
Abstract Oxidants are widely considered as toxic

molecules that cells have to scavenge and detoxify

efficiently and continuously. However, emerging evi-

dence suggests that these oxidants can play an impor-

tant role in redox signaling, mainly through a set of

reversible post-translational modifications of thiol res-

idues on proteins. The most studied redox system in

photosynthetic organisms is the thioredoxin (TRX)

system, involved in the regulation of a growing number

of target proteins via thiol/disulfide exchanges. In

addition, recent studies suggest that glutaredoxins

(GRX) could also play an important role in redox

signaling especially by regulating protein glutathiony-

lation, a post-translational modification whose impor-

tance begins to be recognized in mammals while much

less is known in photosynthetic organisms. This review

focuses on oxidants and redox signaling with particular

emphasis on recent developments in the study of

functions, regulation mechanisms and targets of TRX,

GRX and glutathionylation. This review will also

present the complex emerging interplay between these

three components of redox-signaling networks.
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Abbreviations

GAPDH Glyceraldehyde-3-phosphate

dehydrogenase

GRX Glutaredoxin

GSH Reduced glutathione

GSSG Oxidized glutathione

H2O2 Hydrogen peroxide

MSR Methionine sulfoxide reductase

NOÆ Nitric oxide radical

NTR NADPH TRX reductase

PCD Programmed cell death

PKC Protein kinase C

PRX Peroxiredoxin

PTP Protein tyrosine phosphatase

RNS Reactive nitrogen species

ROS Reactive oxygen species

SOH Sulfenic acid

SO2H Sulfinic acid

SO3H Sulfonic acid

TPI Triose phosphate isomerase

TRX Thioredoxin

Introduction

Life in an oxygen rich environment implicates the

production of oxidants. As a consequence of their

aerobic life, photosynthetic organisms as well as
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non-photosynthetic organisms are exposed to these

oxidants that can cause wide-ranging damage to sev-

eral cell components, including DNA, lipid mem-

branes, sugars, and proteins. Various oxidants can be

generated under oxidative stress as well as during the

course of normal metabolism. These oxidants can be

classified in two main categories: reactive oxygen spe-

cies (ROS), such as singlet oxygen (1O2), superoxide

radicals (O2
Æ–), hydroxyl radicals (OHÆ), hydrogen per-

oxide (H2O2), and peroxide radicals, and reactive

nitrogen species (RNS), such as nitric oxide radicals

(NOÆ) and peroxynitrite radicals (ONOOÆ–).

In order to prevent oxidant damage, plant cells have

developed effective defense mechanisms composed of

a set of antioxidant molecules and enzymes. The major

non-enzymatic antioxidants in plants are glutathione,

ascorbate, and tocopherols. Different enzymes are also

involved in ROS scavenging including superoxide

dismutase, catalase, ascorbate peroxidase, glutathione

peroxidase, and peroxiredoxins (PRX) (Apel and Hirt

2004).

However, if oxidants have been traditionally con-

sidered as toxic molecules with deleterious effects for

cells, recent studies suggest that these reactive species

could be produced by cells on purpose and be involved

in signaling processes, especially through modifications

of the oxidation state of protein residues. The exposure

of proteins to oxidants can lead to the carbonylation of

arginine, lysine, proline, and threonine residues, the

oxidation of methionine residues into methionine

sulfoxides, and nitration of tyrosines (Stadtman 1993).

With regard to cysteines, different oxidation states can

exist (Fig. 1). Cysteine thiols can be oxidized into sul-

fenic (SOH), sulfinic (SO2H), or sulfonic (SO3H) acids.

Oxidation of cysteines can also lead to the formation of

intra- or interprotein disulfide bonds and to S-thiola-

tion, which consists in the formation of mixed disulfide

bridges between the free thiol of a protein and a low

molecular weight thiol such as cysteine (S-cysteinyla-

tion), cysteamine (S-cysteaminylation), or glutathione

(S-glutathionylation). In addition to these oxidations,

cysteines can undergo nitrosylation in the presence of

RNS. However, these modifications by oxidation are

not all involved in redox regulation mechanisms. One

of the main criteria allowing to consider these post-

translational modifications as regulatory mechanisms

and not only as oxidative damages is their reversibility.

