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Abstract This review presents an overview of the two

ways that cyanobacteria, algae, and plants have adapted to

high O2 and low CO2 concentrations in the environment.

First, the process of photorespiration enables photosyn-

thetic organisms to recycle phosphoglycolate formed by

the oxygenase reaction catalyzed by ribulose-1,5-bisphos-

phate carboxylase/oxygenase (Rubisco). Second, there are

a number of carbon concentrating mechanisms that

increase the CO2 concentration around Rubisco which

increases the carboxylase reaction enhancing CO2 fixation.

This review also presents possibilities for the beneficial

modification of these processes with the goal of improving

future crop yields.
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Abbreviations

CA Carbonic anhydrase

CBB cycle Calvin–Benson–Bassham cycle

CCM Carbon (dioxide) concentrating mechanism

PEP Phosphoenolpyruvate

Rubisco Ribulose-1,5-bisphosphate carboxylase/

oxygenase

RuBP Ribulose-1,5-bisphosphate

The interplay between photosynthetic organisms

and atmospheric change

The process of photosynthesis has had a profound effect

on the Earth’s atmosphere. It is estimated that the pri-

mordial atmosphere was high in CO2 and extremely low

in O2 (Fig. 1) (Sage 2004; Govindjee and Shevela 2011;

Kasting 1987). As photosynthesis developed, the

atmospheric CO2 concentration slowly decreased as

plants fixed atmospheric CO2 and carbon was subse-

quently sequestered in the ground or ocean floor as

carboniferous fossils (Fig. 1). Besides the decline in

CO2 concentration, a critical change occurred with the

evolution of Photosystem II which produces O2. As a

consequence of photosynthetic organisms, the partial

pressure of CO2 has dropped from an estimated 1,000

mbar in the atmosphere of the primitive earth to 0.4

mbar and the concentration of O2 has risen from almost

undetectable levels to approximately 210 mbar in the

present day atmosphere (Fig. 1) (Govindjee and Shevela

2011; Sage 2004).

While oxygenic photosynthetic organisms changed the

makeup of the atmosphere, they also had to adapt to these

same changes. In the Calvin–Benson–Bassham cycle (CBB

cycle), the enzyme ribulose-1,5-bisphosphate carboxylase/

oxygenase (Rubisco) catalyzes the addition of CO2 to

ribulose-1,5-bisphosphate (RuBP). Over the Earth’s his-

tory, the concentration of the substrate of this reaction,

atmospheric CO2, has dropped dramatically. This has led to

a decrease in the efficiency of this carboxylation reaction.

In addition, the product of the reaction catalyzed by Pho-

tosystem II, O2, inhibits the process of CO2 fixation. All

aerobic photosynthetic organisms must deal with this

present day combination of high O2 and low CO2

conditions.
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O2 inhibits photosynthesis and plant growth

The first report that O2 inhibits photosynthesis was made

by Warburg in 1920 (Warburg 1920). Later it was shown

that lowering the O2 concentration to 2 % resulted in a

20–30 percent increase in biomass and yield in plants

(Hesketh 1967; Chollet and Ogren 1975). Conversely, if

the O2 concentration was increased to above atmospheric

levels, photosynthesis was severely reduced (Turner and

Brittain 1962).

Why does O2 inhibit CO2 fixation? The key to

answering this question was the molecule glycolate. When

Calvin and his colleagues fed Chlorella 14CO2, 14C-labeled

glycolate was one of the early products observed (Benson

et al. 1950; Schou et al. 1950). However, the amount of

labeled glycolate was variable. Sometimes a lot of labeled

glycolate was found, whereas in other experiments, very

little glycolate was observed. In his review article, Tolbert

(1973) noted that glycolate was found when (1) the CO2

concentration was low, (2) the O2 concentration was high,

(3) the pH was high, or (4) the light intensity was high. It

was also observed that glycolate was evenly labeled on

both carbons, glycolate was never labeled before 3-phos-

phoglycerate. Zelitch and Ochoa (1953) showed the

enzyme glycolate oxidase catalyzed the conversion of

glycolate to glyoxylate in plant tissues. These observations

led to the hypothesis that glycolate was not on the main

pathway of carbon fixation, but instead was the result of an

O2-dependent side reaction. Feeding algal cells labeled

glycolate allowed researchers to detail the pathway of

glycolate metabolism, tracing a pathway from glycolate to

3-phosphoglycerate (Fig. 2) (Husic et al. 1987).

