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Abstract
The growth of plants under high carbon dioxide (CO2) concentrations (≥ 1000 ppm) is explored for the climate change and 
the bioregenerative life support system (BLSS) environment of long-duration space missions. Wheat (Triticum aestivum 
L.) is a grass cultivated for cereal grain—a global staple food including astronauts. Light and CO2 are both indispensable 
conditions for wheat seedlings. This study provides insights on the physiology, antioxidant capacity and photosynthetic 
characteristics of wheat seedlings under a range of photosynthetic photon flux densities in a closed system simulating BLSS 
with high CO2 concentration. We found that the Fv/Fm, Fv/F0, chlorophyll content, intrinsic water use efficiencies (WUEi), 
membrane stability index (MSI), and malondialdehyde (MDA) of wheat seedlings grown under an intermediate light inten-
sity of 600 μmol m−2 s−1 environment were all largest. Interestingly, the high light intensity of 1200 mol m−2 s−1 treatment 
group exhibits the highest net photosynthetic rate but the lowest MDA content. The stomatal conductance and F0 of high 
light intensity of 1000 μmol m−2 s−1 treatment group were both significantly higher than that of other groups. Our study pro-
vides basic knowledge on the wheat growth in different environments, especially in a closed ecosystem with artificial lights.

Keywords  Wheat · High CO2 concentration · Light intensity · Photosynthetic characteristics · Physiology · Antioxidant 
capacity
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Introduction

Wheat (Triticum aestivum L.) is a globally important grain 
crop cultivated as a staple food, accounting for 20% of 
the calories consumed by human beings (Brenchley et al. 
2012). It is also an important crop in bioregenerative 
life support system (BLSS) to provide food, oxygen, and 
necessary psychological well-being for spacecraft crews 
(Poughon et al. 2009; Wheeler 2017; Ushakova et al. 2018; 
Larrabee 2018).

Growth of wheat crops is affected by carbon dioxide 
(CO2) level (Prasad et al. 2002). Increasing CO2 concentra-
tion can improve photosynthesis in C3 plants such as wheat 
via reduction of photorespiration which can increase wheat 
yield (Eshghizadeh et al. 2018). Due to the global warm-
ing effect, the atmospheric CO2 concentrations have risen 
from about 280 to 370 ppm since 1800 (Prasad et al. 2002; 
Griggs and Noguer 2002) and may reach 500–900 ppm 
by the end of the century (Joos et al. 1999; Bloom et al. 
2002). The CO2 levels in closed systems such as growth 
chambers and greenhouses can readily exceed 1000 ppm 
(Wang et al. 2015). Research has shown that CO2 concen-
tration which was controlled between 500 and 5500 ppm 
in a ground-based comprehensive experimental facility of 
BLSS called Chinese Lunar Palace 1 (LP1) could reach to 
a relatively steady-state level of approximately 1000 ppm 
(Fu et al. 2016). Although terrestrial CO2 concentrations 
are not expected to exceed 1000 ppm in near future, it is 
necessary to explore the growth of plants under high CO2 
concentration to meet the future climates and the needs 
of BLSS environments. Controlled environmental studies 
showed that when wheat was cultivated under low CO2 
concentration (210 ppm), increasing CO2 concentration 
was favorable to wheat growth (Dong et al. 2014a). In 
particular, 1000 ppm CO2 was more favorable for growth 
and development of wheat (Bender et  al. 1999; Taub 
et al. 2008; Dong et al. 2016a, b). High CO2 concentra-
tion (1500 ppm) in closed BLSS can make carbon cycle 
time (residence in atmosphere) much shorter than natural 
(350 ppm) (Nelson et al., 2003). Therefore, it is essential 
for us to understand and control (Leong et al. 2020) the 
growth of wheat seedlings in high CO2 concentration envi-
ronments although which are not ideal on earth.

Light source is also an indispensable condition for plant 
(Schneider et al. 2006). The change of light intensity has a 
significant impact on physiology of wheat, such as the time 
to ear emergence and tillering of wheat, the adaptability to 
changing environmental conditions and the yield (Evtush-
enko and Chekurov 2004; Page and Feller 2016). Artifi-
cial lightings such as light-emitting diodes (LED) facilitate 
energy conservation compared to traditional light sources, 
which is also used to increase plant productivity per unit 

of cultivation area (Dong et al. 2014a; Loconsole et al. 
2019). In high CO2, higher growth rates may be obtainable 
as light intensity increases. If adequate energy inputs are 
available, the size of the food production component can 
be greatly reduced in a controlled environment life support 
system (Bugbee and Salisbury 1988).

