ORIGINAL ARTICLE

The decline in photosynthetic rate upon transfer from high to low light is linked to the slow kinetics of chloroplast ATP synthase in *Bletilla striata*

Ying‑Jie Yang1,2 · Shi‑Bao Zhang1 · Ji‑Hua Wang3 · Wei Huang[1](http://orcid.org/0000-0003-1854-6995)

Received: 29 August 2019 / Accepted: 12 February 2020 / Published online: 12 March 2020 © Springer Nature B.V. 2020

Abstract

Upon a sudden transition from high to low light, the rate of CO_2 assimilation (A_N) in some plants first decreases to a low level before gradually becoming stable. However, the underlying mechanisms remain controversial. The activity of chloroplast ATP synthase (g_H^+) is usually depressed under high light when compared with low light. Therefore, we hypothesize that upon a sudden transfer from high to low light, the relatively low g_H^+ restricts ATP synthesis and thus causes a reduction in A_N . To test this hypothesis, we measured gas exchange, chlorophyll fuorescence, P700 redox state, and electrochromic shift signals in *Bletilla striata* (Orchidaceae). After the transition from saturating to lower irradiance, A_N and ETRII decreased first to a low level and then gradually increased to a stable value. Within the first seconds after transfer from high to low light, g_H^+ was maintained at low levels. During further exposure to low light, g_H^+ gradually increased to a stable value. Interestingly, a tight positive relationship was found between g_H^+ and ETRII. These results suggested that upon a sudden transition from high to low light, A_N was restricted by g_H^+ at the step of ATP synthesis. Taken together, we propose that the decline in A_N upon sudden transfer from high to low light is linked to the slow kinetics of chloroplast ATP synthase.

Keywords $CO₂$ assimilation \cdot Chloroplast ATP synthase \cdot Electron transport \cdot Fluctuating light \cdot ATP synthesis \cdot Photosynthetic reduction

Introduction

Under natural feld conditions, plants are challenged by frequent fuctuations of light levels (Yamori [2016\)](#page-8-0). Upon a sudden transition from high to low light, the net rate of CO_2 assimilation (A_N) in some species, e.g., *Glycine max* (soybean) and *Arabidopsis thaliana*, first declined and then slowly increased to a stable value (Chen and Xu [2006](#page-6-0); Armbruster et al. [2014](#page-6-1); Sakowska et al. [2018](#page-7-0)). This

 \boxtimes Wei Huang huangwei@mail.kib.ac.cn

- ² University of Chinese Academy of Sciences, Beijing 100049, China
- ³ Yunnan Academy of Agricultural Sciences, Kunming 650205, Yunnan, China

photosynthetic reduction signifcantly afect plant productivity (Zhu et al. [2004;](#page-8-1) Sakowska et al. [2018](#page-7-0)). Currently, two schemes are used to explain this transient decrease in A_N : (1) the slow downregulation of thermal energy dissipation decreases electron fow through photosystem II (PSII) (Zhu et al. [2004](#page-8-1); Armbruster et al. [2014,](#page-6-1) [2016](#page-6-2)) and (2) the slow re-association of the light-harvesting complex of PSII (LHCII) to PSII complexes (Chen and Xu [2006;](#page-6-0) Betterle et al. [2009](#page-6-3); Xu et al. [2015\)](#page-7-1). As we know, the slow downregulation of thermal energy dissipation and re-association of LHCIIs to PSII complexes are common phenomena in higher plants. However, in some plants such as wheat and pumpkin, A_N dropped immediately to a stable value after a sudden transfer from high to low light (Chen and Xu [2006](#page-6-0)). Therefore, the mechanisms underlying the sudden decrease in A_N remain controversial.

Under high light, a high proton gradient (ΔpH) across the thylakoid membranes activates energy-dependent quenching (qE) to harmlessly dissipate absorbed light energy in the PSII antenna as heat (Müller et al. [2001](#page-7-2); Munekage et al. [2002](#page-7-3)). Thus, qE can decrease the energy transfer to PSII by

 \boxtimes Ji-Hua Wang wjh0505@gmail.com

Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China

up to 75% under high light (Demmig-Adams et al. [2012](#page-6-4)). Upon the transition from high to low light, qE is downregulated. However, this downregulation needs several minutes (Zaks et al. 2012), leading to the scheme that photosynthesis upon transfer from high to low light is limited by the slow relaxation of non-photochemical quenching (Zhu et al. [2004](#page-8-1); Armbruster et al. [2014\)](#page-6-1). In the model plant *A. thaliana*, K⁺ efflux antiporter 3 (KEA3) allows proton efflux from the thylakoid lumen to stroma, accelerating the downregulation of NPQ after the transition from high to low light, increasing linear electron flow (LEF) and A_N (Armbruster et al. [2014,](#page-6-1) [2016](#page-6-2); Höhner et al. [2019](#page-6-5)). Furthermore, owing to the lack of protein PsbS, A_N significantly increased in the first 40 s after the transition from high to low light, as shown in the *psbs* mutant when compared with the wild type (Armbruster et al. [2014](#page-6-1)). Interestingly, although overexpression of KEA3 largely accelerates the downregulation of NPQ, it has little efect on the photosynthetic rate during the transition from high to low light (Armbruster et al. [2014\)](#page-6-1). Therefore, the sudden decrease in photosynthesis cannot be wholly explained by the slow downregulation of qE. Because proton motive force (*pmf*) plays a key role in regulation of linear electron flow at the Cyt b_f/f complex (Suorsa et al. [2016](#page-7-4); Armbruster et al. [2017](#page-6-6); Yang et al. [2019\)](#page-8-3), the immediate reduction in A_N after that transition may be due to the regulatory efect of *pmf* on LEF. However, little is known about the change in *pmf* after transition from high to low light.