However, it was not clear how glycolate was formed.

The breakthrough came in 1971, when Bowes et al. (1971)

reported that Rubisco also catalyzes an oxygenation reac-

tion with RuBP, leading to one molecule of phosphoglyc-

erate and one of phosphoglycolate (1b). Therefore, Rubisco

catalyzes these two separate reactions:

RuBPþ CO2 ! 2ð Þ3-phosphoglycerate ð1aÞ

RuBPþ O2 ! 1ð Þ3-phosphoglycerate

þ 1ð Þ phosphoglycolate ð1bÞ

It was also clear that chloroplasts had phosphoglycolate

phosphatase activity. This enzyme converts phosphoglycolate

formed during the oxygenation reaction to glycolate (Fig. 2).

This finding led to the current explanation of how O2

inhibits photosynthesis. Rubisco is able to catalyze an

oxygenation reaction as well as a carboxylation reaction

with RuBP. It is apparent that CO2 and O2 are competitive

substrates. The relative amounts of carboxylation and

oxygenation are dependent on the properties of Rubisco

and the [CO2]/[O2] ratio at which they take place (Andrews

et al. 1973; Lorimer et al. 1973; Spreitzer and Salvucci

2002). The Rubisco specificity factor SC/O describes the

enzyme’s catalytic properties for carboxylation and oxy-

genation and is defined as SC/O = VCKO/VOKC, where VC

and VO are the maximal velocities for carboxylation and

oxygenation, respectively, and KO and KC are the

Michaelis–Menten constants of Rubisco for O2 and CO2,

Fig. 2 Outline of the photorespiratory pathway in higher plants

emphasizing major carbon intermediates and compartments. The NH3

released in the mitochondrion is recycled (not shown). The dashed

line indicates transport. CBB Cycle Calvin–Benson–Bassham cycle

Fig. 1 The changes in the O2 and CO2 concentrations in the

atmosphere during Earth’s history. Redrawn from Sage (2004)
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respectively (Jordan and Ogren 1981b). In a typical analysis,

the average SC/O for ten C3 plants was about 86 and in ten C4

plants about 79 (see table S1 in Whitney et al. (2011). SC/O

indicates the relative specificity for reacting with CO2 versus

O2 and can be obtained by determining the slope of the plot of

VC/VO versus [CO2]/[O2] when carboxylase and oxygenase

activities are measured simultaneously (Jordan and Ogren

1981a). Thus, the relative catalysis of the carboxylase versus

oxygenase in vivo depends on SC/O times the ratio of [CO2]/

[O2] present (e.g., about 10 lM CO2 vs 280 lM O2 around

the enzyme during photosynthesis in C3 species). Obviously,

in the primitive atmosphere of high [CO2]/[O2] (Fig. 1), only

the carboxylation reaction would occur. In contrast, the

Earth’s atmosphere is presently about 20.95 % O2 and

0.039 % CO2, and the ratio of the carboxylation reaction to

the oxygenation reaction is about 4 to 1 in most C3 plants

(Sharkey 1988).

Photorespiration is a way to recapture carbon

potentially lost due to the oxygenation reaction

of Rubisco

Photorespiration is defined as the light-dependent con-

sumption of O2 and production of CO2. Clearly photorespi-

ration is counterproductive if a plant gives off CO2, since the

purpose of photosynthesis is to capture CO2 and produce

sugars. The photorespiratory pathway serves to LIMIT the

loss of fixed carbon due to the oxygenase activity of Rubisco.

When phosphoglycolate is generated by the oxygenase

reaction, there is a potential of losing both of these carbons.

In fact, the photorespiratory pathway returns 75 % of the

potentially ‘‘lost’’ carbon back to 3-phosphoglycerate and

the CBB cycle (Fig. 2) since two phosphoglycolate mole-

cules contain four carbons and are photorespired to 3-phos-

phoglycerate which contains three carbons.

Several steps characterize photorespiration. The bio-

chemistry of this pathway is very well understood for many

different prokaryotic and eukaryotic species and reviewed

extensively (Kern et al. 2011; Bauwe et al. 2010; Husic et al.

