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Abstract
Photosynthetic membranes provide much of the usable energy for life on earth. To produce photosynthetic membrane lipids, 
multiple transport steps are required, including fatty acid export from the chloroplast stroma to the endoplasmic reticulum, 
and lipid transport from the endoplasmic reticulum to the chloroplast envelope membranes. Transport of hydrophobic 
molecules through aqueous space is energetically unfavorable and must be catalyzed by dedicated enzymes, frequently on 
specialized membrane structures. Here, we review photosynthetic membrane lipid transport to the chloroplast in the context 
of photosynthetic membrane lipid synthesis. We independently consider the identity of transported lipids, the proteinaceous 
transport components, and membrane structures which may allow efficient transport. Recent advances in lipid transport of 
chloroplasts, bacteria, and other systems strongly suggest that lipid transport is achieved by multiple mechanisms which 
include membrane contact sites with specialized protein machinery. This machinery is likely to include the TGD1, 2, 3 com-
plex with the TGD5 and TGD4/LPTD1 systems, and may also include a number of proteins with domains similar to other 
membrane contact site lipid-binding proteins. Importantly, the likelihood of membrane contact sites does not preclude lipid 
transport by other mechanisms including vectorial acylation and vesicle transport. Substantial progress is needed to fully 
understand all photosynthetic membrane lipid transport processes and how they are integrated.
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Introduction: chloroplast membranes 
are sites of specialized membrane lipid 
synthesis

Chloroplasts are one type of many forms of plastids, semi-
autonomous organelles that likely evolved from an ancestral 
symbiotic relationship between cyanobacteria and eukary-
otes. Modern plastids take multiple forms throughout the 
plant body, where they are specialized for different functions 
(Lindquist et al. 2016). All plastids provide critical functions 
for the plant, including fatty acid, lipid, tetrapyrrole, iso-
prenoid, and carbohydrate metabolism, signaling and redox 
processes, among others (Rolland et al. 2012). In addition to 
these functions, the chloroplast also fixes light energy into 
carbon skeletons and ultimately supports most life on earth. 
Perhaps because of its importance, many investigations 
into lipid synthesis and transport have used photosynthetic 

tissues and chloroplasts, though the processes described 
below that involve the chloroplast envelopes are believed to 
be true in all plastid types.

The light reactions of photosynthesis occur on a single, 
continuous thylakoid membrane encapsulated by two enve-
lope membranes, the outer envelope membrane (OEM) and 
inner envelope membrane (IEM). The lipid composition of 
these membranes is unique and well documented to be simi-
lar to that of modern day cyanobacteria (Wada and Murata 
1989), containing abundant sugar–lipids instead of the abun-
dant phospholipids observed in other eukaryotic membranes. 
The composition of lipid head groups in isolated plastids has 
been measured from a number of species (Alban et al. 1988; 
Dorne et al. 1990; Kirchhoff et al. 2002; Yu and Benning 
2003). Figure 1a shows the composition in each of the chlo-
roplast membranes isolated from spinach (Block et al. 1983). 
The lipids of highest abundance are monogalactosyldiacyl-
glycerol (MGDG) and digalactosyldiacylglycerol (DGDG), 
together comprising > 75% of the thylakoid and IEM. They 
are followed by two anionic lipids: sulfoquinovosyldiacyl-
glycerol (SQDG) and phosphatidylglycerol (PG). Although 
lower in abundance and each present in varying levels across 
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species, it is clear that anionic lipids are required for photo-
synthetic capacity (Yu and Benning 2003) and PG specifi-
cally seems to be indispensable (Kim et al. 2007; Kobayashi 
et al. 2015; Tanoue et al. 2014). In addition to its phosphate 
headgroup, it has a unique trans-fatty acid that may allow it 
to fill a specific space in photosystems, in which it seems to 
be overrepresented compared to its overall abundance in thy-
lakoid membranes (Qin et al. 2015; Umena et al. 2011). It is 
hypothesized that the reduction in phosphate usage inherent 
in replacing most phospholipids with sugar–lipids is critical 
for the proliferous photosynthetic membranes (Härtel et al. 
2000). Especially since plants are sessile organisms and 
phosphorous can be limiting in the environment.

MGDG, DGDG, PG, and SQDG are made inside the 
chloroplast from diacylglycerol (DAG) lipid backbones 
partly or completely transported from the endoplasmic 
reticulum (ER). The origin of the lipid backbones can be 
distinguished by the fatty acid length at the sn-2 position on 
the glycerol. 18 carbon fatty acids are esterified primarily 
in the ER, while 16 carbons in the chloroplast (Frentzen 
1986; Roughan and Slack 1982). Plants with an appreciable 
amount of chloroplast-derived or “prokaryotic” lipids are 
frequently referred to as 16:3 plants, while plants with < 2% 
of 16:3 fatty acids in the total lipids are referred to as 18:3 
plants, in a reference to the highly desaturated fatty acids 
appearing on MGDG (Heinz and Roughan 1983; Mongrand 
et al. 1998). Even in 16:3 plants, more than 50% of chloro-
plast lipids are derived from the ER, an example of the fatty 
acid distribution among chloroplast lipids in a 16:3 plant is 
given in Fig. 2. Even in 16:3 plants, the ER–lipid derived 

pathway appears to be more important as genetic manipula-
tion resulting in almost complete loss of 16:3 fatty acids has 
little effect on the plant phenotype (Kunst et al. 1988). Thus, 
lipid transport from the ER to the chloroplast is a require-
ment of photosynthetic lipid synthesis in all known plants. 
Here, we review lipid transport to the chloroplast, from the 
perspective of photosynthetic lipid synthesis. Because many 
investigations have focused on these topics from the perspec-
tive of sugar lipid synthesis, we do the same, discussing 
other lipids as appropriate. Readers looking for Arabidopsis 
gene identifiers of most discussed proteins are referred to 
the Arabidopsis acyl-lipid metabolism database (http://arali​
p.plant​biolo​gy.msu.edu) and associated review (Li-Beisson 
et al. 2013).

