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Introduction

Climate change is expected to have significant impact on 
various ecosystems, causing seasonal and spatial varia-
tions in temperature and precipitation (Greaver et al. 2016). 
Precipitation regimes are expected to become more unpre-
dictable, posing a growing challenge for forest managers. 
In addition, the hydrological cycle is expected to intensify 
globally (Knapp et al. 2015; O’Brien et al., 2024), increas-
ing the frequency and severity of climate extremes such as 
severe droughts and heavy rainfall (Beier et al. 2012; Ke et 
al. 2022). Drier regions are increasing and will be most cata-
strophic in Central and Southwest Asia by 2050 (Agrawala 
et al. 2001) and climate change could have significant 
negative impact on trees growing in the wetter, hotter areas 
(Heilmayr et al. 2023). Droughts have become increas-
ingly frequent in China (Duan et al. 2022), and have led to 
significant losses in productivity (Zhou et al. 2017). This 
phenomenon holds particular relevance in southern China, 
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Abstract
Changes in rainfall patterns are important environmental factors affecting plant growth, especially when larger precipita-
tion events and prolonged drought periods occur in subtropical regions. There are many studies on how drought reduces 
plant biomass through drought-sensitive functional traits, but how excess water affects plant growth and ecophysiology is 
still poorly understood. Therefore, a greenhouse experiment was conducted on Schima superba (Theaceae), a dominant 
tree species in subtropical forests and commonly used in forestry, in a closed chamber under control (25% soil water 
content (SWC) as in local forests), drought stress (D, 15% SWC) and moisture stress (W, 35% SWC). Plant growth and 
ecophysiological traits related to morphology, leaf gas exchange, water potential and structural traits were measured. 
Compared to control, S. suberba under dry conditions significantly decreased its aboveground biomass, photosynthetic 
rate (A), leaf water potential and nitrogen use efficiency, but increased intrinsic water use efficiency, root to shoot ratio 
and specific root length. S. superba under wet conditions also significantly decreased its total biomass, aboveground bio-
mass and specific root length, while W had no effect on A and leaf water potential. Our results indicate that S. superba 
shows a decrease in carbon gain under drought stress, but less response under wet conditions. This emphasizes the need 
to consider the strength and frequency of rainfall pattern changes in future studies because rainfall may either alleviate 
or intensify the effects of drought stress depending on the moisture level, thus suitable water conditions is important for 
better management of this tree species in subtropical China.
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which is distinguished by a transition from a hot and humid 
summer to a warm dry winter, thereby leading to fluctuating 
moisture levels. Therefore, such moisture level shifts due to 
changing precipitation patterns would have a dramatic influ-
ence on plant ecophysiological processes, understanding of 
which is of utmost importance.

Insufficient rainfall or low soil moisture can cause 
drought stress in plants, which can lead to a range of physi-
ological, biochemical, and genetic responses, and severely 
limit plant growth (Seki et al. 2007; Vadez et al. 2012). 
Plants exposed to a water deficit can reduce leaf water 
potential and stomatal conductance (Bohnert et al. 1995; 
Bray 1997). Measuring leaf water relations can serve as a 
valuable method for assessing overall plant growth. Accord-
ing to (Junior et al. 2020), the water potential at dawn and 
minimum transpiration at dawn is considered the most accu-
rate indicator of a plant’s water status. Plant ecophysiologi-
cal and nutritional traits of leaves, can indicate how plants 
respond to environmental changes both individually and in 
combination (Pratt and Mooney 2013). Additionally, these 
traits offer insights into the adaptation strategies and sur-
vival abilities of plants. However, trees have developed a 
variety of survival mechanisms to adapt effectively to fluc-
tuations in precipitation patterns. By implementing drought 
avoidance or drought tolerance strategies, a well-adapted 
tree species may exhibit either more flexible adaptability 
to or an improved performance, for instance, some plants 
close stomata to avoid extreme transpiration under drought, 
or adjust above-belowground allocation to maintain water 
access, while other plants with a more negative turgor loss 
point to achieve drought tolerance (Li et al. 2023). However, 
how subtropical tree species respond to water deficits is still 
controversial. Subtropical forests make up a large part of 
the global carbon pool and are expected to be more vulner-
able to climate change, which brings risks to biodiversity 
and influences forest growth (Wu et al. 2020). Therefore, 
more attention needs to be paid to different aboveground 
and belowground responses of subtropical forest species to 
increasing drought events in the future.