In this study, we investigated the physiology, antioxi-
dant capacity and photosynthetic characteristics of wheat 
(Triticum aestivum L.) seedlings under a range of photosyn-
thetic photon flux densities (PPFD) in the controlled artifi-
cial closed ecosystem of Lunar Palace 1 (LP1), simulating 
BLSS. Spefically, we measured the plant growth and leaf 
water status by Membrane Stability Index (MSI) and relative 
water contents (RWC), respectively. We also understand the 
antioxidant capacity by measuring the contents of peroxi-
dase, malondialdehyde, and proline in the plants. This study 
aims to reveal potential mechanisms for the physiological 
and developmental responses to different light intensities on 
wheat seedlings in a high CO2 concentration environment.

Materials and methods

Plant material and cultivation conditions

Chinese Lunar Palace 1 (LP1) located at the Institute of 
Environmental Biology and Life Support Technology, Bei-
hang University, Beijing, China, was used for plant cultiva-
tion in this study. It has one comprehensive cabin and two 
enclosed plant cabins (Fig. S1), with a total area of 160 m2 
and a volume of 500 m3. The comprehensive cabin hosts 
four bed cubicles, a bathroom, an animal-raising room, a 
common room, a storage room, and a waste-treatment room, 
which is the main activity area of spacecraft crew members. 
Each plant cabin has two divisions in which environmental 
conditions could be independently control, such as oxygen 
levels, water contents, and food production. Spring wheat 
plants (Triticum aestivum L. cv. ‘Dwarf’) were cultivated 
in vermiculite using a porous tube nutrient delivery system 
(PTNDS) with water supply on demand in plant cabin of 
LP1 (Wang et al. 2016; Dong et al. 2018). For this study, 
the wheat was planted at a density of 1200 seeds m−2 (Fig. 
S1) in a plant cabin with continuous lighting (24/0 h light/
dark) and 1000 ppm CO2. Temperature and relative humid-
ity of the plant cabin were maintained at 21 ± 1.3 ℃ and 
70 ± 4.6%, respectively. Growth period of the wheat seedling 
was 20 days. The basic culture medium was the modified 
Hoagland nutrient solution (Hoagland and Arnon 1950) 
(Table S1).
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Light intensity treatments

LEDs used for this study have uniform spectra of white 
(350–750 nm) and red (peak at 658 nm) light (W:R = 1:1) 
measured by a spectroradiometer (Avaspec-2048-UA, 
Avantes B.V., Netherlands) (Fig. S1). The LED light 
source was set at 70 cm on top of the wheat planting sur-
face to ensure the unity of light intensity in the initial 
canopy of wheat. Wheat plants were exposed to 200, 400, 
600, 800, 1000 and 1200 μmol m−2 s−1 PPFD, measured 
by a quantum sensor (Li-250A, Li-Cor, USA) (20  cm 
under the light). They were referred as low light (LL-200, 
200 μmol m−2 s−1; LL-400, 400 μmol m−2 s−1), intermediate 
light (IL-600, 600 μmol m−2 s−1; IL-800, 800 μmol m−2 s−1) 
and high light (HL-1000, 1000 μmol m−2 s−1; HL-1200, 
1200  μmol  m−2  s−1) treatment groups, respectively. 
PPFD levels were measured every two days at the top of 
the plant canopy with the quantum sensor. Five samples 
of those wheat seedlings were randomly chosen for each 
measurement.

Straw height analyses

The height of wheat seedlings was measured every two days 
using a straight scale and vernier caliper. The straw height 
was estimated from the vermiculite surface to the tip of the 
last leaf. Five samples were randomly chosen for each plant 
height measurement.

