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Abstract The main objective of the present review is to

provide a compilation of published data of the effects of

several climatic conditions on Rubisco, particularly its

activity, state of activation, and concentration, and its

influence on leaf gas exchange and photosynthesis. The

environmental conditions analyzed include drought, salin-

ity, heavy metals, growth temperature, and elevated [O3],

[CO2], and ultraviolet-B irradiance. The results show

conclusive evidence for a major negative effect on activity

of Rubisco with increasing intensity of a range of abiotic

stress factors. This decrease in the activity of Rubisco is

associated with down-regulation of the activation state of

the enzyme (e.g., by de-carbamylation and/or binding of

inhibitory sugar phosphates) in response to drought or high

temperature. On the contrary, the negative effects of low

temperature, heavy metal stress (cadmium), ozone, and

UV-B stress on Rubisco activity are associated with

changes in the concentration of Rubisco. Notably, in

response to all environmental factors, the regulation of

in vivo CO2 assimilation rate was related to Rubisco

in vitro parameters, either concentration and/or carboxyl-

ation, depending on the particular stress. The importance of

the loss of Rubisco activity and its repercussion on plant

photosynthesis are discussed in the context of climate

change. It is suggested that decreased Rubisco activity will

be a major effect induced by climate change, which will

need to be considered in any prediction model on plant

productivity in the near future.

Keywords CO2 � Drought � Heavy metals � Ozone �
Photosynthesis � Salinity � Temperature � Water stress

Introduction

Abiotic stress is the principal cause of crop failure,

decreasing the average yields of most major crops by more

than 50 % and threatening the sustainability of agriculture

worldwide. Crop productivity is primarily dictated by the

plant carbon balance, which is determined from the dif-

ference between the rate of photosynthetic CO2 assimila-

tion and respiration. Within the photosynthetic process,

ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubi-

sco) is the enzyme responsible of CO2 fixation, the

importance of which on the primary productivity has been

estimated to be above 1011 tons of atmospheric CO2 being

annually fixed (Field et al. 1998).

Engineering Rubisco to improve its catalytic capacity is

envisaged as one of the most suitable means for improving

global plant productivity and agricultural yields (Parry

et al. 2013). In particular, increasing the carboxylase cat-

alytic turnover rate and/or the ratio of carboxylation to the

apparently futile oxygenation reaction would improve

photosynthesis and yield (Whitney et al. 2011). Owing to

its importance, significant knowledge has been gained over

the past decades on the biochemistry and the molecular

biology of Rubisco. It is now well established that in vivo

Rubisco activity is rapidly regulated to control the flux

through the photosynthetic carbon reduction cycle in

response to fluctuations in the environment. This regulation
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consists in the spontaneous carbamylation of a lysine residue

and the subsequent stabilization of the carbamate by Mg2?

ions (Cleland et al. 1998). Premature binding of RuBP to

uncarbamylated Rubisco or binding of day- and night-time

inhibitors results in inactive complex (Parry et al. 2008).

Release of sugar phosphates from active and inactive Rubi-

sco sites is catalyzed by the nuclear encoded enzyme Rubi-

sco activase, the activity of which is modulated by stromal

ATP/ADP and redox changes, thus facilitating carbamyla-

tion and regulating Rubisco activity according to the meta-

bolic demands of photosynthesis (Portis 2003).

Although the mode of regulation is well established at

the molecular level, much less is known on the precise

modulation of Rubisco activity under varying environ-

mental conditions, with apparently controversial results

being published. For instance, there is discrepancy on the

effects of drought on the Rubisco activity, with some

studies showing no effect (Sharkey and Seemann 1989;

Tezara et al. 1999), while other studies found it to be

affected, hypothesizing that Rubisco activity plays a central

role in the drought-induced depression of photosynthesis

(Parry et al. 2002; Zhou et al. 2007). Most likely, the trigger

of the decrease of the Rubisco activity depends on the

severity and/or duration of the stress imposed (Flexas et al.

2006a; Galmés et al. 2011a). In addition, when activity is

impaired, the precise underlying mechanisms (i.e.,

decreased Rubisco content, activation state, or presence of

inhibitors) seem to depend on the species analyzed (Bota

et al. 2004) and the rate of drought imposition (Flexas et al.

2006b). Other authors have suggested that decreased Ru-

bisco activity under drought stress is a direct consequence

of secondary oxidative stress, which in turn depends on the

prevailing levels of irradiance (Zhou et al. 2007). With

respect to other environmental stresses, there is much less

information, although a similar lack of generalized patterns

of response of Rubisco has been observed under conditions

of salinity (e.g., Delfine et al. 1998; Feng et al. 2007; Singh

et al. 2007), high temperature (e.g., Gesch et al. 2003; Kim

and Portis 2005, Prasad et al. 2009), low temperature

(Savitch et al. 2000; Aranjuelo et al. 2005; Zhou et al.

2006), increased O3 (e.g., Fontaine et al. 1999; Di Cagno

et al. 2001; Leitao et al. 2007), increased CO2 (e.g., Sicher

and Bunce 1997; Centritto and Jarvis 1999; Aranjuelo et al.

2011) increased UV (Correia et al. 2005) or heavy metal

toxicity in soils (e.g., Chaffei et al. 2004; Dhir et al. 2009;

Ying et al. 2010).

Improving our understanding on how Rubisco activity is

regulated under varying environmental conditions is cru-

cial to design the best Rubisco to be engineered to improve

photosynthesis and yield under a climate change scenario.

For instance, climate change perspectives predict increased

temperature and CO2 and decreased water availability in

many areas of the world (Gornall et al. 2010). As

mentioned, the response of Rubisco to each of these three

environmental conditions separately is not fully under-

stood, for which there is still much to be learned before the

effects of the three factors interacting together can be

envisaged.