1987). To summarize the process with a focus on higher

plants, the 2-phosphoglycolate that is produced by Rubisco is

first dephosphorylated by phosphoglycolate phosphatase to

glycolate. Glycolate is transported out of the chloroplast into

peroxisomes and oxidized by glycolate oxidase to glyoxylate

which is further modified by glutamate–glyoxylate amino-

transferase to glycine. Two glycine molecules can be trans-

formed into one serine molecule by a glycine decarboxylase

complex in mitochondria (Fig. 2). The one carbon ‘‘lost’’ is

the CO2 given off at this step when the two glycines are

converted to one serine, one CO2 and one molecule of

ammonia. Back in the peroxisome, serine is modified to

hydroxypyruvate by serine-glyoxylate aminotransferase and

further to glycerate by hydroxypyruvate reductase. Glycer-

ate is transported into the chloroplast where it is phosphor-

ylated by glycerate kinase to 3-phosphoglycerate, the key-

molecule that interlinks photorespiration and the CBB cycle

(Fig. 2) (Husic et al. 1987).

Is the photorespiratory pathway essential to plants?

The answer is clearly yes. First, if any of the key photore-

spiratory enzymes are blocked or disrupted by mutation,

higher plants either die or grow very slowly under normal

atmospheric concentrations of O2 and CO2 (Somerville and

Ogren 1982; Blackwell et al. 1988; Timm et al. 2012; Zelitch

et al. 2009). Only by keeping the plants in an artificially high

CO2 environment can plants defective in the photorespira-

tory pathway be maintained (Timm et al. 2012). It is clear

then, that plants must efficiently recycle 2-phosphoglycolate

back to 3-phosphoglycerate to survive under today’s atmo-

spheric conditions. Another potential consequence of the

photorespiratory pathway is the loss of ammonia (NH3)

when two molecules of glycine are converted to one mole-

cule of serine (see Fig. 2). This ammonia must be reassim-

ilated by the plant, adding to the energetic cost of

photorespiration, but this is necessary to insure survival.

Why does Rubisco still have an oxygenase activity?

One question often raised when photorespiration and the

CCM are discussed is ‘‘Why has not Rubisco evolved to

either better fix CO2 or avoid the oxygenase reaction alto-

gether?’’ While we cannot unequivocally answer this ques-

tion, at least two reasonable hypotheses have been put forth

to explain the persistent oxygenase activity of Rubisco. The

first hypothesis is that the mechanism used by Rubisco to

catalyze the carboxylation reaction cannot easily be changed

through mutation to eliminate the oxygenase reaction. It is

important to point out that there are no known CO2 or O2

substrate binding sites on Rubisco. Instead, it is thought that

Rubisco stabilizes the formation of the enediol conformation

of RuBP, allowing either CO2 or O2 to react with RuBP

(Eqs. 1a, 1b) (Cleland et al. 1998; Spreitzer 1993; Spreitzer

and Salvucci 2002). The way Rubisco ‘‘favors’’ the car-

boxylation reaction over the oxygenation reaction is by sta-

bilizing the six carbon intermediate before it is cleaved to

form two molecules of 3-phosphoglycerate. Since there are

no binding sites for the two substrates, CO2 and O2, amino

acid substitution will not favor either of the substrates so the

competing reactions are dependent on the concentrations of

O2 and CO2. One could imagine a mutation or series of

mutations that might prevent the diffusion of O2 to the RuBP

binding site. However, since CO2 and O2 are both small

Photosynth Res (2013) 117:121–131 123

123



uncharged molecules, it is possible that this type of change is

extremely unlikely. In spite of these difficulties, there is a

wide variety of specificities for CO2 versus O2 for Rubisco

from different species. For example, the Rubisco specificity

factors (SC/O) of higher plants are in the range of 80–90 while

they are in the range of 40–50 in cyanobacteria. The

increased specificity seen in higher plants appears to be a

result of tighter binding of the six-carbon intermediate by

Rubisco. The higher plant enzyme thus favors the carbox-

ylation reaction, but it is also much slower than the cyano-

bacterial Rubisco (Jordan and Ogren 1981b) although all

Rubiscos appear optimized to the natural conditions under

which they operate (Tcherkez et al. 2006). The very low

catalytic rate of Rubisco especially in higher plants is in part,

due to how tightly Rubisco binds the six carbon catalytic

intermediate. At this point, the scientific community has not

found or engineered a form of Rubisco that has completely

eliminated the oxygenase activity.