For example, carbonylation is generally considered as

an oxidative damage since this modification is irre-

versible and leads to degradation of the oxidized pro-

tein by the proteasome (Stadtman 1993; Dunlop et al.

2002; Grune et al. 2003). Cysteine oxidations into sul-

finic and sulfonic acids are also generally considered as

irreversible oxidations. However, recent studies have

shown that in the particular case of 2-cys peroxire-

doxins, the sulfinic form of the catalytic cysteine could

be reduced to the sulfenic acid form by sulfiredoxin

with the help of thioredoxin (TRX) (Biteau et al. 2003;

Woo et al. 2005). Reversible modifications are those

involving disulfide bonds (intraprotein, interprotein,

and S-thiolation) but also methionine sulfoxides, sul-

fenic acids and nitrotyrosines. The reduction of oxi-

dized residues is controlled by two major protein

families: TRX and glutaredoxins (GRX). Conse-

quently, these ‘‘redoxins’’ play a major role in redox

signaling. Methionine sulfoxide reductases (MSR) are

involved in the reduction of methionine sulfoxides

using TRX as electron donors (for a review see Rou-

hier et al. in this special issue). Studies suggest that

tyrosine nitration could also be reversed enzymatically,

but the identity of the enzymes involved remains to be

determined (Kamisaki et al. 1998; Irie et al. 2003).

Nitrosylation of cysteines could also be reversed by

TRX (Ravi et al. 2004). Sulfenic acids can be directly

reduced by reduced glutathione (GSH) or lipoic acid

or can be stabilized within the protein environment

and recycled via disulfide bond intermediates by TRX

and GRX. Intra- and interprotein disulfide bridges can

be reduced by TRX but GRX could also play some

role. In addition, GRX are likely to play a major role in

the regulation of S-thiolation notably by reduction of

glutathionylated cysteines to the thiol form.

Through these reversible modifications, oxidants can

modulate the activity of a range of proteins and play a

role of messenger within the cell. This review will focus

on redox regulation in photosynthetic organisms with

particular emphasis on recent developments in the

study of TRX, GRX and glutathionylation. The

emerging complex interplay between these three

components of redox-signaling networks will also be

discussed.

Thioredoxins

Thioredoxins are small redox proteins of ca. 12 kDa

found in all free-living organisms. These proteins are

involved in thiol-disulfide exchange reactions by way of

their conserved active-site W-C-G(P)-P-C. Their redox

potential is generally comprised between – 270 and

– 300 mV (Åslund et al. 1997; Hirasawa et al. 1999;

Collin et al. 2003, 2004). TRX also share a common

three-dimensional structure motif, ‘‘the thioredoxin

fold’’, which consists of four a-helices surrounding a

b-sheet composed of five strands (Martin 1995). Dif-

ferent aspects of the TRX system in both photosynthetic
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and non-photosynthetic organisms have been discussed

in several recent reviews (Holmgren 2000; Schürmann

and Jacquot 2000; Buchanan et al. 2002; Jacquot et al.

2002; Vlamis-Gardikas and Holmgren 2002; Lemaire

et al. 2003b; Lemaire and Miginiac-Maslow, 2004;

Gelhaye et al. 2005; Buchanan and Balmer 2005;

Holmgren et al. 2005). TRX was first identified as a

hydrogen donor to ribonucleotide reductase in Escher-

ichia coli (Laurent et al. 1964). Non-photosynthetic

eukaryotes contain a limited number of TRX with

usually one or two isoforms in the cytosol and one in

mitochondria, reduced by an NADPH dependent TRX

reductase (NTR) present in these compartments. These

TRX have been implicated in defense mechanisms

against oxidative stress by reducing methionine sulfox-

ides via MSR and by participating in ROS detoxification

via PRX. TRX also participate in sulfate assimilation

by reducing PAPS reductase and can control the

DNA-binding activity of several transcription factors

(Vlamis-Gardikas and Holmgren 2002).