The aim of the present study was to compile a large

dataset from the literature on the effects of environmental

variables on Rubisco activity and its main components.

Data analysis intends to answer the following questions:

(i) is there a general pattern of response of Rubisco activity

to each independent environmental factor? (ii) is there a

common general response to all environmental factors?

(iii) is it possible, with the data available, to have a hint of

the regulatory mechanisms for environmentally induced

down-regulation of Rubisco activity?, i.e., is it mostly

regulated through decreased concentration, activation, or

other factors? and (iv) what is the actual relationship

between stress-induced decreases of Rubisco activity as

determined in vitro and the in vivo down-regulation of gas

exchange and photosynthetic activity?

Materials and methods

Data on the effects of eight environmental factors (drought

stress, salinity, heavy metals, high and low growth

temperatures, and elevated [O3], [CO2], and ultraviolet-B

(UV-B) irradiance) on in vitro Rubisco parameters were

compiled by surveying the peer-reviewed literature on the

web of science (Thompson-ISI, Philadelphia, USA). Eight

databases were created, one for each environmental factor,

with the following data: (i) descriptive information (article,

species, and environmental conditions regarding the treat-

ment), in vitro Rubisco parameters (initial and total activ-

ities, carbamylation state, and concentration), and in vivo

light-saturated net CO2 assimilation rate (AN).

Within each article 9 species interaction, a control

treatment was considered when plants were grown under

optimal conditions. Although plant response to stress can

be influenced by other factors related to plant develop-

mental stage, duration of the stress and growth, and sam-

pling conditions, those data were not considered during

data analysis. Nevertheless, care was taken, during data

extraction from original sources, to ensure minimal dif-

ferences in these additional factors between control and

non-control treatments.

Units for the initial and total Rubisco activities, as well

as for Rubisco concentration, varied among studies, with

unit interconversion being sometimes problematic or even

impossible. Therefore, for comparative purposes, these

parameters were expressed as a percentage of the control

values. Consequently, for scaling purposes, AN data were

also transformed into percentage of the control values.
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Data were arranged in averages extracted from tables,

text, and/or figures of each article, and compiled into

spreadsheets specific for each environmental factor. Then,

data were classified according to arbitrarily established

intensity degrees of stress, as explained below, and aver-

ages and standard errors calculated. All publications and

species whose data have been used in the present review

are listed in Table 1, classified according to the different

environmental factors.

Drought is the environmental factor under which Rubi-

sco has been characterized in more detail (Table 1).

Comparing results from different studies and species is

difficult because of interspecific differences in the response

of photosynthesis to leaf water potential and/or leaf or soil

relative water content, the parameters most commonly used

to assess the degree of drought. In an attempt to solve this

problem, the relationship between stomatal conductance

(gs) and photosynthesis has been used, since gs has been

described as a valid indicator of the intensity of drought

stress (Flexas and Medrano 2002; Chaves et al. 2009).

Therefore, only articles providing gs values were consid-

ered in this database. Plants were grouped under mild,

moderate, severe, and extreme drought stress when the gs

was above 70 %, between 70 and 40 %, between 40 and

10 %, and less than 10 % of control values, respectively.

For salinity studies, plants were grouped depending on

the concentration of NaCl in the irrigation solution: mild

stress when [NaCl] \ 100 mM, moderate stress when

[NaCl] was between 100 and 400 mM, and severe stress at

[NaCl] [ 400 mM.

The temperature databases consisted of data from plants

grown (i.e., acclimated) either under low or high temper-

atures. Hence, the aim was to study the effects of the

growth temperature, but not of the measuring temperature.

Therefore, in vitro activities and in vivo gas-exchange data

from both control and stressed treatments were measured at

the same temperature (typically between 20 and 30 �C).

This rule for comparable temperature of measurement was

generalized for all databases.

For high-temperature stress, data were grouped under

mild, moderate, and severe heat stress. To define the dif-

ferent intensities of stress, the absolute increase in Celsius

degrees between the treatment and the control was multi-

plied by a factor considering the temperature achieved

during the light period. This factor had a value of 1 when

the temperature during the light period was \30 �C, 2

when this temperature was between 30 and 38 �C, and 3

when [38 �C. For mild, moderate, and severe heat stress

intensities, the product between the maximum temperature

factor and the absolute increase in Celsius degrees was

\10, 10–20, and [20, respectively.

With respect to low-temperature stress, because the

growth temperature in all control treatments was similar

(between 20 and 30 �C), the absolute decrease in Celsius

degrees was directly used to define the two intensities of

stress: mild-to-moderate stress when the temperature

decrease \10 �C, and severe stress when the decrease

[10 �C.

The search for literature reporting data on the effect of

heavy metals on the in vitro Rubisco parameters showed

that most experiments were performed on cadmium tox-

icity. Therefore, our review on heavy metal effects is

mainly focused in studies dealing with Cd. Two different

intensities of Cd toxicity were considered: mild/moderate,

and severe stress intensities, which corresponded to [Cd] in

the irrigation solution lower and higher than 50 lM,

respectively.

Similar to heavy metals, data on O3 were separated in

two groups of intensity. Mild/moderate stress included

[O3] \ 120 nL L-1, whereas severe stress included studies

where the plants were exposed to [O3] [ 120 nL L-1. The

data from articles dealing with elevated [CO2] were sepa-

rated into studies where elevated [CO2] was \200 and

[200 % than the corresponding ambient [CO2] treatment.

Finally, the low amount of data available on the effects of

higher UV-B irradiance on the in vitro Rubisco parameters

precluded its grouping under different intensities.