Excessive water can also impede plant growth and 
development by disrupting physiological and biochemical 
processes (Liu et al. 2020; Li et al. 2021a). According to 
previous studies, excessive water stress causes leaf stomata 
to close, stomatal resistance to CO2 diffusion to increase and 
net photosynthetic rate (A), stomatal conductance (gs) and 
transpiration rate (E) to decrease significantly. There is also 
a decrease in chlorophyll content and a slowdown in the 
transport of photosynthetic products (Rao et al. 2021; Chen 
et al. 2023). Previous studies using precipitation gradients 
at multiple sites (Biederman et al. 2016) or along a temporal 
scale at a single site (Ren et al. 2017) generally found posi-
tive correlations between precipitation and aboveground 

net primary productivity. The benefits of increased precipi-
tation on the ecosystem are evident at various levels, such 
as enhanced leaf photosynthesis (Niu et al. 2008; Ren et 
al. 2017) and improved soil nutrient availability ( Li et al. 
2019). However, there is a significant difference between 
seasonal and annual precipitation variability and variations 
in the frequency of heavy rainfall events. These severe rain-
fall events have various repercussions, including soil water 
saturation or flooding, which cause oxygen depletion and 
impaired nutrient transport, ultimately limiting plant growth 
(Chen et al. 2005; Voesenek et al. 2004), or even cause rot 
of roots through pathogen infection (Savian et al. 2020). 
Nonetheless, apart from these few cases, not much is known 
about the effects of wet conditions on plant ecophysiology 
due to excessive rainfall. Understanding how plants cur-
rently respond to excessive water is crucial for predicting 
their response to increased rainfall events in the future, as it 
serves as a proxy for the more frequent rain pulses expected 
in future climates. Therefore, the effects of dry and wet con-
ditions on the growth and ecophysiological functions of tree 
species in subtropical areas need to be further investigated.

Schima superba is a dominant tree species in the sub-
tropical evergreen deciduous forests of southern China and 
a well-known evergreen tree native to East Asia (Kuang et 
al. 2017). This tree species is ecologically and economically 
important, as it provides functions such as carbon sequestra-
tion, fire prevention, soil and biodiversity conservation, and 
traditional Chinese medicine. However, the responses of S. 
superba to different precipitation patterns are only known to 
a limited extent. Therefore, elucidating the responses of S. 
superba under dry and wet conditions is vital for sustainable 
forest management and conservation of subtropical forests. 
In this experiment, we aimed to investigate the responses 
of growth and ecophysiological traits of S. superba seed-
lings to different water conditions. Specifically, we hypoth-
esized that: (1) dry conditions would promote belowground 
biomass and leaf nitrogen content, but reduce leaf water 
potential and photosynthetic rate. (2) Wet conditions would 
impair respiration and nutrient uptake, ultimately leading 
to stunted growth and lower ecophysiological activity of S. 
superba. (3) Including both excess water and drought con-
ditions, physiological traits may be more sensitive to the 
water gradient than morphological traits, and in turn explain 
the growth responses of S. superba. The aim of this study 
was to assess the potential alterations in the dominant tree 
species within subtropical forests of China under future cli-
mate scenarios characterized by drier dry season and wetter 
wet season, while maintaing constant annual precipitation 
levels (Zhou et al. 2013).
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Materials and methods

Experimental site

The study was conducted in a closed glass chamber green-
house of the South China Botanical Garden in Guangzhou, 
Guangdong Province, China (23°20′ N, 113°30′ E). The 
area has a subtropical climate with an average annual tem-
perature of 21.7℃, with the coldest month being January 
(13.1℃) and the warmest month being July (28.7℃). The 
average annual precipitation over the last four decades has 
been around 1700 mm. The dry season, which lasts from 
October to March, differs from the rainy season, which lasts 
from April to September and during which 70% of the pre-
cipitation falls. The soil used for this experiment was taken 
from the top 0–30 cm of a subtropical evergreen broad-
leaved forest in Heshan National Field Research Station of 
Forest Ecosystems, Guangdong Province, China (22°43′ 
N, 112°50′ E). The chemical properties of the soil were as 
follows: pH 4.17, total carbon 11.5 g kg− 1, total N 0.75 g 
kg− 1, total phosphorus (P) 0.21 g kg− 1, available P 1.32 mg 
kg− 1. For this experiment, 10 kg of 5 mm sieved soil was 
filled into each square plastic pot with an inner size of 20 cm 
width × 20 cm height × 25 cm length.