Synthesis of fatty acids in the chloroplast stroma

Production of chloroplast lipids begins with fatty acid syn-
thesis in the chloroplast stroma. Fatty acids are synthesized 
on a prokaryotic-type multi-subunit fatty acid synthase, in 
repeated cycles of condensation, dehydration, and reduc-
tion on an acyl-carrier protein. Ultimately, some acyl-carrier 
protein-bound 16:0 is released, while most is extended in a 
final round to produce 18:0 which is desaturated to 18:1 by 
stearoyl-ACP desaturase. Fatty acids are released from the 
acyl-carrier protein as CoA esters by acyl-ACP thioesterases 
(FATA, B). The order of fatty acid abundance from produc-
tion alone is 18:1, 16:0, with trace levels of 18:0 (Browse 
et al. 1986). Recent reviews of fatty acid production high-
light the metabolism (Li-Beisson et al. 2013), the regulation 

Fig. 1   The distribution and composition of chloroplast-specific lipids. 
a The composition of lipid headgroups in the chloroplast OEM, IEM, 
and thylakoid membranes from spinach is given (Block et al. 1983). 
b An example of the structures of the major lipid classes as crystal-
lized in photosystem II from Thermosynechococcus elongatus (PDB 
ID: 3KZI), with graphs indicating typical fatty acid abundance from 

Arabidopsis. Note that, PC is not present in photosystems, so a drawn 
structure is substituted. PC phosphatidylcholine, PG phosphatidylg-
lycerol, PI phosphatidylinositol, MGDG monogalactosyldiacylglyc-
erol, DGDG digalactosyldiacylglycerol, SQDG sulfoquinovosyldia-
cylglycerol

http://aralip.plantbiology.msu.edu
http://aralip.plantbiology.msu.edu
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(Marchive et al. 2014), and the protein chemistry involved 
(Troncoso-Ponce et al. 2016).

Beginning chloroplast sugar lipid synthesis

Inside the chloroplast, a glycerol-phosphate acyltransferase 
(GPAT) esterifies a fatty acid onto the sn-1 position of 
glycerol-3-phosphate with preference for 18:1 acyl-ACP 
(Frentzen et al. 1983). Then a lyso-phosphatidic acid acyl-
transferase (LPAAT) esterifies a second fatty acid onto the 
glycerol backbone at the sn-2 position. Chloroplast LPAAT 
strongly prefers to use 16:0-ACP as its substrate, and incor-
porates > 95% 16:0 when given a choice between 16:0- and 
18:1-ACP (Frentzen et al. 1983). The resulting phosphatidic 
acid (PA) is dephosphorylated by a phosphatidic acid phos-
phatase (PAP) to generate DAG (Joyard and Douce 1977; 
Nakamura et al. 2007). Plastidic PAP is associated with the 
inner envelope of the chloroplast, known to have an alkaline 

pH optimum and to be inhibited by Mg2+, the opposite of 
ER localized PAPs which generally are independent of or 
require Mg2+ (Joyard and Douce 1979; Malherbe et  al. 
1992). At this time, the plastidic PAP has not been purified 
or used in recombinant studies to allow further enzyme char-
acterization and conformation of its sub-organellar location. 
After its creation, DAG can be immediately incorporated 
into MGDG or SQDG with the characteristic 16 carbon fatty 
acid at the sn-2 position. Collectively, this process is known 
as “anterograde” or “prokaryotic” lipid synthesis because it 
remains entirely within the plastid, and a visual summary 
is seen in Fig. 2. MGDG is synthesized at the chloroplast 
inner envelope membrane (Miege et al. 1999) from activated 
galactose in the form of UDP-gal and a DAG from the chlo-
roplast inner envelope (Coves et al. 1986; Marechal et al. 
1994, 1995). SQDG is synthesized by SQD2 from UDP-
sulfoquinovosyl and DAG, also at the chloroplast inner enve-
lope membrane (Seifert and Heinz 1992; Yu et al. 2002).

Fig. 2   Transport of lipids to and within the chloroplast envelope 
membranes. Fatty acid synthesis occurs inside the chloroplast, where 
acyl-ACPs can be directly integrated into lipids. These lipids include 
a 16 carbon acyl chain at the sn-2 position, depicted in green. Alter-
natively, free fatty acids can be exported using the FAX1/LACS 
mechanisms to reach the cytoplasm as acyl-CoAs where they are 
incorporated into ER lipids through acyl-editing or the Kennedy path-
way. Both pathways prefer to add an 18 carbon acyl chain at sn-1, 
depicted in orange. Potential transport mechanisms to and within the 
chloroplast envelope membranes are depicted as dashed gray lines, 
because many portions of them remain hypothetical. Specifically, 
lipids transport through the TGD complexes may include PC, PA, or 
DAG; PC and lyso-PC may have alternate transport mechanisms to 
the chloroplast outer envelope membrane with unknown protein com-

ponents. The TGD complexes each bind PA specifically, denoted by a 
PA near appearing near them. MGDG is synthesized from both chlo-
roplast-derived and ER-derived lipids, after which it can be desatu-
rated by chloroplast-specific FADs. The N-terminus of DGD1 likely 
recruits MGDG from the inner membrane to the outer membrane 
though it is possible that other proteinaceous components are needed. 
FADs fatty acid desaturases, DGD1 digalactosyldiacylglycerol syn-
thase 1, MGD1 monogalactosyldiacylglycerol synthase 1, CPT 
diacylglycerol-choline phosphotransferase, PAP phosphatidic acid 
phosphatase, LPAAT​ lyso-phosphatidic acid acyltransferase, GPAT 
glycerol-phosphate acyltransferase, TGD trigalactosyldiacylglycerol, 
LACS long-chain acyl-CoA synthetases, FAX1 fatty acid export 1, PA 
phosphatidic acid, PC phosphatidylcholine, MGDG monogalactosyl-
diacylglycerol, DGDG digalactosyldiacylglycerol
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Export of fatty acids from the chloroplast