Membrane Stability Index (MSI) measurements

The leaves’ MSI of wheat seedlings was measured with 
a conductivity meter (HI8733, Hanna instruments, Italy). 
Samples were excised from the leaves of 10 wheat seedlings 
at the first leaf at the terminal bud for each treatment. The 
samples were divided into two commensurate parts (about 
100 mg) and soaked in 10 ml double-distilled water. The first 
part was then heated at 40 ℃ for 30 min and conductivity 
C1 was determined. The second part was heated at 100 ℃ 
for 10 min and conductivity C2 was determined. The MSI 
was calculated as:

Relative water content (RWC) measurements

To determine RWC, samples were excised from the leaves 
of 10 wheat seedlings at the first leaf at the terminal bud 
for each treatment during the wheat seedling period. About 
0.5 g (m1: initial weight of the leaves) of fresh leaves were 

MSI =

(
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2

)

× 100%

soaked in double-distilled water at room temperature for 4 h 
and immediately weighed again as m2. The leaves were then 
dried at 65 ℃ for 48 h and weighed again as m3. RWC was 
calculated using the following equation:

Peroxidase (POD) activity determination

POD activity of wheat seedlings was analyzed following the 
change of absorbance at 470 nm due to guaiacol oxidation 
(Díaz et al. 2001). The POD activity was assayed for 3 min 
in a reaction solution composed of 0.15 ml of 4% (v/v) guai-
acol, 0.15 ml of 1% (v/v) H2O2, 2.66 ml of 0.1 M phosphate 
buffer (pH 7.0) and 40 μl of enzyme extract. Blank sample 
was made of the same mixture without enzyme extract.

Malondialdehyde (MDA) estimation

Based on the thiobarbituric acid reactive substances 
(TBARS), the accumulation of lipid peroxide in tissues was 
determined by estimating the content of MDA (Stewart and 
Bewley 1980). The supernatant was mixed with 10 ml of 
0.1% trichloroacetic acid (TCA). Pestled homogenate was 
used to centrifuge at 4000 rpm for 10 min and 2 ml superna-
tant was added to 4 ml 5% thiobarbituric acid (TBA) in 20% 
TCA. The mixture was heated at 95 ℃ for 30 min, rapidly 
cooled on ice and centrifuged at 3000 rpm for 10 min. The 
absorbance of the supernatant was recorded at 532 nm. The 
value for non-specific absorption at 600 nm was subtracted. 
The MDA content was calculated with its extinction coef-
ficient of 155 mM−1 cm−1.

Proline content extraction

Samples were excised from the leaves of ten wheat seedlings 
at the first leaf at the terminal bud for each treatment. Seed-
ling leaves were rapidly frozen in liquid nitrogen, freeze-
dried and stored until lab use. Proline content was extracted 
and the content analyzed spectrophotometrically according 
to the method of Bates et al. (1973).

Chlorophyll analysis

The contents of chlorophyll a (Chl a) and chlorophyll b (Chl 
b) were analyzed with an ultraviolet spectrophotometer (SP-
75, Shanghai Spectrum Instruments Co., Ltd, Shanghai, 
China). Seedling leaves were frozen in liquid nitrogen and 
stored at − 80 ℃ until measured.
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m

1
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Photosynthetic efficiency measurement

Photosynthetic characteristics were measured using a port-
able photosynthesis instrument (LI-6400XT, Li-Cor, USA). 
Leaf gas-exchange parameters including net photosynthetic 
rate (A) and stomatal conductance (gs) were determined 
from the first leaf in the seedling’s terminal bud under satu-
rating quantum flux densities (> 800 μmol m−2 s−1) at ambi-
ent temperature and relative humidity. Leaf temperatures 
were 24 ± 1.3 ℃ during the measurements. The intrinsic 
water use efficiencies (WUEi) were calculated by dividing 
A by gs (Meloni et al. 2003).

Determination of chlorophyll fluorescence

Chlorophyll fluorescence was measured simultaneously with 
CO2 gas exchange on the first leaves using a portable photo-
synthesis system (LI-6400XT, Li-Cor, USA). All measure-
ments were carried out using the standard fluorescence leaf 
chamber (2 cm2). The seedling leaves were dark-adapted for 
20 min prior to measurements. The minimum fluorescence 
(F0) and maximum fluorescence (Fm) were obtained by the 
method described by Fu et al. (2012). The maximum quan-
tum yield of PS II efficiency (Fv/Fm) and potential activity 
of PS II sssFv/F0) was calculated based on methods reported 
earlier (Maxwell and Johnson, 2000; Fu et al. 2012).