Statistical analyses

Univariate analysis of variance (ANOVA) was used to

study the effect of the different stress intensities on the

in vitro parameters. Significant differences between means

were revealed by Duncan test (P \ 0.05). These analyses

were performed using the SPSS 12.0 software package

(SPSS Inc., Chicago, IL, USA). Regression analyses were

performed with the 11.0 Sigma Plot software package

(Sigma, St Louis, MO, USA).

Results and discussion

Drought and salt stress

There is a general consensus that drought and salinity limit

photosynthesis predominantly through increases in the leaf

resistances to CO2 transport, while metabolic impairment

may occur when the intensity of stress becomes more

severe (Flexas et al. 2004). In spite of this, variability of

data on Rubisco parameters indicates that there is some

controversy in literature, which has been attributed to dif-

ferences in the velocity of stress imposition and to species-

specific responses (Parry et al. 2002; Flexas et al. 2006a;

Galmés et al. 2011a).

Data collected in this review essentially support the

general consensus, with no significant or only minor
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Table 1 List of articles and

species used for the analysis of

each environmental factor on

the in vitro Rubisco parameters

Article Species

Drought stress

Aranjuelo et al. (2005) Medicago sativa

Aranjuelo et al. (2007) Medicago sativa

Bota et al. (2004) Nicotiana tabacum, Phaseolus vulgaris, Rhamnus alaternus,

Rhamnus ludovici-salvatoris, Vitis vinifera

Carmo-Silva et al. (2012) Gossypium barbadense

Dias and Brüggemann (2010) Phaseolus vulgaris

Erice et al. (2007) Medicago sativa

Flexas et al. (2006b) Glycine max, Nicotiana tabacum

Galmés et al. (2011a) Beta maritima, Cistus albidus, Diplotaxis ibicensis, Hypericum

balearicum, Lavatera maritima, Limonium gibertii, Limonium

magallufianum, Lysimachia minoricensis, Phlomis italica,

Pistacia lentiscus

Galmés et al. (2011b) Solanum lycopersicum

Guo et al. (2007) Oryza sativa

Hu et al. (2009) Cynodon dactylon

Hu et al. (2010) Poa pratensis

Inclán et al. (2005) Pinus halepensis

Lal et al. 1996) Hordeum vulgare, Vicia faba

Maroco et al. (2002) Vitis vinifera

Pagter et al. (2005) Phragmites australis

Singh and Usha (2003) Triticum aestivum

Tezara et al. (2002) Helianthus annus

Vu and Allen (2009) Saccharum officinarum

Zhou et al. (2007) Oryza sativa

Salt stress

Debez et al. (2006) Cakile maritima

Delfine et al. (1998) Spinacia oleracea

Dias et al. (2013) Lactuca sativa

Feng et al. (2007) Oryza sativa

Kasai et al. (1998) Agropyron elongatum

Singh et al. (2007) Oryza sativa

Soussi et al. (1998) Cicer arietinum

Wang and Nii (2000) Amaranthus tricolor

Zhu and Meinzer (1999) Atriplex lentiformis

High-temperature stress

Chauan et al. (2009) Triticum aestivum

Dwyer et al. (2007) Panicum coloratum, Cenchrus ciliaris, Flaveria bidentis

Erice et al. (2007) Medicago sativa

Gesch et al. (2003) Oryza sativa

Kim and Portis (2005) Arabidopsis thalinana

Liu and Huang (2008) Agrostis stolonifera

Olesen and Madsen (2000) Callitriche cophocarpa, Elodea canadiensis

Prasad et al. (2009) Sorghum bicolor

Pushpalatha et al. (2009) Triticum aestivum

Vu et al. (2001) Glycine max

Vu et al. (2002) Citrus reticulata

Vu (2005) Arachis hypogea

Wang et al. (2010) Oryza sativa

Xu and Huang (2001) Agrostis palustris
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Table 1 continued
Article Species

Yamasaki et al. (2002) Triticum aestivum

Low-temperature stress

Alonso et al. (2008) Triticum aestivum

Aranjuelo et al. (2005) Medicago sativa

Cavaco et al. (2003) Paspalum dilatatum

Pérez et al. (2005) Triticum aestivum

Pérez et al. (2011) Triticum aestivum

Pons (2012) Arabidopsis thaliana

Savitch et al. (2000) Triticum aestivum

Yamori et al. (2005) Spinacea oleracea

Yamori et al. (2006) Spinacea oleracea

Zhou et al. (2006) Cucumis sativus

Heavy metal stress

Chaffei et al. (2004) Solanum lycopersicum

Dhir et al. (2011) Salvinia natans

Jiang et al. (2009) Citrus grandis

Krantev et al. (2008) Zea mays

Li et al. (2010) Citrus grandis

Mobin and Khan (2007) Brassica juncea

Pietrini et al. (2003) Phragmites australis

Ying et al. (2010) Picris divaricata

Ozone stress

Brendley and Pell (1998) Populus maximowizii x trichocarpa

Dann and Pell (1989) Solanum tuberosum

Degl’Innocenti et al. (2003) Trifolium repens, Trifolium pratense

Di Cagno et al. (2001) Helianthus annus

Enyedi et al. (1992) Solanum tuberosum

Fontaine et al. (1999) Pinus halepensis

Gérant et al. (1996) Pinus halepensis

Guidi et al. (2003) Phaseolus vulgaris

Inclán et al. (2005) Pinus halepensis

Kytöviita et al. (1999) Pinus halepensis

Landry and Pell (1993) Populus maximowizii x trichocarpa

Lehnherr et al. (1987) Triticum aesticum

Leitao et al. (2007) Zea mays

Leitao et al. (2008) Phaseolus vulgaris

Lütz et al. (2000) Fagus sylvativa

Pell et al. (1992) Populus maximowizii x trichocarpa

Pell et al. (1999) Prunus serotina

Pelloux et al. (2001) Pinus halepensis

High CO2

Alonso et al. (2008) Triticum aestivum

Aranjuelo et al. (2009) Medicago sativa

Bunce and Sicher (2003) Brassica oleracea

Centritto and Jarvis (1999) Picea sitchensis

Centritto et al. (1999) Prunus avium

Erice et al. (2007) Medicago sativa

Gesch et al. (2003) Oryza sativa

Jacob and Greitner (1995) Scirpus olneyi
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changes in any of the Rubisco-related parameters under