In photosynthetic organisms, two types of TRX were

initially identified in the late 70s: TRX f and m

(reviewed in Schürmann and Jacquot 2000; Jacquot

et al. 2002). These TRX, located in the chloroplast, are

reduced in the light by photoreduced ferredoxin and

ferredoxin thioredoxin reductase (FTR). Subsequently,

they are able to reduce regulatory disulfides on their

target enzymes. The first targets identified for these

TRX were key enzymes of the carbon metabolism such

as Calvin cycle enzymes (fructose-1,6-bisphosphatase,

phosphoribulokinase, glyceraldehyde-3-phosphate

dehydrogenase (GAPDH)), NADP-malate dehydro-

genase, Rubisco activase, or ATP-synthase c-subunit.

All these enzymes are weakly active or inactive in the

dark and activated by TRX under illumination. Bio-

chemical studies suggest that f-type TRX could spe-

cifically regulate the activation of carbon assimilation

enzymes. A third type of TRX was discovered a decade

later: the h type TRX (h for heterotrophic), located in

the cytosol (reviewed in Gelhaye et al. 2004a) and

sometimes in mitochondria (Gelhaye et al. 2004b).

These TRX h, reduced by the NADPH/NTR system,

are involved in the mobilization of seed reserves during

germination (Kobrehel et al. 1992; Besse et al. 1996;

Cho et al. 1999), in self-incompatibility mechanisms

(Bower et al. 1996; Cabrillac et al. 2001), and also in

Fig. 1 The different oxidation states of cysteine residues. In the
presence of oxidants, free and accessible thiols on proteins can
undergo several modifications, reversible or not. Thioredoxins
and glutaredoxins can regulate the formation of intra- or
intermolecular disulfide bridges between two cysteines. Cyste-
ines can also be oxidized into sulfenic acids (SOH) by reactive
oxygen species (ROS), which can be reduced by thioredoxins
and glutaredoxins. Further oxidation of these sulfenic acids can
lead to the formation of sulfinic acids (SO2H), which can be
reduced back in some cases by sulfiredoxins (SRX), or to

irreversible sulfonic acids (SO3H). The presence of both oxidants
and low molecular weight thiols such as glutathione or cysteine
can allow S-thiolation of proteic cysteines via different mecha-
nisms. These modifications are, respectively, called S-glutath-
ionylation and S-cysteinylation, depending on the free thiol
involved. S-thiolation can be reversed by glutaredoxins as well as
thioredoxins, even if the latter is much less efficient. In addition
to these modifications, cysteines can also undergo nitrosylation
in the presence of reactive nitrogen species (RNS), a reversible
modification that could be reversed by thioredoxins
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ROS detoxification as electron donors to MSR (Gel-

haye et al. 2003; see Rouhier et al. in this issue) and

PRX (Dietz 2003; Rouhier and Jacquot 2005). More

recently, the sequencing of plant genomes revealed the

existence of multiple isoforms and led to the discovery

of mitochondrial TRX o (Laloi et al. 2001) and of two

new types of chloroplastic thioredoxins named x

(Mestres-Ortega and Meyer 1999) and y (Lemaire

et al. 2003a). These new chloroplastic TRX seem to be

involved in defense mechanisms against oxidative

stress since these proteins are efficient substrates for

chloroplastic 2-cys PRX and PRX Q (Collin et al.

2003, 2004; Rouhier et al. 2004a; Dietz 2003; Rouhier

and Jacquot 2005). These TRX might also be efficient

electron donors for chloroplastic MSR (Vieira dos

Santos et al. 2005).

