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Abstract Bayesian statistics represents a paradigm shift
in statistical reasoning and an approach to analysis that
is applicable to prevention trials with small samples. This
paper introduces the reader to the philosophy behind
Bayesian statistics. This introduction is followed by a
review of some issues that arise in sampling statistics and
how Bayesian methods address them. Finally, the arti-
cle provides an extended illustration of the application of
Bayesian statistics to data from a prevention trial that tested
a family-focused intervention.
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Charlie goes out on his front porch at 10 p.m. sharp
every night and claps his hands three times. His neigh-
bor, Fred, sees him doing this and asks him why he
does this. Charlie says, “I’m keeping the elephants
away.” Fred replies, “But Charlie, there are no ele-
phants around here.” To which Charlie replies, “you
see, it works.”

Bayesian Ideas

Bayesian statistics can be understood as a revision of opin-
ion as the result of observing data. “Opinion” here, before
(i.e., prior to) the data, and after (i.e., posterior to) observing
the data, is expressed in terms of probability. The revision
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is accomplished using the Bayes theorem, which is a simple
consequence of the definition of conditional probability.

The story of Bayesian statistics begins, I think, with an
explanation of the meaning of probability. What does it
mean when a weather forecaster says that the probability of
rain tomorrow is 30 %? To some, this means that on days
when the weather “looks like” tomorrow’s when viewed
today, on 30 % of them rain will occur. This is awkward
from several points of view. For one, what exactly does
looks like mean? Without a careful specification, the proba-
bility statement is vacuous. Each specification of looks like
is essentially a theory of the weather, which is subjective
and differs among forecasters. Adherents of this view, called
the frequentist view, claim that it provides an objective basis
for probability statements. But this claim has no foundation.
In practice, the specification of what looks like means in a
particular context is fraught with difficulty.

Another view of probability is more in tune with cur-
rent Bayesian thought and sees it as a personal statement
of how the speaker would bet. If the forecaster would buy
or sell a promissory note worth $1 if it rains and nothing
if it does not, for thirty cents, then that forecaster’s prob-
ability is 30 %. The usual rules of probability can then be
derived from the principle that one does not wish to offer
bets that make one a sure loser, regardless of whether it
does or does not rain. This idea is due to deFinetti (1980).
Chapter 1 of Kadane (2011) gives a derivation of the usual
rules of probability from this perspective. This approach has
some important implications. First, it does not purport to
be objective. The bets that one weather forecaster would
make are not necessarily those another would make. Thus,
probabilities reflect the personal, subjective opinions of the
person whose probabilities they are. There is no “the” prob-
ability of rain tomorrow. There is only my probability of
rain, or yours. Nonetheless, if a Bayesian observes a large
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number of events judged to be independent and identically
distributed, a bet against the relative frequency would lead
to sure loss. In this sense, frequentism can be thought of as
a special case of the subjective Bayesian view.

A second important consequence of the Bayesian view is
that the rules of probability guard only against a certain kind
of mistake, of essentially contradicting oneself in the bets
you would accept. Thus, probability becomes a kind of lan-
guage to describe opinions, generally about matters about
which one is uncertain. There is no guarantee per se that
the opinions are reasonable, deserve serious consideration,
or are not entirely out to lunch. A person may put probabil-
ity one on the proposition that the moon is made of green
cheese and do so in a way that obeys the rules of probability.
Just as writing a sentence in grammatical English implies
nothing about the validity of the thought expressed, so too
expressing uncertainty in terms of probability implies noth-
ing about the acceptability to a reader of the uncertainties
expressed.

The consequence of this is to write a persuasive work
using probabilistic language requires justification of the
assumptions made, technically the likelihood function (the
distribution of the data given the parameters, viewed as a
function of the parameters) and the prior distribution of the
parameters. Thus, it becomes a matter of rhetoric, in the tra-
ditional sense of an effort to persuade. If the reader judges
that the assumptions are reasonably close to her own, she
may be willing to continue reading. If not, the results are not
very interesting and will probably be skipped. Furthermore,
the assumptions have to be justified in terms of the details
of the particular applied context and situation. There is not,
and cannot be, a canonical analysis of data of a particular
type, independent of the context of the gathering of the data
and purpose for which the data were collected.