mild-to-moderate drought, followed by decreases in Ru-

bisco activity at higher intensities of stress, when gs was

below 40 % of control treatment values (Fig. 1a). Initial

and total Rubisco activities decreased by about 70 % under

severe stress, although the carbamylation of Rubisco was

not significantly modified. In principle, decreased activity

with unequal change in carbamylation can be explained by

decreased Rubisco content. However, this was not the case

as the concentration of Rubisco under severe stress was not

significantly different from that reported under nonstressed

conditions (Fig. 1a). This suggests that, under severe

drought, a percentage of the catalytic sites of Rubisco are

blocked by tight-binding of inhibitors which decrease the

concentration of sites catalytically available for carboxyl-

ation. An increase in the concentration of tight-binding

inhibitors has been reported in several species under

moderate-to-severe drought intensities (Parry et al. 2002;

Carmo-Silva et al. 2010). The decrease in the CO2 con-

centration at the sites of carboxylation in the chloroplastic

stroma observed under moderate-to-severe drought inten-

sities (Flexas et al. 2012), and the concurrent increase in

the CO2/O2 ratio may lead to an increase in the production

of misfire products, like D-glycero-2,3-diulose-1,5-

bisphosphate (Parry et al. 2008). This finding supports the

view that carbamylation is not the only parameter modu-

lating Rubisco activity and that the presence of unknown

inhibitors can control the number of Rubisco sites that can

be activated by carbamylation (Eichelmann et al. 2009).

There is evidence showing that decreased ATP limits

RuBP production under drought stress (Tezara et al. 1999),

and inhibitors binding to Rubisco sites may occur especially

at subsaturating RuBP concentration. The interaction of

Rubisco with tight-binding inhibitors has been hypothe-

sized to prevent the degradation by proteases of the Rubisco

not being used for in vivo catalysis, especially in stressed

leaves (Parry et al. 2008). Nevertheless, this protection to

proteolysis would not be sufficient under extreme drought

intensities, when the concentration of Rubisco drops to

about half of that measured under control conditions

(Fig. 1a). However, under these extreme drought intensi-

ties, the initial activity (at about 50 % with respect to

control values) decreases below total activity (Fig. 1a). This

fact suggests that ca. 25 % of Rubisco becomes inactivated

because of decarbamylation of catalytic sites, probably

mediated by the lower CO2 availability induced by further

decreases in the stomatal and mesophyll conductances to

CO2 (Galmés et al. 2011a). The degree of deactivation of

Table 1 continued
Article Species

Li et al. (1999) Quercus germinata, Quercus myrtifolia

Pérez et al. (2011) Triticum aestivum

Prasad et al. (2009) Sorghum bicolor

Pritchard et al. (2000) Glycine max

Rogers et al. (2001) Pinus taeda

Sicher and Bunce (1997) Triticum aestivum, Hordeum vulgare

Sicher and Bunce (2001) Solanun tuberosum

Tezara et al. (2002) Helianthus annus

Vu et al. (1983) Glycine max

Vu et al. (1987) Glycine max

Vu et al. (1998) Oryza sativa

Vu et al. (2001) Glycine max

Vu et al. (2002) Citrus reticulata

Vu (2005) Arachis hypogea

Vu and Allen (2009) Saccharum officinarum

High ultraviolet-B

Allen et al. (1998) Brassica napus

Bischof et al. (2000) Alaria esculenta, Laminaria solidungula, Monostroma arcticum,

Palmaria palmata, Phycodrys rubens

Correia et al. (2005) Zea mays

He et al. (1993) Oryza sativa, Pisum sativum

He et al. (1994) Oryza sativa, Pisum sativum

Jordan et al. (1992) Pisum sativum

Kulandaivelu and Nedunchezhian

(1993)

Vigna sinensis
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Rubisco sites in drought-stressed plants has been related to

its functional type, which could explain, at least partially,

the apparent discrepancies on the effects of drought on

Rubisco in vitro parameters between different species

(Galmés et al. 2011a).

The effects of soil salinity on plants have been divided

into osmotic and ionic phases (Munns and Tester 2008).

The osmotic phase is caused by a decrease in the soil and the

intracellular water potential, and its consequences on the

physiology of plants are similar to those triggered by

drought stress (Munns and Tester 2008). With respect to

photosynthesis, osmotic effects of salinity have been

described to primarily affect leaf CO2 diffusion through

decreases of gs and gm (Flexas et al. 2004), thereby

potentially decreasing Rubisco activation because of de-

carbamylation of catalytic sites, as reported under moderate

concentration of NaCl in the soil (100–400 mM) (Fig. 1b).

Moreover, similar to the effects of mild drought stress,

Rubisco carbamylation state was not affected at lower salt

stress intensities ([NaCl] \ 100 mM) (Fig. 1b), although

decreases in the concentration of Rubisco have been

reported (Delfine et al. 1998). This is clearly illustrated in

Fig. 2a, where in rice subjected to salt stress, differences

between initial and total activities become evident at

moderate salt concentrations, but not at concentrations

below 100 mM. However, data availability for some Ru-

bisco parameters under salt stress is yet scarce, and more

studies are required to confirm the trends described here.