In addition to the identification of new TRX types,

the completion of the genomes of the higher plant

Arabidopsis thaliana and of the green alga Chlamydo-

monas reinhardtii revealed an unsuspected multiplicity

of sequences (Lemaire et al. 2003b). These genomic

data revealed that TRX constitute a multigenic family

in photosynthetic eukaryotes with six different TRX

types (h, o, f, m, x and y). Chlamydomonas was found to

contain eight different TRX, namely 2 TRX h, 1 TRX

o, 2 TRX f, 1 TRX m, 1 TRX x, and 1 TRX y, whereas

19 TRX were identified in Arabidopsis, which displays

much more isoforms for each TRX type with 8 TRX h,

2 TRX o, 2 TRX f, 4 TRX m, 1 TRX x and 2 TRX y

(Fig. 2). It should be noted that these organisms also

contain atypical TRX and a number of TRX-like pro-

teins, which were excluded from the analysis presented

here (Meyer et al. 2005; Meyer et al. in this special is-

sue). This multiplicity of TRX genes raised questions

about their specificity and redundancy. Moreover, with

the identification of such a multiplicity, we came to the

point where there were more isoforms of TRX identi-

fied in Arabidopsis than known TRX targets. Indeed,

classical biochemical approaches had only allowed

identification of 16 TRX targets in higher plants at that

time (Buchanan and Balmer 2005). This prompted

several groups to develop strategies aimed at the

identification of new TRX targets. Some of these

studies were based on the capacity of monocysteinic

thioredoxin mutants with only the N-terminus cysteine

in their active-site (the second active-site cysteine being

replaced by site-directed mutagenesis by an alanine or a

serine) to form stable mixed disulfides with target

proteins. Such a mutated TRX can be immobilized on a

column which is loaded with protein extracts. After

washing, proteins bound to the TRX affinity column

can be eluted using reducing agents such as dith-

iothreitol and subsequently identified by proteomics.

Approximately 130 putative TRX target proteins have

been identified using such approaches (Motohashi et al.

2001; Goyer et al. 2002; Lindahl and Florencio 2003;

Balmer et al. 2003, 2004a; Yamazaki et al. 2004; Lem-

aire et al. 2004). A similar strategy was employed to

trap E. coli putative targets (Kumar et al. 2004). Col-

umns with immobilized wild-type TRX were also used

in order to identify proteins interacting electrostatically

with TRX (Balmer et al. 2004b). Techniques using

thiol-specific fluorescent probes, such as monobromo-

bimane or Cy5 maleimide, have been developed in or-

der to visualize target proteins after in vitro reduction

by TRX. This fluorescent labeling of reduced proteins

allowed the identification of ca. 70 putative targets

(Yano et al. 2001; Marx et al. 2003; Wong et al. 2003,

2004; Maeda et al. 2004). Another approach consisted

in thiol-labeling with radioactive alkylating agents such

as iodoacetate (14C IAA) or iodoacetamide (14C IAM).

In this technique, free thiols of a protein extract are

derivatized with cold IAA or IAM prior to in vitro

reduction treatment using a NTR/TRX system. This

approach is thus restricted to TRX efficiently reduced

by NTR, i.e., extra-chloroplastic TRX. The reduced

thiols are then labeled with 14C IAA or 14C IAM and

identified by proteomics. This method allowed to

identify 45 putative targets from Arabidopsis total leaf

extracts (Marchand et al. 2004). The two-hybrid tech-

nique in yeast is a classical approach that allows iden-

tification of partner proteins by testing protein–protein

interactions in vivo. Monocysteinic TRX have been

used as baits in this kind of approach but in commercial

strains, dedicated to such experiments, very few targets

have been identified (Verdoucq et al. 1999; Vignols

et al. 2005). It has been suggested that the mixed

disulfide between the monocysteinic TRX and its target

could be disrupted by endogenous TRX. To overcome

this, a new yeast strain has been recently developed,

knocked out in the two genes coding for cytosolic TRX

in yeast (Vignols et al. 2005). This strain could thus be

used in future studies to explore TRX-interacting

proteins in vivo. These different approaches have led to

the identification of nearly 300 targets, implicated in

many distinct cell processes such as sulfur and nitrogen

metabolism, fatty acids biosynthesis, glycolysis, Calvin

cycle, oxidative stress defense mechanisms, amino-

acids biosynthesis, glyoxylate cycle, or translation

(Table 1, supplemental data). Most of the previously

established TRX targets could be recovered by these

proteomic approaches. This indicates that the methods

employed were efficient to identify TRX targets since

very few established TRX targets were missed, such as

the glucan water dikinase (Mikkelsen et al. 2005).