The majority of fatty acids released from the fatty acid syn-
thase are exported to the ER, where they are also incorpo-
rated into lipids. The mechanism by which fatty acids are 
exported is not completely clear, though recent progress 
has been made and was recently excellently reviewed (Li-
Beisson et al. 2017; Li et al. 2016). Briefly, a family of seven 
transporters broadly similar to yeast fatty acid transporters 
has been identified, four of which have chloroplast-targeting 
sequences. Fatty acid export 1, or FAX1, has been confirmed 
to transport fatty acids when expressed in yeast, and its lack 
increases the number of 16 carbon fatty acids incorporated 
into MGDG (Li et al. 2015). FAX1 is located in the chloro-
plast inner envelope where it is likely only one part of the 
machinery to export fatty acids. Other portions must exist, 
because plants lacking FAX1 continue to transport some 
fatty acids and are much healthier than plants lacking all ER-
derived lipids (Xu et al. 2003). Paralogs of FAX1 in the chlo-
roplast are potential sources of additional fatty export. Fatty 
acids must also be transported across the chloroplast OEM, 
and to date the most likely mechanism is vectorial acylation 
by acyl-CoA synthetases (Koo et al. 2004). Vectorial acyla-
tion is a well-established mechanism for fatty acid move-
ment in yeast (Black and DiRusso 2007; Zou et al. 2003), 
where free fatty acids are transported across a membrane 
by a fatty acid exporter, Fat1p, and then retained on the far 
side of the membrane by combining them with coenzyme 
A, thus preventing their return. If this mechanism occurs in 
plants, the identity of the long-chain acyl-CoA synthetases 
(LACS) remains unclear, and it is likely that multiple LACS 
are involved. Although the major LACS associated with the 
outside of the chloroplast envelope membrane was identified 
as LACS9, Arabidopsis plants lacking LACS9 are indistin-
guishable from wildtype in both visible and lipid pheno-
types. Further, approximately 10% of the original acyl-CoA 
synthetase activity remains associated with the chloroplast 
(Schnurr et al. 2002), and other members of the LACS fam-
ily have overlapping functions (Jessen et al. 2015; Zhao et al. 
2010). A visual summary is provided in Fig. 2.

Lipid synthesis in the ER

Once fatty acids have been exported to the ER, there are 
two pathways for incorporating them into lipids. The first 
is known as the “Kennedy” pathway, and is broadly simi-
lar to fatty acid incorporation in the chloroplast (Kennedy 
1961). Fatty acids in the form of acyl-CoAs are esterified 
onto a glycerol-3-phosphate by a GPAT, then an LPAAT 
with a strong preference for 18:1 acyl-CoA as its substrate 
esterifies a fatty acid into the sn-2 position (Frentzen 1990; 
Frentzen et al. 1983). The resulting PA is dephosphoryl-
ated by a PAP to generate DAG, which is then incorporated 

into various lipids, including phosphatidylcholine (PC). PC 
is made by action of diacylglycerol–choline phosphotrans-
ferase (DAG–CPT) which uses DAG and CDP-choline as 
substrates (Goode and Dewey 1999). The second pathway 
is known as “acyl-editing” (Bates et al. 2007). In this path-
way, fatty acids are added directly to lyso-PC to regenerate 
PC, which is cycled back into lyso-PC. The removal of fatty 
acids to make lyso-PC is again specific for the sn-2 position. 
Both the Kennedy pathway and acyl-editing are depicted in 
Fig. 2, though in most tissues and for most fatty acid types, 
acyl editing is the predominant pathway for incorporation of 
new fatty acyl-CoAs. Fatty acid desaturases (FADs) in the 
ER prefer to use PC as a substrate, FAD2 desaturates 18:1 
to 18:2 (Miquel and Browse 1992), and FAD3 desaturates 
18:2 to 18:3 (Browse et al. 1993). Through acyl editing and 
head group conversion desaturated fatty acids can be dis-
tributed throughout all lipids, including chloroplast lipids 
when chloroplast desaturases are absent (Miquel and Browse 
1992), another piece of evidence for lipid transport to the 
chloroplast.

Lipid transport to the chloroplast

Lipid backbones must be transported to the chloroplast to 
generate the most common sugar lipid structures with 18 
carbon acyl groups on the sn-2 position of glycerol. This 
process is commonly referred to as “retrograde” or “eukar-
yotic” plastid lipid synthesis. For incorporation into plas-
tid lipids, lipid backbones must be present at the IEM as 
a DAG for use by MGD1 and SQD2. Between the ER and 
the chloroplast IEM are the cytoplasm, the OEM and the 
intermembrane space of the chloroplast envelope. There are 
multiple hypotheses that describe the mechanisms by which 
lipid transport occurs through these spaces and which lipid 
species are involved at each step. The following sections 
describe the current state of knowledge for the identity of 
the transported lipid, proteins known to assist in the trans-
port, and finally the possibilities for membrane structures 
that would best support transport of hydrophobic molecules 
through aqueous spaces.

Identity of the transported lipid

To date, four lipids are candidates to shuttle lipid backbones 
with an 18 carbon in the sn-2 position from the ER to the 
chloroplast OEM: lyso-PC, PC, PA, and DAG. Lyso-PC and 
PC are hypothesized to only make the transition from the ER 
to the chloroplast, as they are abundant in the chloroplast 
OEM outer leaflet (see Fig. 1a), but are in very low abun-
dance or absent from the IEM (Dorne et al. 1985, 1990). 
They are likely converted to PA or DAG to finish transport to 
the IEM. PA and DAG may be transported for any fraction of 
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the total transport from ER to OEM to IEM; they are present 
in all of the membranes at low amounts (Alban et al. 1988; 
Muthan et al. 2013). At the IEM, PA too must be converted 
into DAG for incorporation into sugar lipids. Currently, no 
evidence suggests that only a single lipid is transported, so 
all the above lipids may be important. Similarly, lipids may 
also be transported and present in the chloroplast without 
contributing to bulk sugar–lipid synthesis.

Evidence for transport of PC

De novo lipid synthesis in the chloroplast does not include a 
protein capable of adding CDP-choline to DAG to make PC 
(Joyard et al. 2010), yet PC exists in the chloroplast OEM 
(Fig. 1a, Bessoule et al. 1995; Dorne et al. 1985). The likely 
origin of PC is where it is synthesized in the ER, and there-
fore PC must be transported from the ER to the chloroplast. 
Some time ago, it was shown that PC can be a precursor to 
chloroplast lipid synthesis. Isolated chloroplasts incubated 
with labeled PC liposomes were shown to take up PC. Sub-
sequent incubation of the chloroplasts with phospholipase C 
generated DAG from PC, which allowed synthesis of labeled 
MGDG (Oursel et al. 1987). Further work confirmed that 
ER membranes can donate labeled phospholipids to isolated 
chloroplasts in a time- and temperature-dependent fashion 
without any cytosolic factors (Andersson et al. 2004; Xu 
et al. 2008; Yin et al. 2015). Additionally, protease digestion 
to remove chloroplast OEM proteins impaired PC uptake, 
though proteins responsible have yet to be identified (Yin 
et al. 2015). It is also possible that soluble lipid transfer 
proteins are involved, as soluble proteins were previously 
observed to increase transfer of PC to the chloroplast 
(Miquel et al. 1988). Another consideration is the concen-
tration of PC available for transfer. Recently, an ER flippase 
named ALA10 was shown to effect fatty acid composition 
of chloroplast-specific lipids (Botella et al. 2016). ALA10 
is likely to interact with PC, and the authors speculate that 
it may increase the concentration of PC on the outer leaflet 
of the ER, or at specific sites of contact between the ER and 
plastids to enhance lipid transfer (Botella et al. 2017).