Experimental design and treatment description

One-year-old seedlings of the species S. superba were taken 
from a nursery and transplanted into pots without damag-
ing the roots in September, 2021. After two-month plant 
incubation and acclimation, the pots with healthy seedlings 
were arranged in randomized complete blocks and treat-
ments were started from December, 2021. Each block was 
assigned as an individual treatment with four pots per treat-
ment and two seedlings per pot, totally 12 pots. The treat-
ments were: CK (controlled condition, with a soil water 
content of 25%, which is the average annual soil moisture 
in the local subtropical evergreen broad-leaved forest in 
Heshan National Field Research Station of Forest Ecosys-
tems), D (dry conditions with 15% soil water content, which 
is 60% less than the soil moisture in CK) and W (wet condi-
tions with 35% soil water content, which is 60% more than 
the soil water content in CK) (Wang et al. 2020). Stevens 
HydraProbe II sensors (Stevens Water Monitoring Systems, 
Inc., USA) were used to monitor soil volumetric water con-
tents of each treatment, and data were recorded by A755 
GRPS (Adcon, Klosternueburg, Austria) to indicate the soil 
moisture content dynamics, and the pots were watered every 
day to maintain the target soil water content.

Functional trait measurements

All the measurements in this study were carried out in the 
summer growth season from June to July, 2023, one and a 
half year after all the treatments started.

Growth traits

Plant height (Height) was first quantified as the vertical dis-
tance from the apex of the tree in the pot to the level of the 
soil in the container at the point of soil-tree contact.

At the end of the experiment in August, 2023, all the 
plants were harvested and separated into roots, stems and 
leaves, after which the roots were thoroughly washed with 
tap water to remove any soil. Subsequently, all organs were 
dried in an oven at 70℃ for 72 h to determine the dry weight 
of each organ. Total biomass was calculated as the sum of 
aboveground biomass (stems and leaves) and belowground 
biomass (roots). The biomass distribution including the 
root-to-shoot ratio (R/S) was determined by dividing the 
root biomass by the shoot biomass, the leaf biomass (L) to 
total biomass (M) ratio (L/M), the shoot biomass (S) to total 
biomass (S/M), and the root biomass (R) to total biomass 
(R/M).

Ecophysiological traits

Five fully developed leaves from each plant were randomly 
selected, scanned and the leaf area (LA) measured using 
LI-3000 Portable Leaf Area Meter. The leaves were then 
placed in an envelope and oven-dried at 72℃ for 72 h. The 
dry mass of the leaves was also measured and the specific 
leaf area (SLA) and leaf mass per area (LMA) were cal-
culated. The dried leaves were then ground into powder. 
The leaf nitrogen content (LNC) was measured using the 
5E-CHN2200 CHN elemental analyser, at a combustion 
temperature of 1050 °C. Approximately 800 mg of the 
ground leaf was placed in a tin capsule, which was placed 
in the elemental analyzer, where the sample was combusted 
at a temperature of 1050 °C. The root length of each plant 
was measured using a WinRHIZO Root Analyzer System 
(WinRHIZO 2012b, Regent Instruments Inc., Montreal, 
Canada) to scan and analyse the selected fine roots (diam-
eter < 2 mm) by cutting a small portion from the roots with 
sharp blade (Guo et al. 2016). Specific root length (SRL) 
was calculated as the root length divided by the dry weight 
of the roots.