During further exposure to low light, the gradually increase in A_N was accompanied with the increase in LEF (Armbruster et al. [2014](#page-6-1)), indicating that A_N is determined by LEF. In LEF, electrons derived from water splitting in PSII are transported to NADP⁺ via plastoquinone (PQ), the cytochrome $b₆/f$ (Cyt $b₆/f$) complex, plastocyanin, and PSI. This electron transport is coupled to proton translocation and generates a *pmf* that drives ATP synthesis via chloroplast ATP synthase (Kramer et al. [2003,](#page-7-5) [2004](#page-7-6)). As a result, LEF produces ATP and NADPH for the $CO₂$ assimilation. However, if ATP were to be consumed at a greater rate than NADPH, LEF would rapidly become limiting by the lack of NADP⁺, decreasing rates of ATP regeneration and photosynthesis (Walker et al. [2014\)](#page-7-7). Therefore, we speculate that the photosynthetic reduction upon a sudden transfer from high to low light may be caused by the imbalance between ATP production and consumption.

After a sudden transition from high to low light, the whole leaf ATP level frst decreased and then gradually increased in Spinach (Stitt et al. [1989](#page-7-8)). In chloroplast, *pmf* drives the phosphorylation of ADP to ATP in chloroplast CF_0CF_1 -ATP synthase (Sacksteder et al. [2000](#page-7-9); Hahn et al. [2018](#page-6-7)). The conductivity of the chloroplast ATP synthase to protons (g_H^+) is modulated to regulate *pmf* and ΔpH under changing environments (Kanazawa and Kramer [2002](#page-7-10); Kohzuma et al. [2009](#page-7-11); Zhang et al. [2009;](#page-8-4) Takagi et al. [2017;](#page-7-12) Huang et al. [2017](#page-6-8)).

Recent studies indicated that g_H^+ decreases under high light when compared with under low light (Takagi et al. [2017](#page-7-12); Huang et al. [2018c\)](#page-7-13). After transfer from high to low light, g_H^+ gradually increased to a stable value, which needed approximately 2 min (Huang et al. [2018a](#page-7-14)). Therefore, upon a sudden transition from high to low light the relatively low g_H^+ theoretically restricts ATP synthesis, making ATP to be consumed at a greater rate than NADPH. As a result, A_N will rapidly become limiting by the lack of ATP. Thus, we hypothesize that the transient decrease in A_N after transition from high to low light may be linked to the low value of g_H^+ .

Here, we focused on the mechanisms underlying the transient decrease in A_N after transition from high to low light. Our aims were to (1) examine the change in *pmf* during this transition and (2) test the hypothesis that the transient decrease in A_N is linked to g_H^+ . To address these questions, we examined gas exchange, PSI and PSII parameters, and the electrochromic shift signals after transition from high to low light in *Bletilla striata*.

Materials and methods

Plant materials and growth conditions

In our preliminary experiment, we observed that *Bletilla striata* (Orchidaceae) showed a transient decrease in A_N after transition from high to low light. As a result, in this study, we used 2 years old plants of *B. striata* for experiments. Plants were grown in a greenhouse with high relative air humidity (60–70%) and 40% of full sunlight. Growth light condition was controlled by using non-woven shade net. During growth periods, the maximum light intensity at noon was approximately 800 μmol photons m^{-2} s⁻¹. These plants were not subjected to water or nutrition stresses. Intact mature leaves were used for the photosynthetic measurements.

Gas exchange measurements

The data for net CO_2 assimilation rate (A_N) and stomatal conductance (g_s) were measured using Li-6400XT (Li-Cor Biosciences, Lincoln, NE, USA) and a 2 -cm² measuring head (6400-40 Leaf Chamber Fluorometer; Li-Cor Biosciences). Measurements were made in a greenhouse where the relative air humidity and air temperature were approximately 60% and 25 \degree C, respectively. The atmospheric CO₂ concentration was controlled at 400 μmol mol⁻¹. When leaves displayed steady-state high levels of photosynthesis and g_s after light adaptation at 1000 µmol photons m^{-2} s⁻¹ for 20 min, light response curves were measured, with photosynthetic parameters being evaluated at 3-min intervals at PPFDs of 1000, 800, 600, 400, 200, 100, and 50 µmol photons $m^{-2} s^{-1}$. Photosynthetic performance during the transition from high

to low light was examined by frst illuminating leaves at 923 µmol photons m^{-2} s⁻¹ for 20 min. Afterward, the actinic light was decreased to 132 µmol photons $m^{-2} s^{-1}$. Those two light intensities, e.g., 923 and 132 µmol photons $m^{-2} s^{-1}$, were set according to the actinic light in the Dual PAM-100 (Heinz Walz, Efeltrich, Germany).

Chlorophyll fuorescence and P700 measurements

PSI and PSII parameters were recorded simultaneously at 25 °C using the Dual PAM-100 (Heinz Walz, Efeltrich, Germany). The light response curves were generated by first illuminating the leaves at 923 µmol photons m⁻² s⁻¹ for 20 min to obtain steady-state conditions. Afterward, the light-adapted photosynthetic parameters were recorded after exposure for 3 min to light intensities of 923, 611, 421, 272, 132, and 59 µmol photons m^{-2} s⁻¹. The PSI and PSII parameters during the transition from saturating to limiting light were investigated by illuminating dark-adapted leaves at 923 µmol photons m^{-2} s⁻¹ for 20 min and then exposing them to 132 µmol photons m^{-2} s⁻¹ for 6 min.

PSII parameters were calculated as follows (Baker [2008](#page-6-9)): Y(II) = $(F_m' - F_s)/F_m'$ (Genty et al. [1989](#page-6-10)), and $NPQ = (F_m - F_m)/F_m'$. F_m and F_m' represent the maximum fluorescence after dark and light adaptation, respectively. F_s is the light-adapted steady-state fluorescence. F_m was determined after dark adaptation for at least 30 min. Y(II) was defned as the efective quantum yield of PSII, while NPQ indicated the non-photochemical quenching in PSII. Photosynthetic electron fow through PSII was calculated as ETR $II = PPFD \times 0.5 \times 0.84 \times Y(II)$.

The PSI photosynthetic parameters were measured as described by Schreiber and Klughammer ([2008\)](#page-7-15). The quantum yield of PSI photochemistry was calculated as $Y(I)=(P_m' - P)/P_m$; the quantum yield of PSI non-photochemical energy dissipation due to the donor-side limitation, $Y(ND) = P/P_m$; and the quantum yield of PSI nonphotochemical energy dissipation due to the acceptor-side limitation, Y(NA) = $(P_m - P_m')/P_m$. Photosynthetic electron flow through PSI was calculated as $ETRI = PPFD \times 0.5 \times 0$ $.84 \times Y(I)$.