Statistics

All measurements were performed in triplicate and ran-
domly arranged in each block. Data were subjected to one-
way analysis of variance (ANOVA) using Statistica Software 
SPSS 20.0 (SPSS Inc., Chicago, Illinois). A significant level 
of 0.05 was used for all statistical tests by Tukey’s multiple 
range test.

Results

The impact on plant height, light intensity 
on the canopy, RWC and MSI

Figure  1a shows the average plant height under differ-
ent light intensities (i.e. 200, 400, 600, 800, 1000 and 
1200 μmol m−2 s−1) as a function of the light exposure 
time. The plant height increases with exposure time, for all 
light intensities under test. Although the plant treated by 
800 μmol m−2 s−1 is generally taller than others for the first 
18 days and the light intensity on canopy greatly changes 
with the treatment time (Fig. 1b), all plants turn out to be 
of similar height after 23 days of growth regardless of the 
light intensities exposed to. Furthermore, the RWC and MSI 
contents of the plants do not vary much as the light intensity 

increases (Fig. 1c, d). Within the small variations, minimum 
values were both found in LL-400, while maximum values 
were found in LL-200 and IL-600, respectively.

Morphological characteristics antioxidant system

Figure 2a and b shows the plants’ POD activity and MDA 
content as a function of light intensity. Among all groups, the 
POD activity of LL-400 scores the highest, which is nearly 
74% and 36% larger than the LL-200 and HL-1200 treatment 
groups, respectively. The POD activity also fluctuates as the 
light intensity increases. For example, the POD activity of 
HL-1000 is higher than that of IL-800 and HL-1200. On the 
other hand, the MDA content exhibits a Gaussian distribu-
tion with the light intensity. In Fig. 2b, the MDA content 
initially increases with the light intensity and declines for 
light intensity larger than 600 μmol m−2 s−1, with the lowest 
content (3.06 ± 0.03) observed in the HL-1200 group.

Photosynthetic characteristics

Responses of net photosynthetic rate (A), stomatal conduct-
ance (gs), intrinsic water use efficiency (WUEi), Chl a, Chl 
b, and Chl (a + b) to different light intensities are plotted 
in Fig. 3. Compared to LL-200, the net photosynthetic rate 
(A) of LL-400, IL-600, IL-800, HL-1000 and HL-1200 
is larger by 1.82, 3.19, 3.52, 3.48 and 4.12 times, respec-
tively (Fig. 3a). The stomatal conductance (gs) of HL-1000 
treatment group is 0.11, which is 18.1% and 15.5% higher 
than IL-800 and HL-1200 groups, respectively, and much 
larger than LL-200, LL-400 and IL-600 groups (Fig. 3b). 
Similarly, the WUEi exhibits large variations across differ-
ent light intensities treatments. The WUEi increases ini-
tially from LL-200 to IL-600, with a maximum value of 
68.91 ± 1.36 μmol CO2 mol−1 H2O−1 at IL-600, and then 
decreases with light intensity (Fig. 3c). It rises again at 
HL-1200 under high CO2 concentration.

Chlorophyll fluorescence

The increase of minimal fluorescence (F0) level is clearly 
visible in the HL-1000 group, which is 70.3 ± 4.8 and signif-
icantly higher than that of LL-200 and HL-1200 (Table 1). 
The stability of F0 found among LL-400, IL-600 and IL-800 
treatments indicates that IL caused negligible changes in the 
reaction centers. HL-1200 treatment does not impede the PS 
II reaction center under high CO2 concentration owing to the 
reduced F0 of HL-1200 (Table 1), which can be related to 
the inhibition of photorespiration. The trends of fluorescence 
(Fv) and maximum fluorescence (Fm) are similar to the F0 
(Table 1). When the light intensity was too high, both Fv 
and Fm reduces.
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Figure 4a shows that Fv/Fm of LL-400, HL-1000 and 
HL-1200 treatment groups is significantly lower than the 
IL-600 treatment group. Figure 4b clearly shows that the 
Fv/F0 of the LL-400, HL-1000 and HL-1200 groups is much 
lower than the IL-600 group, by about 8.5%, 10.7% and 
6.5%, respectively. The largest Fv/F0 value is 5.029 in the 
IL-600 group. Meanwhile, the highest content of chlorophyll 
(Chl a, Chl b, Chl a + b) is in the IL-600 group (Fig. 3d–f). 
The decrease of high light intensity (HL-1000 and HL-1200) 
is observed in Fig. 4b, which has a similar condition to the 
change of chlorophyll content. Meanwhile, LL-400 has not 
enough light and chlorophyll content to sufficiently pho-
tosynthesize. Considering the chlorophyll fluorescence 
analysis performed in real growing conditions (Fig. 4c–f), 
the heat dissipative quantum ratio (F0/Fm) and steady-state 
fluorescence yield (Fs) are invariant to the different growing 