Evidence for transport of lyso‑PC

An alternative to transport of the fully acylated PC mol-
ecule is transport of lyso-PC which fractionates more read-
ily into soluble spaces and can be re-esterified to PC at the 
chloroplast surface. The enzymes involved, phospholipase 
A to make lyso-PC, and LPCAT to convert lyso-PC to PC, 
have been shown to be present at ER–chloroplast membrane 
contact sites (MCSs) and the chloroplast envelope, respec-
tively (Bessoule et al. 1995; Tan et al. 2011). A clever set 
of experiments was designed to determine the transported 
lipid by simultaneously measuring precursor PC and lyso-PC 

labels in the ER and in then subsequent incorporation into 
chloroplast lipids (Mongrand et al. 2000). They showed that 
transfer by PC alone cannot explain the concentration of 
label at the sn-1 position in galactolipids, and concluded 
that lyso-PC is more likely to be transported. However, they 
considered only lyso-PC and PC, and assumed that all trans-
ferred PC would be a precursor for galactolipids. Also, the 
study assumed that bulk PC would be transported. However, 
we now know that ALA10 might reasonably be expected to 
generate a specific pool of PC for lipid transport. A similar 
study that was expanded to include analysis of PA and DAG 
might be more conclusive, though it would still be difficult 
to measure specific lipid pools.

Evidence for transport of PA

PA is a central intermediate in lipid synthesis that is easily 
convertible to and from PC and DAG. It is also a non-bilayer 
forming lipid and would therefore require less energy to be 
removed from bilayer membranes (Testerink and Munnik 
2011), making it an attractive transport candidate. Biochemi-
cal evidence for PA transport is limited; however when DAG 
kinase was introduced to force synthesis of PA in various 
chloroplast envelope membranes, PA did not accumulate. 
Instead, it was converted into other lipid species, some of 
which required transport to other membranes to access con-
verting enzymes (Muthan et al. 2013). These data strongly 
imply that PA can be transported. PA was suggested to be 
a transported lipid because the TGD complexes, the only 
confirmed lipid importing systems in the chloroplast, were 
shown to bind to PA (Lu and Benning 2009; Wang et al. 
2012). However, transport of PA by the TGD complexes has 
not been definitively shown and binding PA may be more 
important for locally destabilizing the membrane bilayer 
structure to reduce the energy barrier to removal of another 
lipid.

Evidence for transport of DAG

DAG is an obvious candidate for lipid transport because 
DAG itself is a substrate for MGDG synthesis. Further, DAG 
is non-bilayer forming (Jouhet 2013) and can flip leaflets of 
a bilayer membrane at biologically relevant rates (Hamilton 
et al. 1991). Thus, DAG has a low energy barrier to both 
extraction from a membrane and crossing a leaflet, reducing 
its need for enzymatic assistance during transport. A recent 
modeling study predicted that DAG is more likely to be the 
lipid precursor than PA, although the two have a highly con-
nected relationship (Marechal and Bastien 2014). Because 
DAG inhibits plastidic PAP and PA stimulates MGD1 activ-
ity (Dubots et al. 2010), if both DAG and PA are transported 
as precursors, two regulatory loops would exist controlling 
incorporation into sugar lipids (Marechal and Bastien 2014). 
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Physical evidence for DAG transport exists from the OEM to 
the IEM, from the same studies referenced above that sup-
ported PC as a precursor to MGDG. Treatment of isolated 
chloroplasts with a phospholipase generates DAG from PC 
at the OEM. The DAG backbone was then incorporated into 
MGDG, presumably at the IEM (Andersson et al. 2004; Our-
sel et al. 1987). However, these studies did not exclude the 
possibility that MGDG synthases on the OEM were respon-
sible for producing the MGDG seen. MGDG synthesis can 
occur at the OEM during times of stress (Benning and Ohta 
2005), and may have been activated when DAG was ectopi-
cally produced.

Protein machinery involved in lipid transport 
from the ER to the chloroplast

The first proteins identified as chloroplast lipid transporters 
were identified by a forward genetic screen, and were named 
tgd for their constant production of the unusual trigalactolip-
ids (Awai et al. 2006; Xu et al. 2008, 2003), normally seen 
only during stress conditions (Barnes et al. 2016; Moellering 
et al. 2010). Identified as point mutants, severe reduction 
of TGD1 was lethal (Xu et al. 2005). All tgd mutants had 
reduced levels of 18 carbon fatty acids in the galactolip-
ids, particularly at the sn-2 position. They were also paler 
than wildtype, had compromised photosynthetic capacity, 
reduced thylakoid membranes, compromised growth and 
embryogenesis. Investigations into photosynthetic defects 
suggested that tgd1 and tgd2 mutants had unaffected carbon 
assimilation, electron transfer, and photosystem quantum 
efficiency, while the total proton motive force was reduced, 
likely because of increased proton conductance (Li et al. 
2012). Most significantly, the tgd mutants showed defects in 
lipid transport: when fed radiolabeled acetate, tgd1 mutants 
failed to efficiently convert labeled PC into MGDG at rates 
similar to wildtype (Xu et al. 2003). Similarly, chloroplasts 
isolated from tgd1 or tgd4 mutants were less efficient at con-
verting exogenously supplied PA into galactolipids (Wang 
et al. 2012; Xu et al. 2005). Since their initial genetic isola-
tion, additional TGD proteins have been described and all 
have been further biochemically characterized until they 
now are a potentially complete set of lipid transporters in 
the chloroplast OEM and IEM, spanning the intermembrane 
space. Recent evidence even suggests that the TGD system 
likely works similarly in Chlamydomonas reinhardtii algal 
cells that do not have the same 16 carbon/18 carbon prefer-
ences differentiated between organelles (Warakanont et al. 
2015).