There is another Bayesian view (called “objectivist”)
that deemphasizes the subjective nature of the probability
statements being made. Often in this line of thought the
likelihood is taken to be non-controversial, and the inter-
est centers on choosing priors having various properties
thought to represent lack of information. There are sev-
eral sets of priors variously called “reference,” “ignorance,”
“non-informative,” “objective,” etc. Sometimes these priors
are “improper,” in that they sum (or integrate) to infinity
rather than one. Improper distributions have to be handled
with care, as they can lead to paradoxes (see, for example,
Dawid et al. (1974)).

Charlie in the anecdote has data: he claps his hands
every night, and elephants have not bothered anybody in his
neighborhood. But this data does not prove the effective-
ness of his treatment. To be persuasive, he needs to establish
the counterfactual—what would have happened if he did
not clap his hands. The issue in showing the effectiveness
of a preventative treatment is exactly the same, showing

persuasively what would have happened to these students,
or to this village, or whatever, in the absence of the treat-
ment. Sure there are other students or villages without this
treatment, but again, what their response would have been
had they been given the treatment is not obvious. Thus, the
heart of the issue is to persuade the readers about the likely
unobserved response of experimental subjects had the other
treatment been given. Bayesian statistics offers a language
for precisely stating opinions in terms of probabilities, but
making them persuasive is the responsibility of the writer,
and not something Bayesian statistics per se can address.

Issues of Frequentist Statistics

There are (at least) two special issues that arise in frequentist
statistics that Bayesian statistics deals with gracefully. The
first is sample size. The emphasis on significance testing
in sampling statistics runs up against the following seem-
ing paradox: with a small sample size, null hypotheses are
typically not rejected, but with a large sample, null hypoth-
esis typically are rejected. Thus, in a sense, what is being
measured is the sample size. And since rhetorical points are
won by rejecting hypotheses, investigators are anxious to
have a sample size large enough to reject a (typically straw-
man) hypothesis. By contrast, a Bayesian analysis with a
proper, subjective prior can be done comfortably with sam-
ples of any size. What happens is that the spread of posterior
distributions (however measured) tends to be smaller if the
sample size is large. But the principles apply regardless of
sample size. As an extreme example, I once published a
statistics paper with no data of the traditional kind. The
application was to how long asphalt-concrete roads last
before cracking as a function of various covariates like the
thickness of the asphalt, etc. Roughly, they last for 25 or
30 years, which is a long time to wait for experimental
results. However, we could elicit the opinions of road engi-
neers with 35 or 40 years of experience concerning their
probability distributions for how long an asphalt road would
last as a function of the covariates. The goal of this paper
was to ask questions that a road engineer with little prob-
abilistic training could answer, but that would allow us to
give probability distributions describing the road engineer’s
opinions, including his or her uncertainties (see Kadane
et al. (1980)). Thus, this paper had no traditional sample
at all and relied totally on the prior opinions of the road
engineers.

A second issue for sampling statistics is called identifi-
cation of parameters. Suppose the data are represented by
x and the parameters by θ . A statistical model (also called
the likelihood function) is the probability of the data x given
the parameter θ , written p(x|θ). A likelihood is said to be
unidentified if there are parameters θ and θ ′(θ �= θ ′) such
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that p(x|θ) = p(x|θ ′) for all data points x. Otherwise, the
likelihood is said to be identified. In an unidentified model,
it is not possible to distinguish θ from θ ′ using only the
likelihood. The issue of identification surfaced especially
in econometrics (Fisher 1966); it became common practice
among frequentists to avoid unidentified likelihoods. For
example, suppose there are two independent and normally
distributed uncertain quantities, X1 and X2, with means μ1

and μ2, respectively, and standard deviation 1, respectively.
Suppose only Y = X1 + X2 can be observed. A frequen-
tist statistician is at a loss to treat data of this kind, since
(μ1, μ2) and (μ1 + c, μ2 − c) for any constant c will be
equally supported by the data Y .