The second hypothesis to explain why the oxygenase

activity is persistent in nature is that photosynthetic organ-

isms need an extra outlet for the high energy molecules,

namely ATP and NADPH produced by the light-dependent

reactions of photosynthesis (Kozaki and Takeba 1996).

Considering that the CO2 concentration is so low in nature,

there may be times during the day when the production of

ATP and NADPH far exceeds the needs of the CBB cycle.

This might be particularly true under high light conditions or

drought conditions when the stomata are closed, preventing

CO2 from entering the leaf. In addition, soil and fresh-water

organisms often encounter very low CO2 concentrations as

noted earlier. Under these conditions, the electron transport

chain could easily become over-reduced, producing super-

oxide or other reactive oxygen species causing photodamage

(Kozaki and Takeba 1996).

It is possible that both of these hypotheses concerning the

oxygenation reaction of Rubisco in photosynthesis are valid.

Another strategy to reduce the oxygenation reaction of Ru-

bisco implies the active concentrating of CO2 around Rubi-

sco. Clearly there is strong selective pressure in favor of

carbon concentrating mechanisms in aquatic environments

and C4 photosynthesis has arisen independently in many

plant families. However, at the same time, the oxygenation

activity of Rubisco occurs to some extent in all species.

Carbon concentrating mechanisms, a way to increase

CO2 for fixation

Introduction to carbon concentrating mechanisms

(CCMs)

Because O2 and CO2 are competing substrates, two ways to

enhance photosynthesis are (1) to reduce the O2

concentration or (2) to increase the CO2 concentration at

the site of Rubisco. The reduction of O2 is especially dif-

ficult as oxygenic photosynthetic organisms are generating

O2 through the action of Photosystem II very close to

Rubisco. A common way that photosynthetic organisms

reduce the oxygenase reaction is to increase CO2 at the site

of Rubisco. By increasing CO2 for Rubisco, the carboxyl-

ase reaction is increased and the oxygenase reaction is

reduced. Photosynthetic organisms have evolved a number

of ways to increase CO2 for Rubisco, including cyano-

bacterial CCMs, similar CCMs in eukaryotic algae and C4

photosynthesis found in higher plants. In all cases, the

CCM increases the CO2 concentration for Rubisco,

enhancing CO2 fixation and minimizing the oxygenase

reaction.

As noted, CCMs increase the concentration of CO2 at

the site of Rubisco. In cells lacking CCMs the CO2 con-

centration in equilibrium with the atmosphere is very low

(around 10 lM). Although there may be some membrane

selectivity for CO2 transport, overall the permeability for

CO2 is relatively high (Tholen and Zhu 2011). Therefore

concentrating CO2 around Rubisco is potentially difficult.

So what is the mechanism for concentrating CO2? This is

accomplished by accumulating the carbon in a form other

than CO2. Examples include the charged molecule bicar-

bonate (HCO3
-) or metabolites like malate or aspartate

which do not cross biological membranes as rapidly as

CO2. These molecules are transported to the location where

Rubisco is present and CO2 is generated there. In cyano-

bacteria and eukaryotic algae, the accumulated molecule is

HCO3
- which is converted to CO2 in the carboxysome or

chloroplast pyrenoid respectively through the activity of

carbonic anhydrase (CA). In the case of C4 plants, the

accumulated malate (or aspartate) is decarboxylated in the

bundle sheath cells where Rubisco is located. The CO2

generated from these accumulated molecules is largely

fixed by Rubisco due to diffusive resistance limiting its

leakage from the cell.

A model for the CO2 concentrating mechanism

in cyanobacteria

A general model for concentrating CO2 in cyanobacteria is

shown in Fig. 3 (Price et al. 2008). In this model, bicar-

bonate accumulates within the cytoplasm of the cell and

Rubisco is packaged inside the proteinaceous structure

called the carboxysome. The accumulated bicarbonate then

enters the carboxysome through pores (Klein et al. 2009) in

the carboxysome shell (Tsai et al. 2007; Tanaka et al. 2008)

and is converted to CO2 by a carbonic anhydrase. This

creates a microenvironment with a high CO2 concentration

for Rubisco inside the carboxysome (Yeates et al. 2008).

Compelling evidence for this model comes from mutant
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analysis where disruptions of the carboxysome (Ohkawa

et al. 1998; Schwarz et al. 1995), loss of the carboxysomal

carbonic anhydrase (Price et al. 1992; Price and Badger

1989a, b, 2002; Yu et al. 1992), or targeting Rubisco to the

cytoplasm instead of the carboxysome (Orús et al. 1995;

Pierce et al. 1989) results in a cell unable to grow on low

concentrations of CO2 (0.04 % CO2).