At the chloroplast OEM, TGD4 is a dimeric β-barrel 
Lipid A transporter (LptD)-family protein that also binds 
PA (Wang et al. 2013, 2012; Xu et al. 2008). A second LptD-
family homolog appears to be common among land plants, 
and the properties of its Arabidopsis homolog, atLPTD1, 

were recently described (Hsueh et al. 2017). Its presence 
may explain the previous observation that tgd4 loss-of-func-
tion mutant phenotypes are less severe than those of the 
tgd1 mutant (Xu et al. 2008). RNAi reduction of atLPTD1 
caused similar phenotypic changes to tgd4, including an 
increase in trigalactolipids, and an altered the ratio of 16 
to 18 carbon fatty acids in chloroplast lipids. Phenotypic 
results of reduced atLPTD1 levels were most obvious dur-
ing phosphate deprivation, when atLPTD1 normally seems 
to increase in abundance, prompting the authors to suggest 
that TGD4 and atLPTD1 may have functionally diverged 
(Hsueh et al. 2017). The mechanism by which either TGD4 
or atLPTD1 transports lipids has yet to be shown. The 
homologous bacterial LptD is part of a seven-membered 
transport system that has a continuous hydrophobic groove 
from the bacterial inner membrane, across the periplas-
mic space to directly contact the outer envelope membrane 
through LptD and LptE (Okuda et al. 2012). LptD itself 
forms a β-barrel inside of which LptE forms a “plug,” and 
simulations suggest that lipids are transferred into the barrel, 
passing through two strands to enter the membrane laterally 
(Dong et al. 2014). A somewhat similar mechanism could 
be inferred for the TGD4/atLPTD1 system, potentially pass-
ing a lipid from the outer leaflet of the OEM directly to the 
TGD1, 2, 3 transporter of the inner envelope. Arguments 
against this hypothesis include the apparent lack of an LptE 
homolog and that the TGD1, 2, 3, and TGD4 complexes do 
not appear to directly interact under normal isolation condi-
tions (Roston et al. 2012; Wang et al. 2013).

At the chloroplast IEM, TGD1, 2, and 3 form a prokaryotic-
like multi-subunit ATP-binding cassette (ABC) transporter 
complex (Roston et al. 2012, 2014). TGD1 contains a multi-
membrane spanning permease domain (Xu et al. 2003). TGD3 
contains the ABC transporter ATPase domain, and is periph-
erally associated with the inner envelope membrane from 
the stromal side (Lu et al. 2007). TGD2 contains an atypical 
substrate-binding domain (Awai et al. 2006) that binds specifi-
cally to PA (Lu and Benning 2009). Unlike typical bacterial 
substrate-binding domains, TGD2 is anchored in the mem-
brane with a single transmembrane domain and is capable of 
disrupting membranes (Roston et al. 2011). Most ABC trans-
porters have two permease domains, two ATPase domains, 
and a single substrate-binding protein (Roston et al. 2014). 
The TGD1, 2, 3 transporter has 8–12 TGD2 substrate-bind-
ing domain proteins for every two TGD1 and TGD3 proteins 
(Roston et al. 2012). Based on this finding, the homologous 
bacterial MlaDEF transporter was recently shown to also have 
six copies of MlaD, the substrate-binding domain, per two 
each of MlaE and F. Notably MlaD is also has a single mem-
brane spanning domain (Thong et al. 2016). In the bacterial 
system, MlaD also modulates the activity of the entire com-
plex by affecting ATP hydrolysis. The similarity in the unu-
sual oligomerization of the substrate-binding domain protein 
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indicates that this may be a requirement for lipid transport. 
The rationale for this requirement is less clear. One hypoth-
esis is that because TGD2 oligomerizes while binding PA, it 
effectively concentrates a non-bilayer forming lipid, allowing 
easier disruption of the nearby membrane to promote lipid 
removal for transport (Roston et al. 2012). Another hypothesis 
is that oligomerization of the substrate-binding domain allows 
increased affinity for substrate over a soluble transporter, thus 
promoting passing of the substrate to the substrate-binding 
domain (Thong et al. 2016). Other remaining questions about 
the TGD1, 2, 3 complex include the identity of the lipid 
transported (see above section) and the type of transport that 
occurs. Although it is likely that the TGD1, 2, 3 complex is 
directly involved in transporting an ER-derived lipid precur-
sor of MGDG, it may accept it from a soluble lipid transfer 
protein, or directly from the OEM, and transfer it to the outer 
leaflet of the IMS. It may flip a lipid from the outer leaflet of 
the IEM to the inner leaflet. Finally, it may do both simultane-
ously, resulting in lipid transfer from the OEM to the inner 
leaflet of the IEM. To that end, it has been proposed that the 
TGD2 proteins form an extended, closed channel projecting 
from the surface of the IEM towards the OEM, through which 
lipids may travel (Ekiert et al. 2017). Experiments testing these 
questions likely require in vitro reconstitution of the entire 
complex, which has yet to be accomplished.

A potential bridge between the chloroplast OEM and IEM 
has recently been described. It was named TGD5 because its 
loss of function mutant tgd5 is phenotypically similar to the 
other tgd mutants in every measurable way, including pro-
duction of trigalactolipid, reduced levels of 18 carbon fatty 
acids in the galactolipids, paleness, compromised growth and 
embryogenesis (Fan et al. 2015). When transiently overex-
pressed in tobacco, TGD5 could interact both with the TGD1, 
2, 3 complex and with TGD4, enticingly suggesting that it 
may bridge the gap between the complexes (Fan et al. 2015; 
Li et al. 2016). One currently conflicting piece of evidence is 
that TGD5 is protected from thermolysin and trypsin diges-
tion, and therefore is either intrinsically protease resistant, in 
a protease-resistant complex, or protected by the chloroplast 
IEM. TGD2 is somewhat protease resistant (Awai et al. 2006), 
so it is tempting to propose that TGD5 may be tightly associ-
ated with the TGD1, 2, 3 complex, however was not copurified 
with the complex (Roston et al. 2012). The nature of TGD5s 
role in lipid transport is an exciting new development since it 
does not have direct analogs in bacterial lipid transport systems 
and may represent a novel lipid transport mechanism.

Physical structures that support lipid 
transfer

There is an energetic barrier to moving a hydrophobic lipid 
across an aqueous space. Membrane contact sites, vesicular 
transport, and membrane hemifusion are three mechanisms 
that have been suggested to reduce that barrier for lipid 
transport to the chloroplast envelopes.