The gas exchange parameters of the leaves were mea-
sured on two continuous sunny days between 9:00 and 
11:00 on July, 2023 to minimize variation. Photosynthetic 
rate (A) and stomatal conductance (gs) of S. superba were 
determined in situ using a portable infrared photosynthesis 
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On the other hand, under dry conditions, there was a sig-
nificant difference in the proportion of root to total biomass 
(R/M ratio) and the proportion of root to shoot biomass (R/S 
ratio), while all other biomass allocation ratios were not sig-
nificantly different (Fig. 2).

Ecophysiological traits

Schima superba exhibited significant variations in leaf water 
potential both at predawn and midday (Fig. 3). The Ψpd and 
Ψmd water potential decreased significantly (87%, 22%), 
under dry, (P < 0.05), but there was no difference between 
predawn and midday water potential of plants under wet 
stress (Fig. 3).

According to ANOVA, dry and wet conditions had no 
significant effects on LNC and SLA, but LMA showed 
slightly higher values under dry D (13%) (Fig. 4a, b, c). 
Root growth showed significant differences in both treat-
ments. The specific root length increased by 9.2% under dry, 
but it decreased by 9.5% under wet conditions (Fig. 4d).

The seedlings of S. superba grown in different treat-
ments showed considerable differences in photosynthetic 
rate. Both photosynthetic rate (A) and conductance rate (gs) 
decreased significantly under dry treatment by 31% and 
68%, respectively. However, wet treatment only slightly 
decreased A (11%) and gs (14%) but did not show statis-
tical significance compared to controlled treatment plants 
(Fig. 5a, b). In addition, intrinsic water use efficiency 
(WUEi) was improved and highly significant under dry 
conditions (134%) and under wet conditions showed non-
significant difference. Nitrogen use efficiency (NUE) was 
significantly reduced under dry (37%), but NUE was not 
affected by wet condition (Fig. 5c, d).

Correlation between ecophysiological traits and 
water potential

There was a significant positive correlation between pho-
tosynthetic rate (A) and Ψpd as well as Ψmd potential 
(R2 = 0.72 and 0.66, respectively, both p < 0.01) (Fig. 6, a, 
b). Stomatal conductance exhibited positive correlations 
with predawn and midday water potential, (R2 = 0.78 and 
0.77, respectively, both p < 0.001) (Fig. 6c-d). Specific root 
length showed negative correlation with both predawn, and 
midday water potential (R2 = 0.69 and 0.72, respectively, 
both p < 0.001) (Fig. 6e-f).

system (LI-6800 Li-Cor Inc., Lincoln, NE, USA). Measure-
ments were made on five randomly selected mature leaves 
of each individual and averaged, and then four individuals 
were used as replicates of each treatment. Measurements 
were performed with a red and blue light source at a pho-
tosynthetic photon flux density of 1500 µmol m− 2 s− 1, a 
relative humidity of 50%, a CO2 concentration of 400 µmol 
mol− 1 and an ambient temperature of 25–30 °C. After all 
measurements, the intrinsic water use efficiency (WUEi) 
was calculated as A/gs and the nitrogen use efficiency 
(NUE) as A/LNC.

Leaf water potential was measured predawn (Ψpd, MPa) 
and midday (Ψmd, MPa) on four full-grown mature leaves 
from each treatment using a Scholander-type pressure 
chamber (PMS 1505D, PMS Instruments, Corvalis, Oregon, 
USA). We randomly selected and measured three mature 
leaves and averaged their data for one individual value, and 
then measured four individuals as replicates of each treat-
ment. Measurements were done in the greenhouse for the 
Ψpd before dawn between 6:00 and 7:00 am. On the same 
day, leaf samples were excised again and carried to labora-
tory where they were measured between 12:00 and 2:00 pm 
for the Ψmd at noon.

Statistical analysis

R software R.4.3.1 (R Core Team 2023) was used for a 
one-way statistical analysis of normality and homogeneity 
of variance between control, dry and wet treatments (one-
way ANOVA) followed by Tukey’s tests for further mul-
tiple comparisons (detailed values of each trait are in Table 
S1). In addition, correlation analyses were performed using 
the lm function in R, focusing on the relationships between 
predawn water potential, midday water potential with pho-
tosynthetic rate (A), and stomatal conductance (gs).