By contrast, a Bayesian with a proper prior distribution
on (μ1, μ2) can use the Bayes theorem to derive a posterior
distribution on (μ1, μ2) given observation Y . Furthermore,
the posterior distribution so derived will differ from the
prior distribution, so the Bayesian will have learned about
μ1 and μ2 from the data on Y . Lack of identification is not
an intrinsic issue for a Bayesian (Lindley and El-Sayyad
1968).

The fact that neither sample size nor identification are
issues for Bayesians suggests that the subjective Bayesian
viewpoint offers a more flexible and encompassing way to
appreciate the import of data.

Application of Bayesian Principles to a Specific Data Set

I have been provided with a data set to illustrate how a
Bayesian might analyze prevention data. The origin of the
data was described to me as follows:

The larger study was intended by CDC to reduce
aggression and prevent violence. The specific mecha-
nism of the targeted intervention was to change pop-
ulation levels of violence by changing parenting and
family relationships among youth who were charac-
terized by high aggression combined with high social
influence among peers. The evidence from the larger
study is that this was to some extent successful. The
data set I extracted for [you] is from the targeted
sample of youth whose parents were invited to partic-
ipate in the intervention if their school was randomly
assigned to it. I created a data set that is approximately
the same size as the data sets gathered in Alaska
Native studies, (D. Henry, personal communication,
April 16, 2012).

Thus, the analysis given below is more in the nature of a
numerical example than a case study. Nonetheless, I can
use the data to exemplify how I would think about data
of this type. However, because of the somewhat artificial
nature of the data, my modeling strategy is to simplify more

than I would if I were responsible for drawing substantive
conclusions. To be specific, in the modeling to come, I
neglect the following, each of which would be a concern in
a case study:

1. Missing data: I eliminate cases with missing data, rather
than model why they are missing.

2. I use only the evaluations from the last session, neglect-
ing the pattern of evaluations from previous sessions.

3. The priors I use are conventional ignorance priors, not
priors elicited from an expert, and are improper.

Each of these can be addressed in the Bayesian frame-
work and would have been in this paper, were it not for the
fact that the data were artificially selected for me.

Three measured outcomes of each session are the reports
of a interventionist conducting the sessions, a parent, and
a youth on the effectiveness of the session. The available
covariates include demographic information and positive
feelings of the youth and parent toward the interventionist.

The endpoints in the data set, three views of the effects
of the program at each session, are not the same as the pre-
vention of violence. Consequently, the relationship between
the data endpoints and the prevention of violence is entirely
a matter of prior belief.

The next question to consider is how to deal with the
fact that different families had differing numbers of ses-
sions, ranging from 2 to 18. There may be any number of
reasons. It could be the choice of the family. For example,
perhaps families who found the sessions less useful drop out
early. Perhaps interventionists decided that families in better
shape needed fewer sessions. Perhaps less functional fam-
ilies managed to attend fewer sessions. However, from the
viewpoint of the effect of the treatment (whichever it was),
I think the ratings of the last session are the most relevant,
since that is what the long-term effect on violence would be
most affected by. Hence, I concentrate on only the ratings
given at the last treatment, with the exception that in a few
cases, variables for the last session were missing, in which
case the next-to-last session was used.

So the reduced goal of my analysis is to predict the rat-
ings that would have been given about the effect of the
unassigned treatment, for each youth/parent(s) unit. Com-
pared to the ratings in fact given, these offer in some sense
a measure of the effect of the treatment.

We have data on both the intervention given and the
interventionist who delivered the intervention. It is often
believed that a necessary condition for the effectiveness
of an intervention is a positive connection between the
interventionist and the participant. This is a difficult view
to examine with data, because it hypothesizes that it is
the participant-interventionist interaction, and not the main
effects, that are important. In the data at hand, one group
of interventionists delivered the basic intervention, while a
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Table 1 Summary of control variables (n = 26)

Dependent variables Independent variables

Report of effectiveness Positive feelings Male in Youth Youth

toward interventionist household? male? black?