Membrane contact sites

In multiple systems, it has been shown that two membranes 
in close proximity have more efficient trafficking of large or 
insoluble metabolites such as calcium or lipids (Block and 
Jouhet 2015; Manjarrés et al. 2011; Szabadkai et al. 2006), 
channeling of metabolites or peptides (Brdiczka et al. 2006; 
Pain et al. 1988; Reichert and Neupert 2002; Schnell and 
Blobel 1993; Schumann et  al. 2007), and trans-activity 
of lipid modifying enzymes (Stefan et al. 2011; Tavassoli 
et al. 2013; Tong et al. 2013). A substantial body of work 
has been devoted to studying the role of membrane contact 
sites (MCS) and their components in mammals and yeast, 
while MCS research in plants is more nascent. Three key 
determinants of true MCSs have been used to distinguish 
them from simple juxtaposition: (1) membranes from two 
compartments are separated by < 30 nanometers, (2) the 
membranes do not undergo complete fusion to unite lumi-
nal compartments, and (3) specialized proteins are located 
or concentrated at the site (Prinz 2014), for recent reviews 
of membrane contact sites in other systems, please see 
(Bayer et al. 2017; Pérez-Sancho et al. 2016; Quon and Beh 
2015). In mature plant cells, close association of organelles 
is expected as the vacuole occupies 80–90% of mesophyll 
cell volume (Wink 1993; Zhang et al. 2014). Thus, orga-
nellar apposition does not imply the formation of a func-
tional contact site and verification of a MCS must rely on 
biochemical evidence of points 2 and 3. To date, proteins 
involved in MCS formation and biochemical cross-talk 
between the chloroplast and other organelles have not been 
identified, with the exception of one protein necessary for 
chloroplast:peroxisome interaction (Schumann et al. 2007); 
however, other data imply that these proteins exist.

Evidence for contacts between chloroplast 
envelopes and the endoplasmic reticulum

Reports of the close relationship between the chloroplast 
and ER membranes have been presented in numerous trans-
mission electron microscopy (TEM) studies of plant cell 
ultrastructure (Cran and Dyer 1973; Crotty and Ledbetter 
1973; Renaudin and Capdepon 1977). Measurements of 
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membrane connective forces has also suggested the forma-
tion of ER:chloroplast contact sites (Andersson et al. 2007). 
Isolated chloroplasts were shown to retain vesicles of intact 
ER, which remained attached to the chloroplast envelope 
even when a > 400 pN stretching force was applied. Trypsin 
treatment reduced the force required to separate the ER and 
chloroplast to 130 pN, indicating the likely involvement of 
tethering proteins. Finally, when plastid-associated ER mem-
branes were isolated, they had a unique lipid composition 
from the remainder of the ER or chloroplast OEM (Anders-
son et al. 2007). Thus, it seems likely that an ER:chloroplast 
contact site exists that satisfies all of the criteria of a true 
MCS.

More indication of interconnection between the ER 
and chloroplasts has been provided through experiments 
describing stromules, a stroma-filled tubule projected from 
the chloroplast body (Delfosse et al. 2016). While abun-
dant stromules have been associated with non-photosyn-
thetic tissues (Köhler and Hanson 2000; Kwok and Hanson 
2004) accruing experimental data show that chloroplast 
protrusions are present in all cell types and under a range 
of conditions (Natesan et al. 2005). Several colocalization 
studies have indicated significant interactions between the 
chloroplast body, stromules, and ER tubules (Schattat et al. 
2011a, b). The authors showed that ER and stromule branch-
ing were highly correlated, and that extension and retraction 
of stromules coincide with changes in cortical ER structure. 
This may merely suggest that stromules and ER tubules 
stream along the same cytoskeletal lattice, but confocal data 
show tight spatial association reminiscent of MCSs. Using 
3-dimensional rendering of confocal images, they also mod-
eled “ER baskets” enclosing the chloroplast body. Interest-
ingly, the formation of stromules and stroma-filled “beaks” 
can be observed when plants experience stresses pertinent to 
lipid homeostasis such as high temperature (Buchner et al. 
2007), oxidative stress (Brunkard et al. 2015), osmotic stress 
(Gray et al. 2012), and phosphate limitation (Vismans et al. 
2016). Further evidence is needed to confirm the formation 
of contact sites where the ER and stromules associate, and a 
better understanding of their relationship may help provide 
insight into ER:chloroplast lipid trafficking.

Contact sites between chloroplasts 
and mitochondria

A host of TEM images define the close association of 
chloroplasts and mitochondria in mesophyll cells, includ-
ing (Holzinger et al. 2008; Jouhet et al. 2004; Vigani et al. 
2015), and their proximity may play an important role in 
lipid homeostasis. Under phosphate-limiting conditions, 
cells often substitute DGDG for phospholipids in extra-
plastidic membranes (reviewed in: Dormann and Benning 
2002; Nakamura 2013). This allows for mobilization of 

phosphate from phospholipids which act as a phosphate res-
ervoir (Cruz-Ramirez et al. 2006; Tjellström et al. 2008), 
and mutants in phospholipid recycling genes show abnormal 
phenotypes on low-phosphate growth media (Angkawijaya 
and Nakamura 2017; Gaude et al. 2008; Hsueh et al. 2017).

Mobilization of the phospholipid phosphate pool requires 
transport of DGDG to extra-plastidic membranes, including 
mitochondrial membranes which show an increase in DGDG 
and decrease in PE/PC content (Jouhet et al. 2004). There 
are two potential pathways: from chloroplast to ER to mito-
chondria, or directly from chloroplast to mitochondria. The 
presence of DGDG in the ER and plasma membrane dur-
ing phosphate limitation (Andersson et al. 2005, 2003) sug-
gests that DGDG is distributed through vesicles and ER:PM/
ER:mitochondrial MCS, which may support transfer through 
the ER. Two studies have provided strong evidence that 
DGDG can also be directly transferred to mitochondria at 
chloroplast:mitochondria MCS (Jouhet et al. 2004; Michaud 
et al. 2016). In their 2004 paper, Jouhet et al. showed that 
DGDG present in mitochondrial isolations was not due to 
chloroplast lipid contamination. Further, they documented 
a statistically significant increase in the association of mito-
chondria and chloroplasts during phosphate limitation using 
TEM. Finally, they showed that pure chloroplast envelope 
fractions could transfer DGDG to mitochondria in vitro, 
indicating that endomembrane trafficking is not necessary 
for phospholipid substitution in mitochondria. Michaud et al. 
have proposed that a component of the mitochondrial protein 
import machinery is a mediator of DGDG trafficking to the 
mitochondria (Michaud et al. 2016). They show that loss of 
AtMic60, an inner membrane protein involved in crista junc-
tion formation (Hessenberger et al. 2017; Sastri et al. 2017), 
induces a significant decrease in mitochondrial glycolipids. 
Further, AtMIC60 is associated with a megacomplex that 
is enriched with DGDG during phosphate limitation, and 
DGDG association with the complex is dependent on the 
presence of AtMIC60. Despite this, mutation of AtMIC60 
did not lead to complete loss of DGDG in mitochondrial 
membranes, suggesting another mechanism of transfer also 
exists. Overall, there may be two mechanisms for lipid trans-
fer from chloroplasts to mitochondria.