Electrochromic shift (ECS) analysis

The ECS signal was monitored as the change in absorbance at 515 nm, using a Dual PAM-100 equipped with a P515-analysis module (Klughammer et al. [2013](#page-7-16); Wang et al. [2015](#page-7-17); Takagi et al. [2017](#page-7-12)). Steady-state ECS signals at diferent actinic light (AL) intensities (132 and 923 μmol photons m^{-2} s⁻¹) were obtained after illumination for 20 min at each light level. Changes in the ECS signal during the transition from high to low light were examined by illuminating the leaves at 923 µmol photons m^{-2} s⁻¹ for 20 min before adjusting the light intensity to 132 μmol photons m^{-2} s⁻¹. The ECS signal during illumination was obtained by switching off the actinic light for 1 s (Wang et al. [2015;](#page-7-17) Huang et al. [2018b\)](#page-7-18). We analyzed ECS dark interval relaxation kinetics ($DIRK_{ECS}$) as described by Kramer group (Sacksteder et al. [2001](#page-7-19); Cruz et al. [2005](#page-6-11)). The difference in total pm between light and dark, ECS_t , was estimated from the total amplitude of the rapid decay of the ECS signal during the dark pulse. The slow relaxation of the ECS signal was measured to calculate ΔpH and $\Delta \Psi$. The value of g_{H}^{+} was estimated as the inverse of the time constant of the frst-order ECS relaxation (Sacksteder and Kramer [2000;](#page-7-20) Cruz et al. [2005\)](#page-6-11).

Statistical analysis

The results were displayed as mean values of fve independent experiments. *T*-test was used at the $\alpha = 0.05$ signifcance level to determine whether those results were signifcantly diferent between treatments.

Results

Light intensity dependence of PSI and PSII parameters

The light response changes in PSI and PSII parameters were first analyzed (Fig. [1](#page-3-0)). As expected, $Y(I)$ and $Y(II)$ decreased with an increase in light intensity (Fig. [1a](#page-3-0), b). While $Y(NA)$ was higher than $Y(ND)$ at intensities below 200 µmol photons m^{-2} s⁻¹, above that light level, Y(NA) decreased and Y(ND) increased (Fig. [1](#page-3-0)a). As the illumination became more intense, NPQ was markedly increased and was saturated at approximately 600 μmol photons m^{-2} s⁻¹ (Fig. [1b](#page-3-0)). The high levels of Y(ND) and NPQ under high light indicated the ΔpH-dependent energy dissipation and photosynthetic control at the Cyt $b₆/f$ complex. While ETRII was saturated at 272 µmol photons m⁻² s⁻¹, ETRI was saturated at 421 µmol photons m^{-2} s^{-[1](#page-3-0)} (Fig. 1c). The large difference between ETRI and ETRII under high light suggested that activation of cyclic electron fow. It should be noted that these photosynthetic electron transport rates were calculated as ETRI (or ETRII) = PPFD \times 0.5 \times 0.84 \times Y(I) (or Y(II)), where 0.5 is the fraction of absorbed light reaching PSI or PSII (dI or dII). Based on this equation, ETRII was higher than ETRI when illuminated at low light. Actually, ETRI should be equal to or higher than ETRII at low light. As a result, the value of dI was higher than dII for leaves of *B. striata*.

Fig. 1 Light intensity dependence of PSI and PSII parameters. Y(I), quantum yield of PSI photochemistry; Y(ND), quantum yield of PSI non-photochemical energy dissipation due to the donor-side limitation; Y(NA), quantum yield of PSI non-photochemical energy due to the acceptor-side limitation; Y(II), quantum yield of PSII photochemistry; NPQ, non-photochemical quenching in PSII; ETRI, electron transport rate through PSI; and ETRII, electron transport rate through PSII. Values are means \pm SE ($n=4$)

The rate of CO₂ assimilation upon transfer from high **to low light**

The net rate of CO_2 assimilation (A_N) was saturated at approximately 400 µmol photons m⁻² s⁻¹ (Fig. [2a](#page-3-1)). The maximum value of A_N at 1000 µmol photons m⁻² s⁻¹ was 9.2 µmol CO₂ m⁻² s⁻¹ (Fig. [2a](#page-3-1)). In the light response curve, stomatal conductance gradually increased with light intensity (Fig. [2](#page-3-1)a). After a sudden transition from 923 to 132 μmol photons m⁻² s⁻¹, A_N rapidly decreased within 30 s, from 9.1 to 4.0 µmol CO_2 m⁻² s⁻¹ (Fig. [2b](#page-3-1)). During further exposure to the low light, A_N gradually increased to a stable value being 5.5 µmol CO_2 m⁻² s⁻¹ (Fig. [2b](#page-3-1)). The sudden decrease and subsequent increase in A_N were not caused by the change in g_s because the lowest A_N was accompanied by a high *g*s (Fig. [2b](#page-3-1)). This photosynthetic performance

Fig. 2 a Light intensity dependence of net CO_2 assimilation rate (A_n) and stomatal conductance (g_s) , and **b** changes in A_n and g_s after transition from 923 to 132 µmol photons m⁻² s⁻¹. Values are means \pm SE $(n=4)$

during the transition from high to low light is similar to that reported from *A. thaliana* and soybean (Chen and Xu [2006](#page-6-0); Armbruster et al. [2014\)](#page-6-1).

PSI and PSII parameters during the transition from high to low light

We also investigated PSI and PSII parameters when plants transferred from saturating light (923 µmol photons m⁻² s⁻¹) to low light (132 μmol photons m^{-2} s⁻¹). Interestingly, after a sudden transition, ETRI rapidly decreased to a stable level in 80 s (Fig. [3](#page-4-0)a). Concomitantly, ETRII frst decreased to a low level in 20 s and then gradually increased to a stable value in 5 min (Fig. [3](#page-4-0)a), which was consistent with the performance of A_N . During this transition from saturating to limiting light, Y(ND) rapidly decreased to a low level within the first 40 s, where it was then maintained (Fig. [3](#page-4-0)b). Because the value of Y(ND) is largely controlled by ΔpH , this result indicated that the strong lumen acidification under high light was quickly relaxed after transition to low light. Concomitantly, the relaxation of NPQ was lower than Y(ND) (Fig. [3](#page-4-0)b), suggesting a slow reversibility of qE during that transition.