conditions. The maximum fluorescence yield ( F′

m
 ) and elec-

tron transport rate (ETR) exhibit similar trend, where the 
minimum values were both recorded in the LL-200 group. 
Meanwhile, the ETR is significantly higher in LL-1200.

Discussion

As a major scavenger of hydrogen peroxide (H2O2), peroxi-
dase (POD) catalyzes the dismutation of superoxide to H2O2 
and oxygen (Fu et al. 2012). The level of POD reflects the 
status of physiological activity of plants and has the func-
tion of oxidase IAA. The growth of overground of wheat, 
especially for the elongation growth, could be promoted in 
a low level of POD (Dong et al. 2014c). Our findings show 
that the light intensity has a substantial impact in tuning 

Fig. 1   The response of straw height (a) and light intensity (b) of 
wheat seedlings to different treatments; the values are means ± SE 
(n = 10). The response of relative water content (RWC) (c) and mem-
brane stability index (MSI) (d) of wheat seedlings to different treat-

ments; the values are means ± SE (n = 3). Different lowercase letters 
indicate significant differences among different light intensity treat-
ments (p < 0.05)
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the POD activity in wheat, similar to previous reports in 
romaine lettuce (Lactuca sativa L.), Phalaenopsis orchids, 
and Lithocarpus litseifolius (Hance) Chun. (Ali et al. 2005; 
Fu et al. 2012; Li et al. 2016). The POD activity of our low-
light intensity group (LL-400) scores the highest. This indi-
cates that excess energy light could damage photosynthetic 
organism and reactive oxygen species (ROS), although the 
photosynthetic capacity is stronger in high light intensity 
samples (Li et al. 2016). With the increase of light intensity, 
the activity of POD does not vary much, which is mainly 
affected by the genetic characteristics of the variety itself 
(Ashraf and Harris 2004). The increment of ROS causes 
membrane lipid peroxidation, leading to the damage of cell 
membranes (Li et al. 2016) and the production of MDA. The 
MDA content measures degree of damage and stress in plant 
(Abdollahi et al. 2004; Dong et al. 2014a), and which forma-
tion is associated with the POD in leaves (Dong et al. 2014a, 
b). Previous work demonstrated that diverse responses of 
antioxidant enzymes to light-stressed plantlets, implying that 
oxidative stress might be one of the major component of 
light stress on Phalaenopsis (Ali et al. 2005). In our study, 
we speculate that the photorespiration was restrained by high 
CO2 concentration from LL-600 to HL-1000, so that plants 
can efficiently utilize light energy for photosynthesis and 
ETR. Meanwhile, the damage caused by ROS reduces sig-
nificantly. As a result of the reduction in POD activity from 
LL-600 to HL-1000 groups, more and more ROS was accu-
mulated, damaging the chloroplast envelope and increasing 
the MDA content (Li et al. 2016).

Our net photosynthetic rate (A) results agree well with 
previous findings that the stronger the light intensity, the 
higher the net photosynthetic rate (Dong et al. 2014a, b, c). 
The A of the HL-1200 is significantly greater than others, 