Chloroplast OEM:IEM contact sites

As with other membrane appositions, close contact between 
OEM and IEM was reported in early TEM data which show 
the two membranes are usually within 30 nm of each other 
(Pain et al. 1988; Schnell and Blobel 1993; Schnell et al. 
1990). That the membranes define separate compartments 
have been shown in a number of ways. It was established 
early on through use of radiolabeled metabolites and water 
that the inner envelope was a permeability barrier that the 
outer membrane was not (Heldt and Sauer 1971). Each 
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membrane also has distinct lipid compositions, implying 
that the membranes are not fused (Block et al. 1983). The 
last pieces of evidence for determining a real contact site are 
specialized proteins, and there are multiple reports of protein 
complexes that span the OEM and IEM. The protein translo-
cons of the OEM and IEM have been shown to be a part of 
a protein megacomplex spanning both membranes (Kikuchi 
et al. 2009), and recent evidence shows that the complexes 
are stable structures (Chen and Li 2017). Thus, the chloro-
plast OEM:IEM meets the standards of a true MCS.

Do chloroplast OEM:IEM contact sites transport lipids? 
It seems likely. Recent developments in lipid transport sug-
gest that TGD5 may mediate contact between the TGD1, 2, 
3 transporter at the chloroplast IEM and TGD4 of the chlo-
roplast OEM (Fan et al. 2015). The TGD components have 
multiple lines of evidence supporting their involvement in 
lipid transport, as detailed above. In addition, the N-terminus 
of chloroplast OEM protein DGD1 has been shown to be 
required for recruiting MGDG substrate from the chloroplast 
IEM to produce DGDG (Kelly et al. 2016), additional details 
below. Interestingly, no data currently suggest that either 
the TGD system or DGD1 are associated with the protein 
translocons known to bridge the OEM:IEM gap. Instead, 
native gels of the TGD systems support that they are in their 
own complexes with no stable bridges to larger complexes 
(Roston et al. 2012; Wang et al. 2013). The lipid transfer 
components may occur at additional contact sites independ-
ent of the protein translocon, or they may group without 
direct protein–protein interaction at regions of membrane 
apposition.

Potential components involved in chloroplast MCS 
formation

Because the chloroplast OEM contains lipid amounts com-
parable to the plasma membrane that can interact with MCS 
components of the ER like phosphoinositides, phospholip-
ids, and sterols (see above sections, and Daum and Vance 
1997; Rolland et al. 2009; Schwertner and Biale 1973), 
it is possible that ER-resident proteins could form MCS 
at the OEM with no additional protein components (for a 
recent review of predicted ER MCS proteins in plants, see 
Pérez-Sancho et al. 2016). However, most MCS identified 
in mammals and yeast have components on both membranes 
involved in a contact site (Eisenberg-Bord et al. 2016; Phil-
lips and Voeltz 2016). Given the relative paucity of informa-
tion available regarding plant MCS proteins, we generated a 
group of potential Arabidopsis MCS proteins that may reside 
in the chloroplast and bind to, or transport lipids. Using a 
non-redundant list of confirmed MCS proteins and func-
tional lipid-binding domains from other systems extracted 
from the following reviews (Pérez-Sancho et al. 2016; Prinz 
2014; Quon and Beh 2015), a bi-directional approach was 

taken to minimize false negatives. First, reciprocal BLAST 
was used to identify homologous Arabidopsis proteins. 
Second, lipid-binding/transport domain-containing pro-
teins were identified using the InterPro database (Finn et al. 
2017). All identified Arabidopsis sequences were analyzed 
for presence in chloroplast-specific proteomics studies or 
presence of chloroplast transit peptides using the Plant 
Proteome Database (Sun et al. 2009) and TargetP/ChloroP 
(Emanuelsson et al. 2007). Finally, expression of candidate 
genes was visualized using ePlant (Waese et al. 2017) to 
confirm their expression in photosynthetic tissues. Result-
ing Arabidopsis gene identifiers are given in Table 1. It is 
important to note that this list is far from complete. Chloro-
plast MCS proteins may have evolved independently from 
other MCS proteins in the cell, and thus share no identifi-
able sequence similarity. This is supported by the fact that 
mitochondrial MCS proteins have a diverse evolutionary 
history, with core components being lost and novel com-
ponents evolving independently while maintaining proper 
mitochondrial function and morphology (Flinner et al. 2013; 
Huynen et al. 2016; Kozjak-Pavlovic 2017; Michaud et al. 
2016). Finally, given that sub-organellar prediction is not 
currently possible, the location of the above proteins and 
their potential contact sites remains to be determined. How-
ever, the simple fact that so many proteins can be predicted 
to be involved in lipid binding in the chloroplast implies that 
documented MCS components involving lipids are likely far 
from complete, and more study is needed.

Thus far, studies of chloroplast MCSs have been limited 
by the techniques used. A particular disadvantage of TEM 
is that samples are fixed and represent a single time point 
for a specimen, preventing observation of cellular dynam-
ics in real time. In contrast, traditional confocal microscopy 
can visualize living cells in real-time, but lacks the resolu-
tion needed to view nanoscale membrane structures (Pawley 
1991). Newer super-resolution microscopy techniques have 
been employed to image membrane interactions in other sys-
tems (Hua et al. 2017; Jans et al. 2013; Sastri et al. 2017), 
and similar studies could refine contact site models in plants.