At higher salt concentrations or under prolonged stress,

the osmotic phase is followed by an ionic phase, when
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As for drought, four different intensities of stress were established
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percentage of the control treatment. Mild stress gs [ 70 %; moderate

stress 70 % \ gs \ 40 %; severe stress 40 % \ gs \ 10 %; extreme

stress gs \ 10 %. As for salt stress, three different intensities were

considered according to the concentration of NaCl in the solution

used to irrigate the treated plants. Number of replicates is indicated at

the bottom of each column. See Table 1 for articles and species

considered in the analyses. Different letters denote statistically

significant differences among different treatments through Duncan
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metabolic impairment of the photosynthetic machinery is

more likely to occur (Munns and Tester 2008). However,

distinctions have to be made among species differing in

their tolerance to salt stress. Hence, the effect of increasing

soil salinity on the Rubisco total activity of the halophyte

Cakile maritima is lower in comparison to rice and espe-

cially the glycophyte chickpea (Fig. 2b). Differences in the

effects of salinity on the Rubisco activity among these

species seem to be exclusively ascribed to their ability to

control salt uptake by the roots and transport within the

plant, and particularly to avoid salt accumulation to toxic

levels in the cytosol and certain subcellular organelles like

chloroplast (Flowers and Colmer 2008).

In vitro assays showed that Na? begins to inhibit most

enzymes at concentrations around 100 mM (Greenway

and Osmond 1972; Parida and Das 2005). Rubisco seems

to be among the most sensitive enzymes, with sharp

declines of its carboxylase activity starting even at lower

salt concentrations in the assay media (Sivakumar et al.

2000). The precise biochemical causes of NaCl toxicity of

Rubisco activity have yet to be explained, although it does

not seem to be related to the disruption of the interaction

between subunits. In fact, it has been reported that NaCl

stimulated the oxygenase activity measured in vitro (Si-

vakumar et al. 2000). No difference in the sensitivity of

Rubisco extracted from halophytes and glycophytes to

NaCl has been documented yet (Sivakumar et al. 1998),

unlike what has been observed for other enzymes (Munns

et al. 2006).

A distinctive response between water and salt stresses at

high stress intensities can be described for Rubisco con-

centration. Thus, while under drought it decreases, under

salt stress it increases (Fig. 1). This increase in the content

of Rubisco in response to extremely high concentration of

NaCl, which is particular to halophyte plants and other

photosynthetic organisms (Takabe et al. 1988), may be a

compensatory mechanism for the reduced activation of

Rubisco.

Growth temperature

Rubisco parameters were not significantly affected by mild

heat stress, except for a slight (*20 %) decrease in total

activity (Fig. 3a). This small decrease is likely to be due to

increased inhibitors blocking Rubisco sites, given the

minor decrease in the Rubisco concentration which would

not explain the decrease in the total activity (Fig. 3a).

At moderate stress intensities, decreases in Rubisco

activity became stronger, and correlated with decreases of

the Rubisco concentration (Fig. 3a). Lower expression of

Rubisco per area under heat stress has been reported in

various species, concomitantly to decreases of its protein

content (Vu et al. 2002; Pérez et al. 2011), and may be

partly explained by changes in leaf anatomy, such as

decreases in leaf mass area and the surface of chloroplasts

facing the internal air spaces (Kogami et al. 2001; Yamori

et al. 2005).

For the temperature-stress analyses, it should be high-

lighted that growth temperature was considered to be the
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achieved during the treatment. This factor had a value of 1 when the

maximum temperature was \30 �C, 2 when the maximum temper-

ature was between 30 and 38 �C, and 3 when the maximum

temperature[38 �C. For mild, moderate, and severe stress intensities,

the product between the maximum temperature factor and the

absolute increase in Celsius degrees was \10, 10–20, and [20,

respectively. As for low-temperature stress, the absolute decrease in

Celsius degrees was used to define the two intensities of stress: mild-

to-moderate stress when the decrease\10 �C, and severe stress when

the decrease[10 �C. Number of replicates is indicated at the bottom

of each column. See Table 1 for articles and species considered in the

analyses. Different letters denote statistically significant differences
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treatment while measurements of Rubisco activity were

made at the same temperature for control and stress treat-

ment plants. Inhibition of enzymatic activity tends to be

reversible at mild-to-moderate supra-optimal temperatures,

whereas at severely high temperatures inhibition tends to

be irreversible (Haldimann and Feller 2004; Sharkey and

Zhang 2010). Therefore, it is noteworthy that some parts of

the effect of mild-to-moderate heat stress on Rubisco

activity and carbamylation state could have been lost when

performing the assays at an optimal temperature (Fig. 3a).

Under severe heat stress, however, strong irreversible

decreases in Rubisco initial (\40 %) and total activity

(*50 %) are typically measured (Fig. 3a).

The decrease in total activity under severe heat stress is

probably due to both decreased concentration of Rubisco and

increased production of inhibitors (Fig. 3a). It has been

shown that the production of side-products from RuBP by

Rubisco is stimulated in heat stressed leaves (Sharkey et al.

2001; Kim and Portis 2006). However, it is not clear whether

increased inhibitors production would result in a stronger

inhibition fallover, because a faster release of inhibitors from

Rubisco sites may occur at high temperatures (Schrader et al.