Interventionist Parent Youth Parent Youth

Min 2.75 3.09 1.25 3.40 2.33 0 0 0

1st quartile 3.25 4.00 4.00 4.20 4.08 0 0 0

Median 3.88 4.30 4.25 4.60 4.67 1 1 0

Mean 3.89 4.31 4.21 4.52 4.33 0.61 0.69 0.46

3rd quartile 4.44 4.72 5.00 5.00 4.67 1 1 1

Max 5.00 5.00 5.00 5.00 5.00 1 1 1

disjoint group delivered the enhanced intervention. Thus,
the interventionist effect is unidentified here. The best we
can do is drop “interventionist” as a variable and inter-
pret the treatment variable to be treatment as delivered by
the interventionist who delivered it. The data do not allow
us to address the question of how effective the same ses-
sion would have been viewed had the interventionist been
instructed to use the alternative methodology. This circum-
stance may be typical in prevention research. To clarify the
language used below, the “enhanced treatment” is referred
to as the “treatment;” the un-enhanced treatment is referred
to as the control.

To summarize, the goal of this analysis is to compare the
reported ratings by the interventionist, parents, and youth
actually observed (numbers) to predictions of those reports
had the other method (treatment or control, respectively)
been used. This approach to causation is championed by
Rubin (1974, 2005). Because of the Bayesian perspective
used in this paper, these predictions take the form of prob-
ability distributions, rather than numbers. The covariates
used to do this are the extent of positive feelings toward the

interventionist on the part of the youth and parents, respec-
tively, whether there is a male in the household, the gender
of the youth, and whether the youth is African-American
(Tables 1 and 2).

A Model

While there are many ways to perform such a prediction, my
choices here will be to simplify the discussion by choosing
conventional (and hopefully familiar) models. Of these, the
obvious first choice is the normal regression model.

y = Xβ + ε ε ∼ N(0, σ 2I ) (1)

where y is an n × 1 vector of dependent variables (here, rat-
ings of the effectiveness by the interventionist, parent, and
youth). Associated with each yi is a p × 1 vector of regres-
sors xi . Then X is an n × p matrix of regressors, with ith

row x′
i and is assumed to be fixed and known. The vec-

tor β is the vector of coefficients corresponding to each of

Table 2 Summary of treatment variables (n = 20)

Dependent variables Independent variables

Report of effectiveness Positive feelings Male in Youth Youth

toward interventionist household? male? black?

Interventionist Parent Youth Parent Youth

Min 3.25 2.70 1.00 3.60 3.33 0 0 0

1st quartile 4.00 4.18 4.25 4.30 4.33 1 1 0

Median 4.50 4.61 4.75 4.60 4.67 1 1 0

Mean 4.36 4.45 4.44 4.51 4.57 0.9 0.8 0.15

3rd quartile 4.81 5.00 5.00 4.85 5.00 1 1 0

Max 5.00 5.00 5.00 5.00 5.00 1 1 1
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the regressors (for this application, positive feelings toward
the interventionist, the demographic variables, and a con-
stant). As stated in Eq. 1, the errors are assumed to be
normally distributed, independent, with variance σ 2. Thus,
the parameters here about which we are uncertain are β and
σ 2.

The intended use of this regression is to apply it to the
values of the independent variables of the students in the
other treatment group. The difference between the observed
value of the dependent variables and the distribution calcu-
lated using the regression shows how much difference the
treatment made for each variable. The observed rating of the
effectiveness of the treatment administered are data, which
is considered fixed and known, and has no uncertainty. What
is not known with certainty is the counterfactual estimate
of what the rating would have been had the other treatment
been administered. Since it is not known with certainty,
this counterfactual estimate has a distribution, called the
posterior predictive distribution.