Fig. 3 Changes in ETRI, ETRII, Y(ND), and NPQ after transition from 923 to 132 µmol photons m⁻² s⁻¹. Values are means \pm SE (n=4)

Proton motive force and g_{H}^+ during the transition **from high to low light**

To further examine whether the sudden decrease in A_N is caused by over-acidifcation of the thylakoid lumen, we frst monitored the steady-state ECS signals at 923 and 132 μmol photons m^{-2} s⁻¹. Values for total *pmf*, ΔpH, and $\Delta \Psi$ across the thylakoid membranes were significantly higher at 923 µmol photons m⁻² s⁻¹ (Fig. [4a](#page-4-1)). Furthermore, the portion of electric component ΔΨ/*pmf* increased at low light. These results suggested the stronger lumen acidification under high light. Concomitantly, g_H^+ was significantly lower at 923 µmol photons m^{-2} s⁻¹ (Fig. [4a](#page-4-1)), indicating that proton conductivity of the thylakoid membranes was lower under high light. After transition from 923 to132 µmol photons m^{-2} s⁻¹, the *pmf* rapidly decreased to a low level where it was maintained over time (Fig. [4](#page-4-1)b). By comparison, g_H^+ was maintained at low levels within the frst seconds and gradually increased to a stable level (Fig. [4](#page-4-1)b). We also calculated the change in proton influx (v_H^+) after transition from high to low light, and found that v_H^+ gradually increased and reached the maximum value at approximately 140 s (Fig. [4c](#page-4-1)). Furthermore, we found that, after this transition from high to low light, a tight positive linear relationship was found between g_H^+ and ETRII (Fig. [5\)](#page-5-0). These results suggested that within the frst seconds after transition from high to low light, the decreases in A_N and ETRII were caused by the low value of g_{H}^+ .

Fig. 4 a Steady-state values of proton motive force (*pmf*), proton gradient (ΔpH), membrane potential ($\Delta \Psi$), and proton conductivity (g_H^+) across the thylakoid membranes at 923 and 132 µmol photons m⁻² s⁻¹. **b** Changes in *pmf* and g_H^+ after transition from 923 to 132 μmol photons m⁻² s⁻¹. **c** Change in proton influx (v_H^+) (multiplying g_H^+ by *pmf*) after transition from 923 to 132 μ mol photons m−2 s−1. Values are means±SE (*n*=4). Asterisks indicate signifcant diferences in results between diferent light levels

Discussion

In this study, we observed a transient decrease in A_N in *Bletilla striata* upon a sudden transition from high to low light (Fig. [2b](#page-3-1)). This phenomenon is called photosynthetic reduction at low light, resembling the phenotypes recorded from *Arabidopsis* and soybean (Chen and Xu [2006](#page-6-0); Armbruster et al. [2014;](#page-6-1) Sakowska et al. [2018\)](#page-7-0), although the underlying mechanisms have not yet been clarifed. Some researchers have assumed that this sharp decrease in A_N is caused by the slow reversibility of ΔpH-dependent energy

Fig. 5 Change in ETRII as a function of g_H^+ after transition from 923 to 132 μmol photons m⁻² s⁻¹. Values are means \pm SE (*n*=4). All data were used from Figs. [3a](#page-4-0) and [4](#page-4-1)b

dissipation (Zhu et al. [2004](#page-8-1); Armbruster et al. [2014](#page-6-1), [2016](#page-6-2)). In addition, it is possible that this photosynthetic reduction may be linked to dissociation/re-association of some LHCIIs from/to PSII (Chen and Xu [2006](#page-6-0)). Although the slow reversibility of NPQ and re-association of LHCIIs to PSII are common phenomena in higher plants, A_N dropped immediately to a stable value in some plants such as cotton, maize, and pumpkin (Chen and Xu [2006\)](#page-6-0). Therefore, these two previous schemes cannot wholly explain the sudden photosynthetic reduction upon transfer from high to low light.

In this article, we found that the sudden decrease in A_N was accompanied with the a low level of g_H^+ , suggesting that the transient inactivation of chloroplast ATP synthase restricted A_N at the step of ATP synthesis. During further exposure to low light, the activity of chloroplast ATP synthase gradually increased to a stable value, increasing the rate of ATP synthesis (Fig. [4](#page-4-1)b). Meanwhile, A_N and ETRII gradually increased synchronously (Figs. [2b](#page-3-1) and [3](#page-4-0)a). Moreover, a tight linear positive relationship was found between g_H^+ and ETRII after transition from high to low light (Fig. [5\)](#page-5-0). These results suggest that the decline in A_N upon transfer from high to low light is linked to the slow kinetics of chloroplast ATP synthase.

Under high light, Δ pH controls the oxidation of PQH₂ at the Cyt $b₆/f$ complex, which limits electron flow from PSII to PSI, thus contributing to the oxidation of P700 (Munekage et al. [2002,](#page-7-3) [2004;](#page-7-21) Suorsa et al. [2012](#page-7-22), [2016](#page-7-4); Tikkanen and Aro [2014\)](#page-7-23). As a result, the high levels of Y(ND) under high light are mainly caused by the enhancement of ΔpH across the thylakoid membranes (Yamamoto et al. [2016](#page-8-5); Shikanai and Yamamoto [2017;](#page-7-24) Takagi et al. [2017](#page-7-12); Huang et al. [2018d,](#page-7-25) [2019a](#page-7-26)). At low light, the reduced levels of ∆pH facilitate electron flow from PSII to PSI via the Cyt b_6/f complex, leading to smaller values for Y(ND) (Takagi et al. [2017](#page-7-12); Huang et al. [2019b](#page-7-27)). We found that, after a sudden shift from high to low light, *pmf* rapidly decreased to a much lower level within the frst 20 s and then remained stable over time (Fig. [4](#page-4-1)b). Meanwhile, Y(ND) largely decreased during the first 20 s (Fig. [3b](#page-4-0)), suggesting the rapid relaxation of ΔpH after that sudden transition. Under such conditions, the electron flow from PSII to NADP⁺ would not have been limited by the oxidation of PQH_2 at the Cyt b_6/f complex. Consequently, the declines in A_N and ETRII during the transition from high to low light were independent of *pmf* and ΔpH.