2006). Furthermore, at severe heat stress, Rubisco initial

activity decreased to \40 % because of decreased carba-

mylation state (Fig. 3a). This result is in agreement with

previous reports identifying Rubisco activase as one of the

most heat-sensitive components of the photosynthetic

apparatus (Feller et al. 1998; Salvucci et al. 2001), thus

leading to Rubisco deactivation at moderate to extreme heat

stress intensities. Whether the decline in Rubisco activation

state at high temperature is due to limitation in the electron

transport capacity rather than a consequence of a direct effect

of heat on the integrity of Rubisco activase is still an unre-

solved question (Hikosaka et al. 2006; Sage and Kubien

2007; Yamori and von Caemmerer 2009). Deactivation due

to decreasing CO2 concentrations can be, in principle, dis-

carded because leaf conductances tend to increase up to

moderate heat-stress intensities, and because starvation CO2

levels have not been documented even in plants exposed to

extreme heat stress (Flexas et al. 2012).

According to the compiled data, the activity of Rubisco

measured in vitro at non-stressful temperatures is not sig-

nificantly affected by low growth temperatures (Fig. 3b).

However, when growing at low temperature, the in vivo

carboxylase capacity is diminished because of the direct

effect of low temperature on the Rubisco kinetic constants,

particularly the decreased carboxylase turnover rate (kcat
c )

(Sage 2002). In order to compensate for these effects, plants

grown under severe cold stress have an increased concen-

tration of Rubisco (Fig. 3b) (Hikosaka et al. 2006). The

higher concentration of Rubisco occurs simultaneously with

increments of its leaf mass area and leaf N content per area in

plants grown at low temperature (Yamori et al. 2010). This

effect has also been described for other photosynthetic

enzymes (Holaday et al. 1992). Other reported response

mechanisms to low growth temperature include acclimation

of Rubisco kinetic constants, which may compensate for

some of the negative effects of decreased activity under low

temperatures (Cavanagh and Kubien 2013).

Overall, the data compiled from the literature demon-

strate that the regulation of Rubisco activity differs in

plants grown at different temperatures. Heat stress causes a

decline in the activity of Rubisco through alteration of the

activity of Rubisco activase, concentration of catalytic sites

and/or presence of inhibitors, depending on the intensity of

the stress. The effects of cold stress on Rubisco were

limited to a trend for an increased concentration when

growth temperature was severely diminished. Irrespective

of the observed trends, the species included in the analysis

may differ in their optimum temperature for photosynthesis

(Hikosaka et al. 2006), and therefore in their specific

response to a given change in the growth temperature.

Heavy metals

Among the studies analyzing the effects of heavy metals on

photosynthesis, and particularly on Rubisco, those using

toxic concentrations of cadmium are by far the most

abundant (Chaffei et al. 2004; Krantev et al. 2008; Ying

et al. 2010).

Data from the literature show that Rubisco performance

under Cd exposure is conditioned by the concentration of

this toxic element in the media (Fig. 4). Rubisco initial

activity is almost unchanged at Cd values below 50 lM.

On the other hand, Rubisco initial activity is negatively

affected after exposure to Cd concentration above 50 lM

(Fig. 4). These changes in activity were explained, in some

cases, by alterations in the concentration of Rubisco (Pie-

trini et al. 2003; Chaffei et al. 2004; Ying et al. 2010),

although our compilation did not report significant differ-

ences in the concentration of the enzyme, when compared

to control plants (Fig. 4).

Different mechanisms have been suggested to explain

the influence of Cd on the Rubisco activity. An irreversible

dissociation of the Rubisco large and small subunits has

been observed under high Cd concentration, thus leading to

total inhibition of the enzyme (Malik et al. 1992). Alter-

natively, it is likely that Cd2? lowers carboxylase activity

by replacing Mg2? in its catalytic sites (Dias et al. 2013).

Indeed, alteration of Rubisco kinetics, including a shift of

activity toward RuBP oxygenation after binding to bivalent

cations others than Mg2? was described earlier (Christeller

and Laing 1979; Robison et al. 1979). Another mechanism

leading to decreased Rubisco carboxylase activity has been

related to limited chlorophyll synthesis under Cd stress

(Pietrini et al. 2003). Finally, it is not excluded that thiol
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residues of Rubisco activase could bind Cd, thus inducing

Rubisco inactivation (Portis 2003).

The causes of the decline in the total activity that

occurred at [Cd] \ 50 lM with no concurrent decreases in

the concentration of Rubisco (Fig. 4) remains to be eluci-

dated. Increased concentration of inhibitors in the low Cd

treatment cannot be discarded, but it is unlikely that plants

under low Cd increased the content of Rubisco sites and

blocked them by enhancing the production of inhibitors. It

is worth noting that the data shown in Fig. 4 are with a

relatively low number of species, and data for initial and

total activities came from species with different sensitivi-

ties to Cd toxicity, thus precluding conclusive trends on the

effects of Cd on Rubisco in vitro. Indeed, similar to what

occurred with salinity stress, the effects of heavy metals on

Rubisco are species specific, and depend on the divergent

strategies to cope with the toxicity of heavy metals. For

instance, at [Cd2?] around 50 lM, the hyper-accumulator

Picris divaricata maintained Rubisco content at control

levels (Ying et al. 2010), while a 50 % decrease in the

Rubisco content was observed in Solanum lycopersicum

(Chaffei et al. 2004).

There is very little information regarding the effect of

other heavy metals on Rubisco performance (e.g., Al, Cr,

Fe, Mn). From limited studies, it is clear that deleterious

effects on Rubisco activity are not only dependent on the

concentration, but also on nature of the toxic element (Ji-

ang et al. 2009; Li et al. 2010; Dhir et al. 2011).