Suppose the matrix of independent variables for the
opposite group is ˜X, having dimensions ñ and p. If β and σ 2

were known constants, the predictive values ỹ would have
the distribution

ỹ ∼ N(˜Xβ, σ 2I ), (2)

which does not depend on the observation y. A frequentist
would consider β and σ 2 as fixed but unknown and, hence,
would not speak of β and σ 2 as having distributions. How-
ever, we do not know β and σ 2. What is distinctly Bayesian
in the analysis that follows is to consider the quantities about
which we are uncertain, here β and σ 2, as having probabil-
ity distributions. What the observations y then do for us is
to inform us about reasonable distributions for β and σ 2.

This then requires six regressions, each with six explana-
tory variables and one (vector) of observations, since there
are two scenarios (predict the treatment outcome for each
youth in the control condition, predict the control outcome
for each youth in the treatment condition) and three out-
come variables (the view of effectiveness on the part of the
interventionist, the parents, and the youth).

The Bayesian method requires a prior distribution on the
parameters, here β and σ 2. This is a source of controversy,
as the prior represents the opinion of the author and, hence,
can be disputed. (The same can be said of the likelihood
function, here expressed as Eq. 1).

A convenient class of prior distributions for the likeli-
hood (1) is called the class of conjugate prior distributions
(Raiffa and Schlaifer 1961). These have the property that
if the prior distribution is in this class, so will the poste-
rior distribution, whatever the data might be. An arbitrary
prior distribution can be represented as a weighted mixture
of conjugate prior distributions (see Dallal and Hall (1983)
and Diaconis and Ylvisaker (1985)), so starting with a single

conjugate prior distribution seems reasonable. A discussion
of analysis with conjugate prior distributions can be found
in Kadane (2011, Chapter 8).

To express the conjugate prior for the likelihood (1), it
is convenient to reparameterize using τ = 1/σ 2, which
is called the precision. Similarly, the inverse of a covari-
ance matrix is called a precision matrix. Thus, Eq. 1 can
be rewritten as y|β, τ has a normal distribution with mean
Xβ and precision matrix τI . The conjugate prior on β and
τ can then be stated as follows: β|τ a normal distribution
with mean β0 and precision matrix ττ1 where τ1 is a known
p × p matrix, and τ has a gamma distribution with param-
eters a and b. Here, p = 6, the number of independent
variables in each regression (including a constant). While
the gamma distribution may be less familiar to many readers
than the normal distribution, you can think of it as a gen-
eralized chi-square distribution (see Kadane (2011, Section
8.6) for details).

All of this is convenient, provided there are good ways
of assessing the parameters of these distributions, namely
β0, τ1, a, and b. One approach to eliciting these quanti-
ties is given in Kadane et al. (1980); this method does not
require the subject matter expert to understand anything
about statistics except what a median is.

In the present application, I am disinclined to use such
formal elicitation. I fear that such an exercise would distract
too much from the heart of the purpose of this article, which
is to convey how I, as a Bayesian, would approach the issue
of assessing the relative effectiveness of two treatments.

An alternative is to retreat to so-called non-informative
prior distributions, which here means τ1 → 0, a →
−p/2, b → 0 (β0 is irrelevant). Normally, I would advo-
cate pressing hard for the prior information that in many
problems is available if one asks. Also, the limiting prior
distribution here is improper (meaning it integrates to infin-
ity, not one). This can lead to subtle troubles of various
kinds, but those troubles happen not to affect the calcula-
tions that follow. Hence, with a bit of reluctance, I adopt the
resulting prior, which can be expressed as

p(β, τ )dβdτ ∼ dβdτ/τ. (3)

This implies a uniform distribution for the (six-dimensional)
β and a uniform distribution for log τ . The specification of
the probability model is now complete. What remains is to
explore its consequences.

The choices specified in Eqs. 1, 2, and 3 are conven-
tional. Were I closer to the source of the data, I would want
to use a more detailed and sophisticated model that takes
advantage of the data from all the sessions a family had
with the interventionist, which models missing data, etc.
While I certainly agree that those considerations are impor-
tant, the details of just how to do that would only distract
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attention from my main objective, which is to show what
distinguishes Bayesian from frequentist analysis.