Results

Growth response

No significant differences were observed in plant height 
under both dry and wet conditions as compared to control 
(Fig. 1a). However, aboveground biomass decreased by 
25% under dry and 33% under wet conditions (Fig. 1b), 
and belowground biomass also showed 21% increase under 
dry, and a slight decrease under wet conditions compared 
to control (Fig. 1c). Total biomass underdry conditions 
decreased but did not differ significantly from the control, 
while total biomass under wet conditions decreased sig-
nificantly by 26.5% (Fig. 1d). The biomass allocation of S. 
superba reacted differently under dry and wet conditions. 
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Fig. 1 Development of plant height, aboveg-
round biomass (AGB), belowground biomass 
(BGB), and total biomass (TB) of S. superba 
under dry and wet conditions. The bars 
represent means ± standard deviations (n = 4). 
Different lowercase letters above the error bars 
indicate significant differences between dry 
and wet treatments compared to plants under 
controlled condition

 

Fig. 2 Ratio of leaf mass/total mass (L/M ratio), 
shoot mass/total mass (S/M ratio), root mass/ 
total biomass (R/M ratio), and root mass /shoot 
mass (R/S) of the biomass of S. superba under 
dry and wet conditions. The bars represent 
means ± standard deviations (n = 4). Different 
lowercase letters above the error bars indicate 
significant differences between dry and wet 
treatments compared to plants under controlled 
condition
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Fig. 3 Response of leaf water potential of S. superba at predawn and midday under dry and wet conditions. The bars represent means ± standard 
deviations (n = 4). Different lowercase letters above the error bars indicate significant differences between treatments

 

Fig. 4 Response of leaf nitrogen content (LNC g cm− 2), leaf mass area (LMA g cm− 2), specific leaf area (SLA cm2 g− 1) and specific root length 
(SRL cm g− 1) of S. superba under dry and wet conditions. The bars represent means ± standard deviations (n = 4). Different lowercase letters above 
the error bars indicate significant differences between dry and wet treatments compared to plants under controlled condition
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Fig. 5 Responses of dry and wet treatments on net CO2 assimilation 
rate (A, µmol m− 2 s− 1), stomatal conductance (gs, mol H2O m− 2 s 
− 1), intrinsic water use efficiency (WUEi), and nitrogen use efficiency 
(NUE) of S. superba under dry and wet conditions. The bars represent 

means ± standard deviations (n = 4). Different lowercase letters above 
the error bars indicate significant differences between dry and wet 
treatments compared to plants under controlled condition
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Fig. 6 The relationships of predawn (Ψpd) and midday water potential 
(Ψmd) with (a, b) photosynthetic rate (A), (c, d) stomatal conductance 
(gs), and (e, f) specific root length (SRL). Control treatment values 

are shown in grey; dry treatment in brown, and wet treatment in cyan. 
Only statistically significant relationships (p < 0.05) are shown as solid 
lines
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et al. (2016), and Song et al. (2022). Our findings suggest 
that S. superba exhibits high plasticity in leaf and root eco-
physiological traits, adapting well to drought. However, no 
significant differences in ecophysiological traits, except gs, 
were observed under wet conditions due to decreased root 
oxygen levels, which reduced gs and A. Low gs negatively 
impacts transpiration, disrupting water absorption and nutri-
ent distribution, thus affecting growth and biomass (Colmer 
2003; Voesenek and Bailey-Serres 2015).

This study partially supported our third hypothesis, 
revealing that both physiological traits (photosynthesis and 
stomatal conductance, gs) and root morphological traits 
responded to the water potential gradient. Ψpd became 
more negative under dry conditions, while no change was 
observed under wet conditions, consistent with findings on 
S. superba and O. pinnata (Li et al. 2021a). We observed 
a positive correlation between photosynthetic rate and gs 
with leaf predawn and midday water potential and a nega-
tive correlation between specific root length and both water 
potentials. Previous research shows that higher water poten-
tial promotes stomatal opening, enhancing CO2 uptake and 
photosynthesis, and is crucial for maintaining turgor pres-
sure in plant cells (Wang et al. 2023). Conversely, reduced 
water potential due to water stress lowers turgor pressure, 
negatively impacting photosynthesis (Buckley and Mott 
2013; Flexas & Carriqui, 2020). During drought, plants 
optimize water uptake by redistributing water within their 
root systems. Zhou et al. (2018) and Carrillo et al. (2022) 
emphasized the role of specific root length in maximizing 
water absorption under drought.

