condition 1 315 1.05 0.307

Time 3 843 23.73 <0.000

Treatment condition × time 3 843 1.19 0.313

df degrees of freedom, Prob probability, Num numerator, Den
denominator

Table 5 Type 1 tests for mixed-effects beta model with logit link
function

Effect Num df Den df F- value Prob >F

Child age 1 321 1.22 0.269

Child gender 1 320 1.04 0.309

Treatment condition 1 321 1.00 0.317

Time 3 849 25.24 <0.000

Treatment condition × time 3 849 1.36 0.253

df degrees of freedom, Prob probability, Num numerator, Den
denominator
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are not binomial, as discussed above, we could consider over-
dispersed binomial, as well as the beta distribution.

We illustrate the mixed-effects beta regression with the
logit link function using the proportions of corporal punish-
ment as the outcome. The fitted coefficients should be
interpreted in view of the logit link function and are not di-
rectly comparable to the untransformed linear mixed model.
The significance tests of covariates are similar to the untrans-
formed model (type I results shown in Table 5). Again, we see
a significant time effect but no group effects. The change from
baseline to 6 months is significant, t(853)=−6.71, p<0.0001.
The change from 6 to 18 months after baseline is not statisti-
cally significant, t(842) =−0.32, p=0.75. As discussed above,
the beta distribution models a variable that takes values on the
interval [0, 1], which is conceptually more appropriate for
proportion data. The generalized linear mixed models can be
fitted by proc glimmix in SAS, with appropriately specified
distributions and link functions. The mixed-effects beta re-
gression currently is not available in R, and other generalized
linear mixed models such as mixed-effects logistic regression
can be fitted by function glmer (Blme4^).

Summary

Proportion data are not necessarily non-normal and do not
always require transformations or special analytic techniques.
However, it is important to test the underlying statistical as-
sumptions underlying planned analyses. For instances in
which statistical assumptions are violated, it may be important
to apply transformations or use generalized linear models in
order to draw valid inferences about the data from the results.
Beta regression is particularly well suited to non-binomial
proportion scores, as when proportions of subscale scores
are computed relative to the total score. These types of pro-
portion scores are relatively common in prevention trials and
warrant special attention.
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