In cyanobacteria, the accumulation of HCO3
- is

accomplished by multiple HCO3
- uptake systems (Omata

et al. 1999; Shibata et al. 2002; Price et al. 2004). These

transporters include a Na?- HCO3
- cotransporter (Ohkawa

et al. 1998; Espie and Kandasamy 1994; Ogawa et al.

1998), a low CO2-inducible ABC-type transporter (Omata

et al. 1999, 2002) and the BicA HCO3
- transporter (Price

et al. 2004). In addition to these HCO3
– uptake systems,

CO2 that enters the cell is converted to HCO3
– internally by

two proteins associated with the thylakoid membranes

(Fig. 3) (Maeda S-i et al. 2002; Price et al. 2002). Studies

comparing the genomes of different bacteria reveal that all

of these uptake systems may not be present in a given

species, but many of the cyanobacteria examined so far

have redundant Ci uptake systems.

In cyanobacteria, Rubisco is localized to the carboxy-

some. Three types of CAs are associated with the carb-

oxysome although usually only one type is found in a given

organism (Pena et al. 2010; So et al. 2002b; Yu et al. 1992;

Cannon et al. 2010). Carbonic anhydrases are proteins that

accelerate the inter-conversion between inorganic carbon

species (2).

CO2 þ H2O�HCO�3 þ Hþ ð2Þ

As an example, one type of carbonic anhydrase is

encoded by the CcaA gene. Cyanobacteria with ccaA

mutations have normal carboxysomes but require high CO2

for growth (So et al. 2002a; Yu et al. 1992; Fukuzawa et al.

1992). Interestingly, these mutants accumulate HCO3
– to

very high levels, indicating that the HCO3
– uptake systems

are still operating, but the cell can no longer convert the

accumulated HCO3
– to CO2 for fixation. All cyanobacteria

studied to date have a carboxysomal CA, and this CA is

required for the functioning of the CCM.

A model for the concentration of CO2

in Chlamydomonas, an example of a eukaryotic algal

CCM

The CCM in green algae has many similarities to the

cyanobacterial model including active HCO3
- accumula-

tion, Rubisco packaging and HCO3
- dehydration to CO2

in the chloroplast (Fig. 4) (Moroney et al. 2011). In a

current model of the CCM in Chlamydomonas, a green

unicellular alga, bicarbonate is accumulated within the

chloroplast stroma and Rubisco is localized to the pyre-

noid (Rawat et al. 1996), an electron-dense structure

within the chloroplast (Fig. 4). The accumulated bicar-

bonate is then converted to CO2 by a carbonic anhydrase,

CAH3, located within the thylakoid lumen. Evidence for

this model comes from mutant analysis where loss of two

or more CO2 or HCO3
- transporters (Pollock et al. 2004;

Duanmu et al. 2009; Moroney et al. 1989; Spalding et al.

1983b; Wang and Spalding 2006), the CAH3 carbonic

anhydrase (Karlsson et al. 1998; Spalding et al. 1983a;

Funke et al. 1997), or disruption of the pyrenoid (Ma

et al. 2011; Genkov et al. 2010), leads to Chlamydomonas

strains that are unable to grow on low concentrations of

CO2. In addition, it is important to note that the CCM in

Chlamydomonas is inducible (Badger et al. 1980;

Fig. 3 The CCM of

cyanobacteria. Left is an

electron micrograph of

Synechococcus PCC 7942 from

(Long et al. 2007), published by

permission. The model of

inorganic carbon transport in a

cyanobacterial cell is shown on

the right. HCO3
- is taken up by

transporters (unfilled circle) and

accumulated in the cytoplasm.

A carbonic anhydrase converts

HCO3
- to CO2 in the

carboxysome (see arrows in

micrograph). CO2 is

subsequently fixed into

3-phosphoglycerate (3PGA) by

Rubisco. Based on the model of

Price et al. (2008)
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Somanchi et al. 1998; Moroney and Tolbert 1985).