Once specifications of a likelihood and a prior (such as
Eqs. 1, 2, and 3 above) are made, the computation of the
posterior distribution is a purely technical matter. Every ana-
lyst with the same likelihood and prior must come to the
same posterior distribution given the data (barring provable
error). In the particular case of Eqs. 1, 2, and 3 (and the con-
jugate nature of those specifications), that technical work
is simplified. The details of this bit of math are given in
the Appendix. The result is an algorithm that gives samples
from the distribution specified in Eq. 2.

Results

The results are displayed in Figs. 1, 2, and 3. The x-axis is a
quantile of a distribution. In the solid line, the intervention
has a known effectiveness (data), measured at the time of the
intervention. The estimated control is not known, but instead
is drawn from its predictive distribution described above.
For the dotted line, these roles are reversed. The control
has known effectiveness, but the intervention is estimated
from its predictive distribution. The y-axis reflects the dif-
ference between the two. At zero (there is a horizontal line
to mark it), the intervention and control would be regarded
as equally good. Positive differences favor the intervention;

negative differences favor the control. (There is no partic-
ular meaning to a point where the solid and dashed lines
meet).

There are two interesting aspects of these figures. The
treatments were randomly assigned to schools, but not to
individuals within schools. Indeed, I have no knowledge
of the recruiting methods used within schools. Conse-
quently, there may be omitted covariates that matter to
the predictions, for example, age of youth, socio-economic
status of the household, presence of violence in the house-
hold, food insecurity of the household, etc. One way
such omitted covariates might become apparent is in dis-
crepancies between the two lines in each graph. This
is particularly noticeable in Fig. 3. Other explanations
for the discrepancy include the finiteness of the sam-
ple sizes and other deficiencies in the model, such as
non-linearity, etc.

Secondly, there is a clear ordering in terms of how effec-
tive the different participants rate the advantage of the
intervention. The interventionists and parents are enthusi-
astic about the intervention, the youth not. This is seen
as follows: At the median (the 0.5 point on the x-axis),
both interventionists and parents are in positive territory in
Figs. 1 and 2. Thus, more than half of the probability for
both interventionists and parents find the treatment more
effective than the control. By contrast, only half of the youth
(Fig. 3) lies in positive territory.

Fig. 1 Interventionist view of
effectiveness
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Fig. 2 Parent view of
effectiveness

This analysis makes several strong assumptions and
concentrates solely on estimating whether and to what
extent the extended treatment was rated better than the

control. In my opinion, however, the major gap is that rat-
ings of intervention sessions are not the same as reducing
violence.

Fig. 3 Youth view of
effectiveness
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Decisions and Costs

The operational question then arises of whether the inter-
vention should be regarded as worth the extra trouble of
administering it. This introduces several new considera-
tions. On the cost side, how can one quantify “extra trou-
ble?” For example, suppose that the extra trouble meant that
some reduced proportion of the children and families could
be offered treatment if the interventions were deemed nec-
essary (holding the budget constant). Then there is the ques-
tion of efficacy. What difference in the scales that capture
the rating of the interventionist, parent, and youth should
be regarded as important? Should we take the adults’ view
of the matter, or the youth’s? There is a Bayesian decision
theory to address the problem of decision-making under
uncertainty that would be based on quantitative answers
to these questions. For an introduction to this theory, see
Lindley (1985).

Conclusion

This paper reviews the fundamentals of Bayesian ideas as
they apply to prevention research. While the philosophy of
what is random and what is not is crucial for grasping the
analysis, the important steps are as follows:

• Recognition that the unobserved counterfactual is the
key to establishing the effect of the treatment.

• The only independent variables that can be used are
those that vary in both treatment groups (like age of
youth, but not identity of interventionist).

• The normal linear model has two sources of uncertainty,
σ 2 (how well the regression fits the data) and a term
reflecting uncertainty in the coefficients β. The latter
would not appear in a typical frequentist calculation.

Each of the lines in the figures represents the difference,
for a particular youth, between the treatment and the control,
only one of which is observed. Consequently, this could be
regarded as an unidentified quantity, which would be hard
to address from a frequentist viewpoint. However, Bayesian
methods permit an informative analysis.