indicating possibly that the former has a wide and long 
wheat leaf area (Jiang et al. 2003). Unlike the previous work, 
the differences observed between IL-800 and HL-1000 treat-
ment groups are not significant (Fig. 3a), which could be due 
to the fact that Chl a, Chl b, and Chl (a + b) are not statisti-
cally significant between IL-800 and HL-100 (Fig. 3d–f). 
To a certain extent, Chlorophyll content determines the 
photosynthetic rate, and the change of chlorophyll content 
is closely related to the attenuation of A (Kura-Hotta et al. 
1987; Spano et al. 2003). It has already been proposed that 
gs increases with light intensity (Wang et al. 2017; Xiong 
et al., 2018). In this study, the max gs was found in HL-1000 
level because plants reduce their stomatal conductance to 
resist strong light (Dong et al. 2014a). However, the gs of IL 
and HL groups is significantly larger than that of LL. Low-
light intensity may decrease the gs to CO2, thus inhibiting 
photosynthesis (Loconsole et al. 2019). Zhang et al. (2017) 
and Li et al. (2015) also reported that gs varies linearly with 
A. The intrinsic water use efficiency (WUEi), an index of 
potential resource use efficiency was used to facilitate the 
comparisons among leaves under similar conditions (Dong 
et al. 2016a). Our results prove that the WUEi of different 
light intensities treatments has significant differences. This is 
consistent with earlier reports (Zhang et al. 2016). However, 
significant changes are not observed between IL-800 and 
HL-1200 treatment groups, indicating that the light intensity 
is excessive for the plant needs (Loconsole et al. 2019), due 
to the change in gs. At the same time, it can also be seen that 
water-use efficiency does not solely depend on the amount 
of water intake of plants, but is a comprehensive evalua-
tion index of resource utilization efficiency that represents 
CO2 concentration, humidity, and temperature or light in 
the environment (Dong et al. 2014a, 2016a; Medrano et al. 

Fig. 2   The response of POD (a) and MDA (b) of wheat seedlings to different treatments. The values are means ± SE (n = 3). Different lowercase 
letters indicate significant differences among different light intensity treatments (p < 0.05)
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Fig. 3   The response of net photosynthetic rate (a), stomatal conduct-
ance (b) and intrinsic water efficiency (c) of wheat seedlings to dif-
ferent treatments; the values are means ± SE (n = 10). The response 
of chlorophyll a (d) and chlorophyll b (e) and chlorophyll a + b (f) of 

wheat seedlings to different light intensity treatments; the values are 
means ± SE (n = 6). Different lowercase letters indicate significant dif-
ferences among different light intensity treatments (p < 0.05)
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2015). Lighting system with different light intensities gives 
different responses to chlorophyll synthesis and chlorophyll 
degradation in wheat seedling leaves (Dong et al. 2014a). 
The chlorophyll content of wheat leaves was found to be 
increased quickly in high CO2 concentrations (700 ppm) 
(Gutiérrez et al. 2013). Chlorophyll concentrations increase 
when the light intensity rises from 210 to 420 μmol m−2 s−1 
during seedling stage (Dong et al. 2014a), similar to our 
observations. The decline of Chlorophyll concentrations 
under high light intensity observed in our study can be 
attributed to three reasons. First, the response of chlorophyll 
to light intensity is species-dependent. Second, the light 
intensity and CO2 concentration both have impacts on the 
chlorophyll content, and their function was mutual and indi-
visible. Third, high CO2 concentrations induce sugar accu-
mulation and decrease nitrogen content, causing senescence 
and the loss of chlorophyll in leaves (Lotfiomran et al. 2016; 
Agüera and Haba 2018).

The change of fluorescence (F0) level observed in this 
work is supported by a previous study (Li et al. 2015). 
Increased F0 represents an impaired energy trapping effi-
ciency in PS II reaction centers because of the stronger light 
intensity (Paunov et al. 2018). Decreased efficiency of the 
energy transfer from the antenna to the reaction center was 
demonstrated by Somersalo and Krause (1990). However, 
we found that HL-1200 treatment did not cause the destruc-
tion of the PS II reaction center under high CO2 concentra-
tion. This may be related to the reduced F0 of HL-1200 and 
the inhibition of photorespiration. To a certain extent, the 
high light intensity can cause them to rise, which means 
the reduction of electron accepting plastoquinone (QA) is 
reduced under low light intensity and super high light inten-
sity. In brief, the increase in light intensity can increase the 
urgency of QA (Van Eerden et al. 2017). Fv/Fm reflects the 
original light energy efficiency of PS II (Li et al. 2015). 
Under non-environmental stress conditions, this parameter 
rarely changes and it is not affected by species and growth 
conditions. It is always used as a good indicator to reflect the 