If Chlamydomonas is grown on high CO2 ([1 % CO2

in air), it does not produce the CCM components. How-

ever, if Chlamydomonas is switched from high CO2

([1 % CO2) to low (0.04 % CO2) or very low CO2

(0.01 % CO2), it will acclimate within about 4 h and the

affinity of the alga for CO2 and HCO3
- increases by

10–20 fold.

C4 photosynthesis

C4 photosynthesis, a process seen in many higher plants,

is another way to increase the CO2 concentration for

Rubisco. Most C4 plants have a type of leaf structure

known as Kranz anatomy, with two distinct types of

photosynthetic cells, the mesophyll cells and the bundle

sheath cells (Fig. 5). C4 photosynthesis has arisen inde-

pendently many times (Sage et al. 2011) predominantly

by forming the two-cell type Kranz anatomy (Edwards

et al. 2001; Hatch 2002), with the spatial separation of

function as illustrated in Fig. 5. The process is called C4

photosynthesis because the first product with fixed CO2

is a four carbon organic acid. In the cytoplasm of

mesophyll cells, carbonic anhydrase converts CO2 to

HCO3
-, which is added to phosphoenolpyruvate (PEP)

by PEP carboxylase to form oxaloacetate which is con-

verted to malate or aspartate (Fig. 5). One reason C4

photosynthesis can concentrate CO2 is because PEP

carboxylase has a high affinity for HCO3
-, allowing high

rates of fixation even at low CO2 ? HCO3
- concentra-

tions and unlike Rubisco, oxygen is not a competing

substrate. The C4 acids malate and aspartate are trans-

ported from mesophyll to bundle sheath cells. C4

decarboxylases (NADP-malic enzyme, NAD-malic

enzyme, or PEP carboxykinase, depending on the C4

biochemical subtype) generate CO2 and a three carbon

product, the latter returning to the mesophyll cells for

regeneration of PEP. Through the C4 cycle, the CO2 is

concentrated around Rubisco which limits photorespira-

tion. The energy required for CO2 fixation in the CCB

cycle via Rubisco is 3 ATP and 2 NADPH. In C3 plants,

photorespiration results in additional use of energy which

increases the cost per CO2 fixed, while in C4 plants

there is the added cost of 2 ATP per CO2 delivered to

Rubisco by the C4 cycle. C4 photosynthesis is especially

advantageous under conditions where photorespiration

increases, i.e., when CO2 is limited under water stress

due to reduced stomatal conductance, and under higher

leaf temperatures where the kinetic properties of Rubisco

change favoring an increase in reaction with O2. For

further details on evolution and function of C4 see

(Christin and Osborne 2013; Ludwig 2013). While it is

clear that the mechanisms for C4 photosynthesis and the

algal CCMs are very different, they both accomplish the

same thing, namely raising the CO2 concentration for

Rubisco, thereby favoring the carboxylation reaction at

the expense of the oxygenase reaction.

Fig. 4 The CCM of the eukaryotic green alga Chlamydomonas

reinhardtii. Left is an electron micrograph of C. reinhardtii with the

current CCM model is presented on the right. CO2 diffuses into to the

cells and is converted by cytoplasmic carbonic anhydrases to HCO3
-.

HCO3
- is also taken up into the cytoplasm by specific transporters

(unfilled circle). Both inorganic carbon species enter the chloroplast,

HCO3
- via active transport, CO2 via diffusion. A carbonic anhydrase

is also present in the chloroplast stroma and converts CO2 to HCO3
-,

which is transported into the thylakoid lumen. The thylakoids span

through the Rubisco containing pyrenoid (P), here the bicarbonate is

converted to CO2 which is fixed into 3PGA. A starch shell surrounds

the pyrenoid and minimizes CO2 diffusion out of the fixation site
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How widespread are these adaptations

in photosynthetic organisms?

Photosynthetic organisms have adapted to the earth’s

changing atmosphere including the rise in the concentra-

tion of O2 and the decline in CO2 concentration. The

process of photorespiration appears to be an ancient

adaptation. Recent studies by Bauwe and his colleagues

indicate that photorespiration was likely present when the

chloroplast endosymbiosis event occurred (Bauwe et al.

2010, 2012; Eisenhut et al. 2008). Not only is the pathway

present in cyanobacteria as well as algae and higher plants,

the enzymes that make up the pathway are remarkably

similar. In higher plants, the chloroplastic enzymes phos-

phoglycolate phosphatase and glycerate kinase closely

align with their cyanobacterial counterparts (Bauwe et al.