Within the frst seconds after transition from high to low light, the transient decrease in A_N was accompanied with reduced ETRII (Figs. [2](#page-3-1)b and [3a](#page-4-0)). During further exposure to low light, A_N and ETRII synchronously increased. These results suggested that the change in A_N after transition from high to low light was largely dependent on the performance of LEF. As we know, the depression of LEF can be caused by three aspects: (1) photoinhibition of PSI and PSII (Sejima et al. [2014](#page-7-28); Brestic et al. [2015,](#page-6-12) [2016](#page-6-13); Zivcak et al. [2015;](#page-8-6) Huang et al. [2018e\)](#page-7-29); (2) over-acidifcation of thylakoid lumen (Livingston et al. [2010](#page-7-30); Rott et al. [2011](#page-7-31); Huang et al. $2018d$); and (3) the lack of NADP⁺ (Hald et al. 2008 ; Takagi et al. [2017](#page-7-12)). PSI and PSII are tolerant to short-term high light treatment in light-demanding plants (Barth et al. [2001;](#page-6-15) Yamori et al. [2016\)](#page-8-7). As we know, NPQ is composed of energy-dependent quenching (qE), state transition quenching (qT) , and photoinhibition quenching (qI) . After transition from high to low light for 6 min, ETRII fully recovered to the maximum level. Therefore, after short-term adaptation at high light, the efect of photoinhibition on LEF could be eliminated. Furthermore, the *pmf* and ΔpH were rapidly relaxed within the frst 20 s after transition from high to low light, preventing over-acidifcation of thylakoid lumen (Figs. [3](#page-4-0)b and [4](#page-4-1)b). Therefore, the sudden decrease in LEF was mainly caused by the lack of NADP⁺.

Previous studies reported that g_H^+ was decreased by Pi deficiency in chloroplasts (Takizawa et al. [2008](#page-7-32); Carstensen et al. [2018\)](#page-6-16), indicating that chloroplast ATP synthase can be signifcantly modulated by the availability of ADP and Pi. In addition to Pi, thioredoxins and NADPH‐dependent thioredoxin reductase (NTRC) plays an important role in redox regulation of the chloroplast ATP synthase specifcally at low light (Naranjo et al. [2016;](#page-7-33) Carrillo et al. [2016](#page-6-17)). After transition from high to low light, the NADPH content rapidly decreased and NTRC gradually activated chloroplast ATP synthesis. In this article, we document that within the first seconds after transition from saturating to low light, g_H^+ is maintained at a low level (Fig. [4b](#page-4-1)), reducing the rate of ATP synthesis. Consistently, whole leaf ATP level rapidly decreased upon a sudden transition from high to low light (Stitt et al. [1989\)](#page-7-8). As a result, at this moment, the ATP/ NADPH production ratio is lower than the optimal ratio required by the primary metabolism. Consequently, the Calvin–Benson cycle is limited by the lack of ATP. Owing to the decreased rate of ATP production, ATP is consumed

at a greater rate than NADPH, and LEF is rapidly becoming limited by the lack of NADP⁺. Consistently, ETRII is downregulated within the frst seconds after transition from saturating to low light (Fig. [3a](#page-4-0)). This depression of LEF further decreases rates of proton translocation and ATP regeneration, leading to the restriction of A_N . Therefore, the sudden decrease in A_N upon transfer from high to low light is ultimately caused by the slow kinetics of g_H^+ . During further exposure to low light, g_H^+ gradually increases (Fig. [4](#page-4-1)b), enhancing the rate of ATP synthesis and thus increasing the ATP/NADPH production ratio. Consequently, the availability of NADP+ increases, facilitating the operation of LEF (Fig. [3a](#page-4-0)).

Conclusion

Photosynthetic performance under fuctuating light levels plays an important role in plant growth (Sakowska et al. [2018\)](#page-7-0). After transfer from high to low light, the sudden decrease in A_N was observed in many studies (Zhu et al. [2004;](#page-8-1) Chen and Xu [2006](#page-6-0); Armbruster et al. [2014](#page-6-1)). However, the underlying mechanisms have not yet been clarifed. In this article, we found that the change in A_N after transfer from high to low light was positively correlated with the change in g_H^+ . Under high light, g_H^+ significantly decreased due to Pi deficiency. Upon a sudden transition from high to low light, the low value of g_H^+ limited the rate of ATP synthesis, making A_N to be limited by the lack of ATP. Under such condition, LEF was rapidly limited by the lack of NADP+. This depression of LEF further decreased the rate of ATP regeneration, reducing the light use efficiency. Taken together, we propose that the photosynthetic reduction upon transfer from high to low light is linked to the slow kinetics of g_{H}^+ .

Acknowledgements This study was supported by the National Natural Science Foundation of China (Grant No. 31670343), the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2016347) and the Cultivating Plan Program for the Leader in Science and Technology of Yunnan Province (Grant No. 2016HA005).

Compliance with ethical standards

Conflict of interest The authors declare that they have no confict of interest.