degree of light inhibition (Wang et al. 2015; Mathur et al. 
2016). According to Björkman and Demmig (1987), the 
optimal value of Fv/Fm was around 0.83 for healthy plants, 
and if Fv/Fm was higher than 0.8, the potential efficiency 
of PS II was not affected. In the present study, the largest 
Fv/Fm value was 0.834 in IL-600 treatment, which indicates 
that the plant is healthy and not suffering from photosyn-
thetic stress (Li et al. 2015). The Fv/Fm value decreased with 
increasing light intensity. Wang et al. (2015) also reported 
that Fv/Fm also decreased significantly with super-elevated 
CO2 concentration in soybean and maize leaves. The results 
showed that Fv/Fm of HL treatment groups were significantly 
lower than ILtreatment group in the range (0.817–0.821, 
higher than 0.8), which might indicate that the photosyn-
thetic stress was prevented under high CO2 concentration. 
Fv/F0 indicates the potential activity or the size and num-
ber of PS II in the photoreaction center in the chloroplast, 
which is always used to represent photosynthetic strength 
of the plant (Li et al. 2015). The change Fv/F0 was similar 
to Fv/Fm in our study. The results strongly suggest that the 
original light energy efficiency of PS II and potential activ-
ity of PS II in the photoreaction center were not inhibited 
under IL-600, but they were significantly inhibited under 
LL-400, HL-1000 and HL-1200, relatively. However, the 
ETR was significantly higher in LL-1200, further indicating 
that higher light intensity caused a loss in the performance of 
the PSII under high CO2 concentration. Similar results were 
found in different light intensities under normal atmospheric 
(Loconsole et al. 2019).

Conclusion

In this study, wheat seedlings were cultivated under dif-
ferent light intensities (200–1200 μmol m−2 s−1) in high 
carbon dioxide concentration, and characterized by appro-
priate morphological characteristics, antioxidant capacity, 
photosynthesis parameters and chlorophyll fluorescence 
parameters. Our results show that wheats planted under 
600 μmol m−2 s−1 exhibit the best characteristics in terms 
of Fv/Fm, Fv/F0, chlorophyll content, WUEi and MSI. Hence, 
600 μmol m−2 s−1 is the most suitable light intensity for 
wheat seedlings growth under high carbon dioxide con-
centration. Interestingly, the net photosynthetic rate always 
increased, however, the content of MDA increased first and 
then decreased gradually with increasing light intensity. The 
stomatal conductance and F0 of HL-1000 treatment group 
were both significantly higher than that of other groups, and 
the WUEi also showed a trend of increasing first and then 
decreasing with the increasing light intensity. Our study pro-
vides insights on the role of light intensity on wheat growth 
and serves as a foundation to understand and predict the 

Table 1   The response of potential activity of F0, Fm and Fv of wheat 
seedlings to different treatments

The values are means ± SE (n = 9). Different lowercase letters indi-
cate significant differences among different light intensity treatments 
(p < 0.05)

Light intensity 
(μmol m−2 s−1)

F0 Fm Fv

200 48.8 ± 2.9a 280.9 ± 16.1a 232.1 ± 13.3a
400 57.4 ± 4.8ab 318.3 ± 21.8ab 260.9 ± 17.1ab
600 63.1 ± 1.0ab 380.3 ± 5.7b 317.1 ± 5.2b
800 58.9 ± 3.2ab 340.9 ± 16.3ab 282.0 ± 13.2ab
1000 70.3 ± 4.8b 386.8 ± 26.7b 316.5 ± 22.2b
1200 53.8 ± 3.4a 333.9 ± 9.2a 242.3 ± 17.1a
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Fig. 4   The chlorophyll fluorescence indexes measured on leaves of 
wheat seedlings to different light intensity treatments. The maximum 
quantum efficiency of PS II (Fv/Fm) (a), the potential activity of PS II 
(Fv/F0) (b), the heat dissipative quantum ratio (F0/Fm) (c), the steady-

state fluorescence yield (Fs) (d), the maximum fluorescence ( F′

m
 ) (e), 

and the electron transport rate (ETR) (f). The values are means ± SE 
(n = 9). Different lowercase letters indicate significant differences 
among different light intensity treatments (p < 0.05)
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yield of wheat growths in different environments, especially 
in a closed ecosystem.
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