2012; Kern et al. 2011).

The origin of the other adaptation, the CCM, appears to

be more recent than the appearance of photorespiration but

the CCM is also commonly found in nature. Almost all

eukaryotic algae and cyanobacteria thus far examined

contain a CCM. On the other hand, about four percent of

higher plant species conduct C4 photosynthesis. The

widespread occurrence of the CCM in aquatic organisms is

due to the fact that aquatic photosynthetic organisms

commonly face an environment where the dissolved CO2

concentration is 10 lM or less. In addition, the diffusion

coefficient of CO2 in water is approximately 10,000 times

smaller than the coefficient for CO2 in air also limiting the

availability of CO2 to aquatic photosynthetic organisms. In

contrast, higher plants live in a variety of environments

where water stress may not be a factor and stomates allow

ready access of gaseous CO2 to photosynthetic cells.

If a photosynthetic organism has a CCM, is

photorespiration still needed?

The answer to this question is yes. To this point in time,

the photorespiratory pathway has been found in all C4

plants (Sage et al. 2012; Dai et al. 1993), eukaryotic

algae (Moroney et al. 1986) and cyanobacteria studied

(Eisenhut et al. 2008; Hagemann et al. 2010) as well as

C3 plant species. The requirement for photorespiration in

C4 plants was eloquently demonstrated in a maize gly-

colate oxidase mutant (Zelitch et al. 2009). This question

is particularly interesting in the case of cyanobacteria

which have the ability to concentrate bicarbonate over a

100-fold. However, even this very high concentration

does not completely eliminate the oxygenase reaction.

Cyanobacteria with a normal CCM but which cannot

process phosphoglycolate grow poorly on low concen-

trations of CO2 (Eisenhut et al. 2008). To date, all

oxygenic photosynthetic organisms have an active pho-

torespiratory pathway.

Future efforts to improve photosynthesis by modifying

the photorespiratory pathway and introducing a CCM

It is clear that both the photorespiratory pathway and the

various carbon concentrating mechanisms have evolved as

a response to the rise in O2 concentration and decline in

CO2 concentration in the Earth’s atmosphere. However, C3

plants, including most of the important crop plants, do not

employ a CCM. Plant scientists are now exploring the

question whether photosynthesis and/or crop yield might be

improved by (1) changing Rubisco, (2) altering the

Fig. 5 The C4 photosynthetic pathway. a Light micrograph of a leaf

cross-section from the C-4 plant Zea mays. GC guard cell, IGS

intercellular gas space, MC mesophyll cell, BC bundle sheath cell.

b Overview of the C4 photosynthetic pathway. Dashed lines represent

plasmodesmata transport. CBB Cycle Calvin–Benson–Bassham cycle,

PEP phosphoenolpyruvate, OAA oxaloacetate, C3 pyruvate, C4

malate/aspartate
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photorespiratory pathway, or (3) by introducing a CCM

into a C3 plant.

Improving Rubisco

Clearly the cause of the O2 inhibition of CO2 fixation is the

oxygenase activity of Rubisco (Eqs. 1a, 1b). If the oxy-

genase activity could be reduced or eliminated, there might

be a significant increase in plant productivity under today’s

atmospheric concentrations of CO2 and O2. It has been

argued that through evolution, Rubiscos found in nature are

optimized to balance catalytic efficiency and the [CO2]/

[O2] specificity and therefore the oxygenase activity of

Rubisco cannot be eliminated (Whitney et al. 2011;

Whitney and Sharwood 2008; Bainbridge et al. 1995).

However, there is clear evidence that when comparing

Rubiscos from a wide variety of organisms there is a sig-

nificant variation in the [CO2]/[O2] specificity of the

enzyme (Jordan and Ogren 1981b; Whitney et al. 2011).

Perhaps a Rubisco from an organism with a high [CO2]/

[O2] specificity could be incorporated into a crop plant that

normally has a lower [CO2]/[O2] specificity. Possibly as we

better understand which amino acids influence the [CO2]/

[O2] specificity of Rubisco, an improved Rubisco could be

designed and put into crop plants to increase photosyn-

thesis and yield. A caveat to this type of approach is

whether the oxygenase is needed to reduce photodamage,

as the oxygenase activity does allow for an alternate

electron sink. Modifying Rubisco to a point where there is

minimal oxygenase activity might lead to a plant that is

more susceptible to photodamage.