References

Armbruster U, Carrillo LR, Venema K et al (2014) Ion antiport accelerates photosynthetic acclimation in fuctuating light environments. Nat Commun 5:1–8.<https://doi.org/10.1038/ncomms6439>

- Armbruster U, Leonelli L, Galvis VC et al (2016) Regulation and levels of the thylakoid K+/H+ antiporter KEA3 shape the dynamic response of photosynthesis in fuctuating light. Plant Cell Physiol 57:1557–1567.<https://doi.org/10.1093/pcp/pcw085>
- Armbruster U, Correa Galvis V, Kunz HH, Strand DD (2017) The regulation of the chloroplast proton motive force plays a key role for photosynthesis in fuctuating light. Curr Opin Plant Biol 37:56–62. <https://doi.org/10.1016/j.pbi.2017.03.012>
- Baker NR (2008) Chlorophyll fuorescence: a probe of photosynthesis in vivo. Ann Rev Plant Biol 59 (1):89–113
- Barth C, Krause GH, Winter K (2001) Responses of photosystem I compared with photosystem II to high-light stress in tropical shade and sun leaves. Plant Cell Environ 24:163–176. [https://](https://doi.org/10.1046/j.1365-3040.2001.00673.x) doi.org/10.1046/j.1365-3040.2001.00673.x
- Betterle N, Ballottari M, Zorzan S et al (2009) Light-induced dissociation of an antenna hetero-oligomer is needed for non-photochemical quenching induction. J Biol Chem 284:15255–15266. <https://doi.org/10.1074/jbc.M808625200>
- Brestic M, Zivcak M, Kunderlikova K et al (2015) Low PSI content limits the photoprotection of PSI and PSII in early growth stages of chlorophyll b-defcient wheat mutant lines. Photosynth Res 125:151–166.<https://doi.org/10.1007/s11120-015-0093-1>
- Brestic M, Zivcak M, Kunderlikova K, Allakhverdiev SI (2016) High temperature specifcally afects the photoprotective responses of chlorophyll b-defcient wheat mutant lines. Photosynth Res 130:251–266.<https://doi.org/10.1007/s11120-016-0249-7>
- Carrillo LR, Froehlich JE, Cruz JA et al (2016) Multi-level regulation of the chloroplast ATP synthase: the chloroplast NADPH thioredoxin reductase C (NTRC) is required for redox modulation specifcally under low irradiance. Plant J 87:654–663. [https](https://doi.org/10.1111/tpj.13226) [://doi.org/10.1111/tpj.13226](https://doi.org/10.1111/tpj.13226)
- Carstensen A, Herdean A, Schmidt SB et al (2018) The impacts of phosphorus defciency on the photosynthetic electron transport chain. Plant Physiol 177:271–284. [https://doi.org/10.1104/](https://doi.org/10.1104/pp.17.01624) [pp.17.01624](https://doi.org/10.1104/pp.17.01624)
- Chen Y, Xu DQ (2006) Two patterns of leaf photosynthetic response to irradiance transition from saturating to limiting one in some plant species. New Phytol 169:789–798. [https://doi.org/10.111](https://doi.org/10.1111/j.1469-8137.2005.01624.x) [1/j.1469-8137.2005.01624.x](https://doi.org/10.1111/j.1469-8137.2005.01624.x)
- Cruz JA, Avenson TJ, Kanazawa A et al (2005) Plasticity in light reactions of photosynthesis for energy production and photoprotection. J Exp Bot 56:395–406. [https://doi.org/10.1093/jxb/](https://doi.org/10.1093/jxb/eri022) [eri022](https://doi.org/10.1093/jxb/eri022)
- Demmig-Adams B, Cohu CM, Muller O, Adams WW (2012) Modulation of photosynthetic energy conversion efficiency in nature: from seconds to seasons. Photosynth Res 113:75–88. [https://doi.](https://doi.org/10.1007/s11120-012-9761-6) [org/10.1007/s11120-012-9761-6](https://doi.org/10.1007/s11120-012-9761-6)
- Genty B, Briantais J-M, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fuorescence. Biochim et Biophys Acta (BBA) General Subj 990(1):87–92
- Hahn A, Vonck J, Mills DJ et al (2018) Structure, mechanism, and regulation of the chloroplast ATP synthase. Science 360:eaat4318. <https://doi.org/10.1126/science.aat4318>
- Hald S, Nandha B, Gallois P, Johnson GN (2008) Feedback regulation of photosynthetic electron transport by NADP(H) redox poise. Biochim Biophys Acta Bioenerg 1777:433–440. [https://doi.](https://doi.org/10.1016/j.bbabio.2008.02.007) [org/10.1016/j.bbabio.2008.02.007](https://doi.org/10.1016/j.bbabio.2008.02.007)
- Höhner R, Galvis VC, Strand DD et al (2019) Photosynthesis in Arabidopsis is unafected by the function of the vacuolar K+ channel TPK3. Plant Physiol 180:1322–1335. [https://doi.org/10.1104/](https://doi.org/10.1104/pp.19.00255) [pp.19.00255](https://doi.org/10.1104/pp.19.00255)
- Huang W, Zhang S-B, Xu J-C, Liu T (2017) Plasticity in roles of cyclic electron fow around photosystem I at contrasting temperatures in the chilling-sensitive plant *Calotropis gigantea*. Environ Exp Bot 141:145–153. <https://doi.org/10.1016/j.envexpbot.2017.07.011>
- Huang W, Cai YF, Wang JH, Zhang SB (2018a) Chloroplastic ATP synthase plays an important role in the regulation of proton motive force in fuctuating light. J Plant Physiol 226:40–47. <https://doi.org/10.1016/j.jplph.2018.03.020>
- Huang W, Quan X, Zhang SB, Liu T (2018b) In vivo regulation of proton motive force during photosynthetic induction. Environ Exp Bot 148:109–116. [https://doi.org/10.1016/j.envex](https://doi.org/10.1016/j.envexpbot.2018.01.001) [pbot.2018.01.001](https://doi.org/10.1016/j.envexpbot.2018.01.001)
- Huang W, Suorsa M, Zhang S-B (2018c) In vivo regulation of thylakoid proton motive force in immature leaves. Photosynth Res 138:207–218.<https://doi.org/10.1007/s11120-018-0565-1>
- Huang W, Tikkanen M, Cai Y-F et al (2018d) Chloroplastic ATP synthase optimizes the trade-off between photosynthetic $CO₂$ assimilation and photoprotection during leaf maturation. Biochim Biophys Acta - Bioenerg 1859:1067–1074. [https://doi.](https://doi.org/10.1016/j.bbabio.2018.06.009) [org/10.1016/j.bbabio.2018.06.009](https://doi.org/10.1016/j.bbabio.2018.06.009)
- Huang W, Zhang S-B, Liu T (2018e) Moderate photoinhibition of photosystem II signifcantly afects linear electron fow in the shade-demanding plant *Panax notoginseng*. Front Plant Sci 9:637. <https://doi.org/10.3389/fpls.2018.00637>
- Huang W, Yang Y-J, Zhang S-B (2019a) The role of water-water cycle in regulating the redox state of photosystem I under fuctuating light. Biochim Biophys Acta - Bioenerg 1860:383–390. <https://doi.org/10.1016/j.bbabio.2019.03.007>
- Huang W, Yang Y-J, Zhang S-B (2019b) Photoinhibition of photosystem I under fluctuating light is linked to the insufficient ΔpH upon a sudden transition from low to high light. Environ Exp Bot 160:112–119. [https://doi.org/10.1016/j.envex](https://doi.org/10.1016/j.envexpbot.2019.01.012) [pbot.2019.01.012](https://doi.org/10.1016/j.envexpbot.2019.01.012)
- Kanazawa A, Kramer DM (2002) In vivo modulation of nonphotochemical exciton quenching (NPQ) by regulation of the chloroplast ATP synthase. Proc Natl Acad Sci USA 99:12789–12794. <https://doi.org/10.1073/pnas.182427499>
- Klughammer C, Siebke K, Schreiber U (2013) Continuous ECSindicated recording of the proton-motive charge fux in leaves. Photosynth Res 117:471–487. [https://doi.org/10.1007/s1112](https://doi.org/10.1007/s11120-013-9884-4) [0-013-9884-4](https://doi.org/10.1007/s11120-013-9884-4)