Vesicle transfer

A classic method of moving lipids generated in the ER to 
other cellular membranes is through the secretory pathway. 
Evidence for secretory vesicles fusing with the chloroplast 
envelopes comes from the transport of fully glycosylated 
proteins to the chloroplast stroma (Kitajima et al. 2009; 
Nanjo et al. 2006; Villarejo et al. 2005). A subset of these 
proteins require glycosylation for function, further evidence 
of their transport through the secretory pathway (Buren et al. 
2011; Kaneko et al. 2016). Although it seems likely that the 
proteins are transported through vesicles, the mechanism by 
which vesicles fuse with the chloroplast is unknown (Baslam 
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et al. 2016). Therefore, it is unclear if lipids may also be 
transported through this mechanism.

Membrane hemifusion

To this point we have focused on transport mechanisms 
proposed to explain molecules which are transported to the 
chloroplast under normal conditions. Recently, the general 
accessibility of the chloroplast to hydrophobic molecules in 
the ER was tested using an approach termed “transorganellar 
complementation” (Mehrshahi et al. 2013). In this approach, 
multiple enzymes of the tocopherol synthetic pathway or an 
enzyme of the carotenoid synthetic pathway were indepen-
dently relocated from the chloroplast to the ER using Arabi-
dopsis lines lacking expression of native genes and express-
ing cDNAs fused with ER targeting information. Resultant 
plants produced significant levels of the tocopherols and 
carotenoids, implying that these compounds were efficiently 
shuttled between the two organelles. This was a surprising 
result because neither carotenoids nor tocopherols need to 
be exchanged between the ER and chloroplast under normal 
circumstances, and transport was bi-directional. The authors 
suggested that should MCSs between the ER and chloro-
plast go through a stable hemifusion intermediate, enzymes 
from either organelle would be able to act on hydrophobic 
molecules on either side. The suggestion is attractive from 
the standpoint of transport, because many diverse molecules 
could be freely transported at sites of hemifusion. It is some-
what less attractive from the perspective that very few stable 

membrane hemifusion events are known to exist in nature, 
and none of the machinery promoting these has been well 
characterized. Lacking known hemifusion stabilizing pro-
teins, the hemifusion hypothesis is difficult to test at this 
time.

Finishing sugar lipid synthesis 
in the chloroplast

Much of the MGDG produced at the chloroplast IEM from 
the prokaryotic or eukaryotic pathways must be desaturated 
prior to use in the thylakoid membranes. FAD5, 6, 7, and 
8 desaturate MGDG 16:0 or 18:1 to 16:3 or 18:3 (Falcone 
et al. 1994; Heilmann et al. 2004; Iba et al. 1993; McConn 
et al. 1994). Interestingly, when ER desaturases FAD2 or 
FAD3 are absent, chloroplast FADs appear to also desatu-
rate ER lipids, presumably through lipid backbones which 
are exported from the chloroplast under normal conditions 
(Browse et al. 1993; Miquel and Browse 1992). Like the 
transorganellar complementation results, this surprising 
result implies that bulk lipids are easily transported between 
the chloroplast and ER.

After desaturation, MGDG can be converted into DGDG. 
The majority of the DGDG under normal conditions is 
produced by DGD1 (Dörmann et  al. 1999; Kelly et  al. 
2003). DGD1 is anchored in the chloroplast OEM facing 
the cytoplasm (Froehlich et al. 2001). During phosphate 
stress, DGDG can also be produced by DGD2, also in the 

Table 1   Putative chloroplast-targeted MCS components

a Ref: (AhYoung et al. 2015; Schauder et al. 2014)
b Ref: (Im et al. 2005; Saravanan et al. 2009)
c Ref: (Shaw 1996; Stefan et al. 2011; Watt et al. 2002)
d Ref: (Davletov and Sudhof 1993; Pérez-Sancho et al. 2015)

Lipid interaction domain AGI Name (TAIR) Predicted function

SMP/C2 (SMP:IPR031468) 
(C2:IPR035892)

AT1g50260 NTMC2 DOMAIN TYPE 5.1 Phospholipid bindinga

AT3G19830 NTMC2 DOMAIN TYPE 5.2
OSBP (IPR000648) AT5G02100 ORP3A Oxysterol binding and/or transferb

AT3G09300 ORP3B
AT5G59420 ORP3C

PH (IPR001849) AT4G11790 PH domain superfamily protein Phosphatidylinositol bindingc

AT4G23895 PH domain-containing protein
OSBP/PH AT2G31020 ORP1A

AT1G13170 ORP1D
AT1G77730 PH domain superfamily protein

CaLB (C2) AT1G48590 C2-DOMAIN ABA-RELATED 5 Calcium-dependent bind-
ing of phospholipids and 
phosphoinositidesd

AT5G55530 CaLB domain family protein
AT5G11100 SYNAPTOTAGMIN 4
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chloroplast OEM (Kelly and Dörmann 2002). Finally, dur-
ing severe abiotic stress including wounding and freezing in 
Arabidopsis, DGDG can be made by a progressive galacto-
syltransferase known as SFR2 or GGGT (Moellering et al. 
2010). The commonality in all of these mechanisms is that 
their lipid precursor is made in the IEM while they reside in 
the OEM. Thus, lipid transport is again required. A possible 
exception is the case of DGD2, because during phosphate 
stress MGDG can also be made at the OEM by MGD2 and 
MGD3 (Benning and Ohta 2005). Exploiting this difference, 
a recent study investigated the function of an N-terminal 
extension present in DGD1 and its homologs but missing 
from DGD2. They showed that the N-terminus of DGD1 
is required for efficient MGDG transport to the chloroplast 
OEM (Kelly et al. 2016). Like TGD2, it can bind to PA and 
distort membranes, implying that it too may directly extract 
a lipid from or deliver it to a membrane. Still unknown is 
whether the N-terminus of DGD1 operates on its own or if 
it works with a protein or proteins of the IEM. These final 
steps of lipid synthesis and the transport events that make 
them possible are summarized in Fig. 2.

Concluding remarks

Membrane hemifusion was raised as a possibility because of 
how many precursors we know are transported between the 
ER and plastid, and how little we know about the enzymes 
and membrane structures providing transport routes. To bet-
ter understand the generation of the photosynthetic mem-
branes, more research is needed to understand how the gre-
garious chloroplast shares hydrophobic molecules efficiently 
with the rest of the cell.
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