There is a large literature on Bayesian methods in the
social sciences. For an alternative analysis of random-
ized trials, see Gelman and Hill (2006, pp. 167–198).
Other sources include Condon (2003, 2005, 2010) Gelman
et al. (2013), Geisser (1993), Gill (2007), Jackman (2009),
Lancaster (2004), Lindley (2014), and Silver (2012).

The question of what to do as a result of the findings
raises a whole new series of issues of costs and bene-
fits. While these are obviously germane to wise decision-
making, they suggest an inquiry that goes well beyond (but
would be based upon) the analysis of the data.

Conflict of interests The author declares that he has no conflict of
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Appendix

We must calculate an expression for the predictive distribu-
tion, that is, the distribution of ỹ in Eq. 2, taking into account
the information in y about β and τ . To begin, we have

p(ỹ|y) =
∫

p(ỹ|β, τ )p(β, τ |y)dβdτ. (4)

Since p(ỹ|β, τ ) is already available in Eq. 2, we concentrate
on p(β, τ |y), which is known as the posterior distribution of
β and τ . This is a standard Bayesian calculation. The result
(see again Section 8.6 of Kadane (2011)) is as follows:

p(β, τ |y) = p(β|τ, y)p(τ |y) (5)

where p(β|τ, y) is a normal distribution with mean
(X′X)−1X′y (the usual least squares estimate of β), and
precision τ(X′X) (invert this, and you get the usual vari-
ance). Also, p(τ |y) is a gamma distribution with parameters
a′ = (n − p)/2 and b′ = (1/2)yT P Xy, where P X =
I − X(X′X)−1X′.

Although the integration suggested by Eq. 4 can be done
analytically (the outcome is a multivariate student −t dis-
tribution), for our purposes, this integration is unnecessary.
We want to use Eq. 4 to create samples of ỹ. This can be
accomplished as follows:

(i) Draw a precision τ |y from the specified gamma
distribution; suppose the result is τ ∗.

(ii) Draw a vector (β|y, τ ∗) from the specified normal
distribution; suppose the result is β∗.

(iii) Draw a vector ỹ|y, τ ∗, β∗ from Eq. 2.

This results in draws from ỹ that, unlike Eq. 2, do take into
account the uncertainty in β and τ . And this algorithm can
be repeated as many times as one wishes, to get a sample
from the predictive distribution.

Steps (ii) and (iii) can be combined as follows:

f (ỹ|y, σ 2) =
∫

f1(ỹ|y, σ 2, β)f2(β|y, σ 2)dβ, (6)

where f1 and f2 are both normal distributions, and β enters
f1 linearly in the mean. Consequently, the distribution of
(ỹ|y, σ 2) is again normal, with mean

E[ỹ|σ 2, y] = E[E(y|β, σ 2y|σ 2y)] (7)

= E[x̃β|σ 2, y]
= X̃(X′X)−1X′y
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and variance

Var(ỹ|σ 2, y) = E[Var(ỹ|β, σ 2, y)|σ 2, y]
+Var[E(ỹ|β, σ 2, y)|σ 2, y] (8)

= E[σ 2Im] + Var[X̃β|σ 2y]
= σ 2[Im + X̃(X′X)−1X̃′]

wherem is the sample size. (see O’Hagan and Forster (2004,
page 325).

Thus, the variance of ỹ|σ 2, y reflects two sources of
uncertainty, σ 2Im because prediction is inherently uncer-
tain, and σ 2X̃(X′X)−1X̃, reflecting uncertainty about β.

Hence, in the algorithm, steps (ii) and (iii) can be
replaced by a single draw from a multivariate normal distri-
bution with mean (7) and covariance matrix (8).

This algorithm was run on the data at hand. Observations
whose missing data prevented calculation of the predicted
ratings were eliminated. A more in-depth treatment would
look at whether the very fact that particular data are missing
has information about the parameters of interest.

I used the R package to do the computing.
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