- Kohzuma K, Cruz JA, Akashi K et al (2009) The long-term responses of the photosynthetic proton circuit to drought. Plant Cell Environ 32:209–219.<https://doi.org/10.1111/j.1365-3040.2008.01912.x>
- Kramer DM, Cruz JA, Kanazawa A (2003) Balancing the central roles of the thylakoid proton gradient. Trends Plant Sci 8:27–32. [https](https://doi.org/10.1016/S1360-1385(02)00010-9) [://doi.org/10.1016/S1360-1385\(02\)00010-9](https://doi.org/10.1016/S1360-1385(02)00010-9)
- Kramer DM, Avenson TJ, Edwards GE (2004) Dynamic fexibility in the light reactions of photosynthesis governed by both electron and proton transfer reactions. Trends Plant Sci 9:349–357. [https](https://doi.org/10.1016/j.tplants.2004.05.001) [://doi.org/10.1016/j.tplants.2004.05.001](https://doi.org/10.1016/j.tplants.2004.05.001)
- Livingston AK, Cruz JA, Kohzuma K et al (2010) An Arabidopsis mutant with high cyclic electron flow around photosystem I (hcef) involving the NADPH dehydrogenase complex. Plant Cell 22:221–233.<https://doi.org/10.1105/tpc.109.071084>
- Müller P, Li XP, Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol 125:1558–1566. <https://doi.org/10.1104/pp.125.4.1558>
- Munekage Y, Hojo M, Meurer J et al (2002) PGR5 is involved in cyclic electron fow around photosystem I and is essential for photoprotection in Arabidopsis. Cell 110:361–371. [https://doi.org/10.1016/](https://doi.org/10.1016/S0092-8674(02)00867-X) [S0092-8674\(02\)00867-X](https://doi.org/10.1016/S0092-8674(02)00867-X)
- Munekage Y, Hashimoto M, Miyake C et al (2004) Cyclic electron flow around photosystem I is essential for photosynthesis. Nature 429:579–582. <https://doi.org/10.1038/nature02598>
- Naranjo B, Mignée C, Krieger-Liszkay A et al (2016) The chloroplast NADPH thioredoxin reductase C, NTRC, controls non-photochemical quenching of light energy and photosynthetic electron transport in Arabidopsis. Plant Cell Environ 39:804–822. [https://](https://doi.org/10.1111/pce.12652) doi.org/10.1111/pce.12652
- Rott M, Martins NF, Thiele W et al (2011) ATP synthase repression in tobacco restricts photosynthetic electron transport, $CO₂$ assimilation, and plant growth by overacidifcation of the thylakoid lumen. Plant Cell 23:304–321. <https://doi.org/10.1105/tpc.110.079111>
- Sacksteder CA, Kramer DM (2000) Dark-interval relaxation kinetics (DIRK) of absorbance changes as a quantitative probe of steadystate electron transfer. Photosynth Res 66:145–158. [https://doi.](https://doi.org/10.1023/A:1010785912271) [org/10.1023/A:1010785912271](https://doi.org/10.1023/A:1010785912271)
- Sacksteder CA, Kanazawa A, Jacoby ME, Kramer DM (2000) The proton to electron stoichiometry of steady-state photosynthesis in living plants: a proton-pumping Q cycle is continuously engaged. Proc Natl Acad Sci USA 97:14283–14288. [https://doi.](https://doi.org/10.1073/pnas.97.26.14283) [org/10.1073/pnas.97.26.14283](https://doi.org/10.1073/pnas.97.26.14283)
- Sacksteder CA, Jacoby ME, Kramer DM (2001) A portable, non-focusing optics spectrophotometer (NoFOSpec) for measurements of steady-state absorbance changes in intact plants. Photosynth Res 70:231–240.<https://doi.org/10.1023/A:1017906626288>
- Sakowska K, Alberti G, Genesio L et al (2018) Leaf and canopy photosynthesis of a chlorophyll defcient soybean mutant. Plant Cell Environ 41:1427–1437.<https://doi.org/10.1111/pce.13180>
- Schreiber U, Klughammer C (2008) Saturation pulse method for assessment of energy conversion in PSI. PAM Appl Notes. [https://doi.](https://doi.org/10.1007/s00415-017-8571-3) [org/10.1007/s00415-017-8571-3](https://doi.org/10.1007/s00415-017-8571-3)
- Sejima T, Takagi D, Fukayama H et al (2014) Repetitive short-pulse light mainly inactivates photosystem i in sunfower leaves. Plant Cell Physiol 55:1184–1193.<https://doi.org/10.1093/pcp/pcu061>
- Shikanai T, Yamamoto H (2017) Contribution of cyclic and pseudocyclic electron transport to the formation of proton motive force in chloroplasts. Mol Plant 10:20–29. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.molp.2016.08.004) [molp.2016.08.004](https://doi.org/10.1016/j.molp.2016.08.004)
- Stitt M, Scheibe R, Feil R (1989) Response of photosynthetic electron transport and carbon metabolism to a sudden decrease of irradiance in the saturating or the limiting range. Biochim Biophys Acta - Bioenerg 973:241–249. [https://doi.org/10.1016/S0005](https://doi.org/10.1016/S0005-2728(89)80428-1) [-2728\(89\)80428-1](https://doi.org/10.1016/S0005-2728(89)80428-1)
- Suorsa M, Jarvi S, Grieco M et al (2012) PROTON GRADIENT REGULATION5 is essential for proper acclimation of Arabidopsis photosystem I to naturally and artifcially fuctuating light conditions. Plant Cell 24:2934–2948. [https://doi.org/10.1105/](https://doi.org/10.1105/tpc.112.097162) [tpc.112.097162](https://doi.org/10.1105/tpc.112.097162)
- Suorsa M, Rossi F, Tadini L et al (2016) PGR5-PGRL1-dependent cyclic electron transport modulates linear electron transport rate in *Arabidopsis thaliana*. Mol Plant 9:271–288. [https://doi.](https://doi.org/10.1016/j.molp.2015.12.001) [org/10.1016/j.molp.2015.12.001](https://doi.org/10.1016/j.molp.2015.12.001)
- Takagi D, Amako K, Hashiguchi M et al (2017) Chloroplastic ATP synthase builds up a proton motive force preventing production of reactive oxygen species in photosystem I. Plant J 91:306–324. <https://doi.org/10.1111/tpj.13566>
- Takizawa K, Kanazawa A, Kramer DM (2008) Depletion of stromal Pi induces high "energy-dependent" antenna exciton quenching (qE) by decreasing proton conductivity at CFO-CF1 ATP synthase. Plant Cell Environ 31:235–243. [https://doi.org/10.111](https://doi.org/10.1111/j.1365-3040.2007.01753.x) [1/j.1365-3040.2007.01753.x](https://doi.org/10.1111/j.1365-3040.2007.01753.x)
- Tikkanen M, Aro EM (2014) Integrative regulatory network of plant thylakoid energy transduction. Trends Plant Sci 19:10–17. [https](https://doi.org/10.1016/j.tplants.2013.09.003) [://doi.org/10.1016/j.tplants.2013.09.003](https://doi.org/10.1016/j.tplants.2013.09.003)
- Walker BJ, Strand DD, Kramer DM, Cousins AB (2014) The response of cyclic electron fow around photosystem I to changes in photorespiration and nitrate assimilation. Plant Physiol 165:453–462. <https://doi.org/10.1104/pp.114.238238>
- Wang C, Yamamoto H, Shikanai T (2015) Role of cyclic electron transport around photosystem I in regulating proton motive force. Biochim Biophys Acta - Bioenerg 1847:931–938. [https://doi.](https://doi.org/10.1016/j.bbabio.2014.11.013) [org/10.1016/j.bbabio.2014.11.013](https://doi.org/10.1016/j.bbabio.2014.11.013)
- Xu D-Q, Chen Y, Chen G-Y (2015) Light-harvesting regulation from leaf to molecule with the emphasis on rapid changes in antenna