Improving the photorespiratory pathway

If the oxygenase activity of Rubisco cannot be avoided,

perhaps the recycling of the carbon in glycolate could be

improved. Presently there are no known metabolic path-

ways that can improve upon the 75 % carbon recovery rate

of the photorespiratory pathway. However, there have been

attempts to improve on the recapture of the 25 % of the

carbon ‘‘lost’’ as CO2. In a recent experiment, three bac-

terial genes were introduced into tobacco to create the

tartronic semialdehyde pathway in the tobacco chloroplast

(Fig. 6) (Kebeish et al. 2007; Peterhansel and Maurino

2011). The advantage of this pathway over the existing

pathway is that (1) there are fewer steps (3 vs 5) and (2) the

CO2 is released in the chloroplast stroma instead of the

mitochondria (compare Figs. 2, 6), and (3) no additional

nitrogen needs to be reassimilated. The idea is that CO2

released in the chloroplast has a better chance to be refixed

than CO2 released in the mitochondria. The fact that

nitrogen does not have to be reassimilated means the plant

uses less energy with this pathway. Plants containing this

pathway have been generated and are now being tested

under different growth conditions (Peterhansel and Mau-

rino 2011). This strategy may lead to better growth of the

modified plants.

Introducing a CCM into a C3 plant

Scientists have begun to consider the possibility of what

might happen if a CCM was introduced into a C3 crop

plant. A major international project was begun a few years

ago to create a C4 rice plant. Since C4 photosynthesis has

arisen independently many times in nature, it is reasonable

to think that C4-like traits could be selected for, particu-

larly in important C3 crop species (Furbank et al. 2009;

von Caemmerer and Evans 2010). The type of traits that

are being selected for include increased expression of

specific C4 enzymes or the development of anatomical

characteristics associated with Kranz anatomy. Clearly

with the regulation of so many genes being different in C3

and C4 plants, the transition from C3 to C4 photosynthesis

would normally take many generations. However, the

process might be accelerated by introducing C4 genes

along with promoters that insure the appropriate expression

into rice cultivars to facilitate the conversion of photo-

synthesis to a more C4-like process. von Caemmerer and

colleagues (2012) recently published a progress report on

an effort to develop C4 rice.

Another way to introduce a CCM into a C3 plant is to

incorporate components of the algal CCMs into higher

plants. This approach has been championed by Price and

Badger and their colleagues (Price et al. 2008, 2011). The

method entails putting either cyanobacterial or algal

HCO3
- transporters into C3 plants. In theory, these trans-

porters would help deliver CO2 to Rubisco enhancing

photosynthesis. Initially the proteins would be targeted to

the chloroplast envelope although it is possible that

Fig. 6 The tartronic semialdehyde pathway recently engineered into

plant cells (Kebeish et al. 2007; Peterhansel and Maurino 2011). This

provides an alternate way to recycle carbon back to the Calvin–

Benson–Bassham cycle

128 Photosynth Res (2013) 117:121–131

123



transporters on the plasma membrane would help as well

(Price et al. 2011; Weber and von Caemmerer 2010). There

is a report in the literature that the introduction of the ictb

gene (thought to code for a protein involved in HCO3
-

transport in cyanobacteria) into Arabidopsis and tobacco

enhanced both photosynthesis at low CO2 and improved

water balance (Lieman-Hurwitz et al. 2003). This report

underscores a second possible benefit of incorporating

CCM genes into higher plants which is improved water

usage. When plants acquire CO2 through open stomates, a

great deal of water vapor is lost. In fact on a mass basis, a

typical transpiration ratio is 400 water molecules lost for

every CO2 molecule fixed (Nobel 2009). If a plant could

operate more efficiently with less CO2, it also might need

less water.

The human population continues to grow while crop

yields using conventional plant are not keeping pace (Zhu

et al. 2010). A significant challenge to plant scientists will

be to improve crop yield to feed the Earth’s growing

population. One potential way to improve crop yield is to

use our knowledge of photosynthetic processes to develop

ways to improve photosynthesis and potentially increase

crop productivity. Scientists are now poised to increase

plant production and yield by engineering photorespiration

and enhancing CO2 delivery to Rubisco. The authors would

like to thank Drs. Govinjee and Joliot for their contribu-

tions to our understanding of photosynthesis. Their work

has helped make it possible to design the approaches

described in this closing section.
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