Atmospheric (O3 and CO2) and UV changes

The analysis of the compiled data on the effects of

increased O3 suggests a trend relatively independent of the

intensity of the stress (i.e., of the [O3]). Thus, this trend can

be summarized as a similar decrease in the initial and total

activities up to about 70 % of the values measured under

the control conditions, which can be explained by a similar

decline in the concentration of Rubisco (Fig. 5a). This

result is in accordance with the observed decline in the

levels of rbcS and rbcL mRNA transcripts, and large

subunit polypeptides in the O3-treated plants (see Dizen-

gremel 2001 and references therein). In addition, exposure

to O3 leads to increased oxidizing stress in the chloroplast

(Pell et al. 1997), probably inducing the modification of

Rubisco to an unstable form that may be rapidly degraded

by proteases (Pell et al. 1994).

Although the concentration of Rubisco activase has been

shown to decrease after O3 exposure (Pelloux et al. 2001),
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there is not a significant decrease in the carbamylation

status of Rubisco in plants subjected to [O3] (Fig. 5a),

possibly due to stable or increased ratio [Rubisco]/[Rubisco

activase]. In spite of this general trend, the phytotoxic

effects of O3 on Rubisco activity and concentration have

been described to vary depending on various factors,

among them, being the species or even genotypes within a

given species (Enyedi et al. 1992; Wittig et al. 2007), the

developmental stage of the leaf, with the older leaves being

more sensitive to the pollutant (Pell et al. 1997; Lütz et al.

2000), or the duration and timing of exposure (Pell et al.

1992; Landry and Pell 1993).

Compiled data analyzing the effects of [CO2] on Rubi-

sco showed that plants exposed to high [CO2] decreased

Rubisco activity, especially when [CO2] [ 200 % (with

respect to the control treatment; Fig. 5b). The lack of effect

on the activation state and Rubisco content when plants

were fumigated with [CO2] \ 200 % suggests that Rubisco

inhibitors may play a key role in the depleted carboxylation

activity. According to Kane et al. (1998) and Pérez et al.

(2011), under elevated [CO2], the production of Rubisco

binding inhibitors is enhanced to protect Rubisco from

proteolytic activity.

On the contrary, the analyses carried out on studies

where plants were exposed to [CO2] [ 200 % (with

respect to the control treatment) showed that reduced Ru-

bisco content is the primary driver in the regulation of

Rubisco activity to high [CO2] (Fig. 5b). A key process

conditioning the photosynthetic performance under ele-

vated [CO2] is the capability of plants to adjust their C

sink/source balance (Ainsworth et al. 2004). According to

this hypothesis, when plants exposed to elevated [CO2]

have limitations in increasing C sink strength, they

decrease their Rubisco content and consequently photo-

synthetic rates to balance C source activity and sink

capacity (Aranjuelo et al. 2013).

The limited number of articles in the literature reporting

Rubisco in vitro data under different UV-B irradiances

precluded executing a similar analysis to those performed

with the other environmental factors. In spite of this, the

compiled data demonstrate a general trend of a decreased

activity due to a decline in the concentration of Rubisco

(He et al. 1993; Allen et al. 1998), while the carbamylation

state remained relatively stable (Jordan et al. 1992; Allen

et al. 1998). Prolonged exposure to UV radiation has been

shown to decrease the abundance of Rubisco subunit

transcripts (Jordan et al. 1992) and to induce the formation

of high molecular mass aggregates of Rubisco (Ferreira

et al. 1996) through photomodification (Wilson et al. 1995)

and photodegradation processes (Caldwell 1993). The

decline in the concentration of Rubisco correlated posi-

tively with the decrease in AN (r2 = 0.715, P \ 0.01, not

shown), confirming previous suggestions that UV-induced

inhibition of photosynthetic CO2 uptake is primarily

because of changes in the carboxylase capacity (Lingaku-

mar and Kulandaivelu 1993).

Drought, high temperature, and CO2 effects on Rubisco

activity may determine climate change impacts

on the leaf CO2 assimilation capacity

The nature of climate change has been typically summa-

rized by higher atmospheric [CO2] and growing tempera-

tures, and varying precipitation patterns potentially leading

to more frequent and severe drought episodes (Gornall

et al. 2010). The comprehension of how Rubisco responds

to these main drivers of climate change and whether

induced changes in Rubisco activity impact the photosyn-

thetic capacity of plants is of pivotal importance to predict

consequences of future climate on agriculture and natural

ecosystems. According to data in Fig. 6, changes in Ru-

bisco initial activity and carbamylation state induced by

drought or increased growth temperature correlated posi-

tively with changes in AN (expressed as a % of the control

treatment values). These results suggest that the decrease in

the photosynthetic capacity of plants induced by drought

and heat stress is partially explained by changes in the

activity and activation state of Rubisco in vitro.

Correlation analyses in Fig. 6g–i indicate that changes in

AN in response to increased [CO2] were significantly related

to Rubisco initial activity, but not to its carbamylation state

or concentration. A deeper analysis of these plots shows that

regardless of the Rubisco parameters, most studies reported

an increase in AN under elevated [CO2]. For instance, Ru-

bisco initial activity decreased under elevated [CO2] in all

the compiled studies, and the extent of this decrease partly

determined the response of AN (Fig. 6g). Although the

increase in AN under elevated [CO2] is caused, in a large

proportion, by the higher intercellular CO2 availability, the

importance of Calvin cycle enzymes other than Rubisco

(aldolase, sedoheptulose 1,7-bisphosphatase and transke-

tolase) may have higher control coefficient on photosyn-

thesis (Lefebvre et al. 2005; Uematsu, et al. 2012; Aranjuelo

et al. 2013). It is remarkable that even with a 50 % reduc-

tion in the Rubisco content, plants exposed to elevated

[CO2] were capable to maintain and/or increase AN

(Fig. 6i). Because under non-CO2 limiting conditions plants

have an excess of Rubisco, redistribution of the excess of N

invested in Rubisco and partitioning to other organs and

limiting processes results in increased capacity for CO2

fixation (Ainsworth and Rogers 2007).