size. Photosynth Res 124:137–158. [https://doi.org/10.1007/s1112](https://doi.org/10.1007/s11120-015-0115-z) [0-015-0115-z](https://doi.org/10.1007/s11120-015-0115-z)

- Yamamoto H, Takahashi S, Badger MR, Shikanai T (2016) Artifcial remodelling of alternative electron fow by favodiiron proteins in Arabidopsis. Nat Plants 2:16012. [https://doi.org/10.1038/nplan](https://doi.org/10.1038/nplants.2016.12) [ts.2016.12](https://doi.org/10.1038/nplants.2016.12)
- Yamori W (2016) Photosynthetic response to fuctuating environments and photoprotective strategies under abiotic stress. J Plant Res 129:379–395. <https://doi.org/10.1007/s10265-016-0816-1>
- Yamori W, Makino A, Shikanai T (2016) A physiological role of cyclic electron transport around photosystem I in sustaining photosynthesis under fuctuating light in rice. Sci Rep 6:20147. [https://doi.](https://doi.org/10.1038/srep20147) [org/10.1038/srep20147](https://doi.org/10.1038/srep20147)
- Yang Y-J, Zhang S-B, Huang W (2019) Photosynthetic regulation under fuctuating light in young and mature leaves of the CAM plant *Bryophyllum pinnatum*. Biochim Biophys Acta - Bioenerg 1860:469–477. <https://doi.org/10.1016/j.bbabio.2019.04.006>
- Zaks J, Amarnath K, Kramer DM et al (2012) A kinetic model of rapidly reversible nonphotochemical quenching. Proc Natl Acad Sci USA 109:15757–15762.<https://doi.org/10.1073/pnas.1211017109>
- Zhang R, Cruz JA, Kramer DM et al (2009) Moderate heat stress reduces the pH component of the transthylakoid proton motive force in light-adapted, intact tobacco leaves. Plant Cell Environ 32:1538–1547.<https://doi.org/10.1111/j.1365-3040.2009.02018.x>
- Zhu XG, Ort DR, Whitmarsh J, Long SP (2004) The slow reversibility of photosystem II thermal energy dissipation on transfer from high to low light may cause large losses in carbon gain by crop canopies: a theoretical analysis. J Exp Bot 55:1167–1175. [https](https://doi.org/10.1093/jxb/erh141) [://doi.org/10.1093/jxb/erh141](https://doi.org/10.1093/jxb/erh141)
- Zivcak M, Brestic M, Kunderlikova K et al (2015) Repetitive light pulse-induced photoinhibition of photosystem I severely afects CO₂ assimilation and photoprotection in wheat leaves. Photosynth Res 126:449–463. <https://doi.org/10.1007/s11120-015-0121-1>

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.