We found that drought increased intrinsic water-use 
efficiency (WUEi) and decreased nitrogen-use efficiency 
(NUE). Previous studies have shown that drought raises 
WUEi (Swap et al. 2004; Mariotte et al. 2013) and lowers 
NUE (Guo et al. 2022) in grassland plants like L. chinensis 
(Yue et al. 2019) due to reduced stomatal conductance, tran-
spiration, and nutrient flux (Hu et al. 2023). This indicates 
a trade-off between WUEi and NUE, consistent with prior 
research (Field et al. 1983). Under wet conditions, no dif-
ference was observed, as soil saturation provides consistent 
water availability, allowing plants to modulate stomata and 
root adaptations to maintain stable internal water potential.

Dry and wet conditions have significant impacts on tree 
growth and ecophysiology. Drought induces water stress, 
which leads to a reduction in forest productivity (Yu and 
He 2017) and often results in widespread tree mortality 
due to hydraulic failure, carbon starvation, or increased 
vulnerability to pests (Anderegg et al. 2013; McDowell 
et al. 2008). On the other hand excessively wet periods 
have negative effects on tree demographic rates caused by 
physiological factors such as hypoxia or anoxia resulting 
from prolonged waterlogging, as well as meteorological 

Discussion

This study found that varying water levels differently impact 
the growth and ecophysiology of S. superba. Confirm-
ing our first hypothesis, S. superba exhibited significantly 
higher root/total mass and root/shoot mass ratios under 
drought conditions, mainly due to decreased aboveground 
biomass, despite an increasing trend in belowground bio-
mass. This shift is attributed to the plant’s strategy of real-
locating resources to the roots, enhancing water exploration, 
nutrient absorption, and osmotic regulation, thus maintain-
ing physiological processes under water stress (Mao et al. 
2018). The decrease in both above and belowground bio-
mass under wet conditions confirms our second hypothesis: 
excess water limits root oxygen supply, impairing root func-
tion, nutrient uptake, and physiological activity which has 
similarities with previous studies (Pan et al. 2021; Li et al. 
2021a; Guasconi et al. 2023). Our findings align with recent 
studies. Feldman et al. (2024) reported that increased rain-
fall alters above-ground biomass and net primary productiv-
ity. Wet ecosystems experience a 28% decrease, while dry 
ecosystems experience a 29% increase. In addition, O’Brien 
et al. (2024) found growth reductions 48% of species and 
survival declines 92% during high rainfall periods. These 
results confirm that excessive water severely impacts S. 
superba’s growth and ecophysiology. In this case, wetter 
wet seasons have worse ecological consequences than drier 
dry seasons in subtropical forests of China.

However, to explain the observed growth differences, we 
found that drought and excess water significantly affected 
root morphological traits, such as specific root length, and 
leaf physiological traits, including leaf nitrogen content, 
photosynthesis, and water potential, but had no significant 
effects on leaf morphological traits like SLA and LMA. Our 
findings are supported by Kuang et al. (2017), who reported 
that LMA and leaf nitrogen content did not change sig-
nificantly under dry conditions. In this study, specific root 
length increased under dry conditions, aligning with Wang 
et al. (2023) and Rowland et al. (2023), showing enhanced 
moisture and nutrient absorption. This adaptation, involving 
reduced aboveground biomass and increased root growth, is 
a common drought mechanism. Schima superba exhibited 
high plasticity, adapting well to both drought and excess 
water stresses.

The increasing trend in leaf nitrogen content (LNC) of S. 
superba under drought may be attributed to higher nitrate 
content due to reduced nitrate reductase activity, likely 
caused by the synthesis and accumulation of nitrogen-based 
osmolytes like proline (Querejeta et al., 2022). Mean-
while, under the dry conditions, the photosynthetic rate (A) 
decreased due to a reduction in stomatal conductance (gs) 
and a slight increase in LNC, consistent with McAusland 
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