With regard to other environmental factors analyzed in

this review, changes in AN due to salt stress correlated well

with changes in Rubisco carbamylation and concentration

(Table 2). As for heavy metals and O3, changes in AN only

correlated with modifications of the Rubisco concentration.
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Finally, in cold acclimated plants, the alteration of AN was

explained by increases in the initial activity (Table 2). A

general trend is that the modification of the photosynthetic

capacity under those environmental factors being catego-

rized as phytotoxins (salt, heavy metals, and O3) are mainly

associated with alterations in the concentration of Rubisco,

while changes in the activity/activation of the enzyme are

responsible of the affected photosynthesis under water and

temperature stresses and elevated CO2.

Despite being beyond the scope of this article, the rel-

evance of the interaction between the different environ-

mental factors, associated with synergistic and antagonistic

phenomena, needs to be mentioned. For instance, in wheat,

it was observed that although elevated [CO2] and temper-

ature affected negatively the Rubisco content, the combi-

nation of both factors induced the stimulation of kcat
c (Pérez

et al. 2011). Similar interactive effects have been described

among almost all environmental factors included in the

present review (e.g., Kytöviita et al. 1999; Pelloux et al.

2001; Tezara et al. 2002; Aranjuelo et al. 2005), along with

nutrient availability (e.g., Correia et al. 2005; Guo et al.

2007; Yamori et al. 2011), and they must be considered

when extrapolating results to field conditions, where usu-

ally two or more stresses take place simultaneously.

In summary, the present analysis of the effects of indi-

vidual stresses associated with climate change together

with the scarce but valuable knowledge on the interactions

of some of these stresses, strongly suggest that decreased

Rubisco activity will be a major plant response to climate

change conditions, which is currently often neglected but

should be considered in prediction models on plant pro-

ductivity in the near future.

Concluding remarks

Acclimation of the key enzyme Rubisco to cope with

fluctuations in the environment may be of great importance

for plant survival and crop yield. There are data reporting

differential capacities of plants from different climates,

different functional types, or branches of evolution, to

acclimate. However, by compiling most of the existing data

on Rubisco activity under variable abiotic factors, we have

demonstrated the existence of some trends describing how

Rubisco activity is affected by a range of abiotic stresses.

The results reveal some common patterns of response

regardless of the particular stress and demonstrate that

significant reductions in the activity of Rubisco take place
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when the intensity of the stress becomes severe (Table 3).

Furthermore, the decreased state of activation of Rubisco

(i.e., indicative of de-carbamylation and/or binding of

inhibitory sugar phosphates) contributes to the loss of

Rubisco activity particularly under drought and heat stress

(Table 3). Finally, a significant relationship between Ru-

bisco in vitro parameters and in vivo CO2 assimilation was

found for all environmental factors. For those factors

related to soil toxicity (salt, heavy metals, etc.), to the

atmosphere (O3), or to solar irradiance (UV-B), the

decrease in CO2 assimilation with stress is associated with

decreased Rubisco content (Table 2). For those factors

which directly affect the availability of CO2 for carboxyl-

ation (drought, [CO2]), or high temperature extremes which

directly affect chloroplast function, the results indicate that

the reduction in CO2 assimilation is strongly associated

with reduced state of activation of Rubisco (e.g., which

may occur by reduced level or function of Rubisco acti-

vase). In general, this down-regulation in Rubisco activity

may occur through signal transduction processes as a

consequence of the stress inhibiting some part of photo-

synthesis or subsequent acclimation to stress under the

prevailing environmental conditions.
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uted toward significantly improving the present article.

References

Ainsworth EA, Rogers A (2007) The response of photosynthesis and

stomatal conductance to rising [CO2]: mechanisms and environ-

mental interactions. Plant Cell Environ 30:258–270

Ainsworth EA, Rogers A, Nelson R, Long SP (2004) Testing the

‘‘source-sink’’ hypothesis of down-regulation of photosynthesis

in elevated [CO2] in the field with single gene substitutions in

Glycine max. Agric For Meteorol 122:85–94

Allen DJ, Nogués S, Baker NR (1998) Ozone depletion and increased

UV-B radiation: is there a real threat to photosynthesis? J Exp

Bot 49:1775–1788
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Degl’Innocenti E, Vaccà C, Guidi L, Soldatini GF (2003) CO2

photoassimilation and chlorophyll fluorescence in two clover

species showing different response to O3. Plant Physiol Biochem

41:485–493

Delfine S, Alvino A, Zacchini M, Loreto F (1998) Consequences of

salt stress on conductance to CO2 diffusion, Rubisco character-

istics and anatomy of spinach leaves. Aust J Plant Physiol

25:395–402

Dhir B, Sharmila P, Pardha Saradhi P, Nasim SA (2009) Physiolog-

ical and antioxidant responses of Salvinia natans exposed to

chromium-rich wastewater. Ecotox Environ Safe 72:1790–1797

Dhir B, Sharmila P, Pardha Saradhi P, Sharma P, Kumar R, Mehta D

(2011) Heavy metal induced physiological alterations in Salvinia

natans. Ecotox Environ Safe 74:1678–1684

Di Cagno R, Guidi L, De Gara L, Soldatini GF (2001) Combined

cadmium and ozone treatments affect photosynthesis and

ascorbate-dependent defenses in sunflower. New Phytol

151:627–636
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Galmés J, Kodama N, Medrano H, Niinemets U, Peguero-Pina
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