Among the numerous new putative targets, only a few
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have been biochemically confirmed to be regulated by

TRX. These targets include higher plants cyclophilins

(Motohashi et al. 2003; Gopalan et al. 2004; Buchanan

and Luan 2005), cyanobacterial phosphoglucomutase

(Lindahl and Florencio 2003) and catalase, isocitrate

lyase and 3-isopropylmalate dehydrogenase from

Chlamydomonas (Lemaire et al. 2004). Most of the

other proteins identified as possible targets still need to

be validated in biochemical experiments.

Despite the use of different TRX isoforms known to

exhibit distinct preferences for TRX targets, no speci-

ficity has been observed with monocysteinic TRX col-

umns. This drawback could be due to the mutation of

one active-site cysteine, which could induce a slight

change in the micro-environment of the active-site. The

high concentration of protein bound on the column can

also favor the formation of heterodisulfides regardless

of enzyme preference. The different methods consisting

in an in vitro reduction by NTR/TRX systems followed

with free thiol labeling are not specific either, due to the

presence of endogenous TRX systems in the protein

extracts. Several studies have shown, using comple-

mentation of a yeast TRX mutant strain by plant TRX

genes, that Arabidopsis cytosolic and chloroplastic

TRX isoforms exhibit distinct specificities in vivo

(Mouaheb et al. 1998; Bréhélin et al. 2000; Issakidis-

Bourguet et al. 2001). Thus, the recently developed

yeast two-hybrid strain deficient for cytosolic thiore-

doxins (Vignols et al. 2005) appears as a promising tool

to allow in vivo analysis of TRX-target specificity.

Glutaredoxins

Glutaredoxins are small redox proteins of the TRX

superfamily using GSH as electron donor. They were
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Fig. 2 The thioredoxin and glutaredoxin families in Arabidopsis
and Chlamydomonas. The unrooted phylogenetic tree was
constructed with the Clustal X program. Gaps were excluded.
Accession numbers: Chlamydomonas reinhardtii (Cr) TRX h1,
P80028; h2, AAO20258; o, AAO20259; m, P23400; f1,
AAO20261; f2, AV622215; x, AAO20260; y, AAO20257;
Glutaredoxin proteinID codes at http://www.genome.jgi-
psf.org/Chlre3/ GRX1: 195746, GRX2: 195611, GRX3: 194929,
GRX4: 195766, GRX5: 195767, GRX6: 195615. For Arabidopsis

thaliana (At) the names indicated correspond to AGI codes for
GRX. Accession numbers for TRX are as follows: h1, Z14084;
h2, Z35475; h3, Z35474; h4, Z35473; h5, Z35476; h7, AAD39316;
h8, AAG52561; h9, AAG51342; o1, AAC12840; o2, AF396650;
m1, O48737; m2, Q9SEU8; m3, Q9SEU7; m4, Q9SEU6; f1,
Q9XFH8; f2, Q9XFH9; x, AAF15952; y1, AAF04439 corrected
for intron splicing; y2, AAM91085 corrected with EST
AY128276
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initially described as alternative hydrogen donors to

ribonucleotide reductase in an E. coli TRX mutant

(Holmgren 1976). Compared to TRX, GRX exhibit a

similar overall 3D structure, but have a more positive

redox potential comprised between – 190 and –

230 mV (Åslund et al. 1997). For detailed information

on GRX, we refer the reader to different recent reviews

focused on this subject (Holmgren 2000; Lemaire 2004;

Rouhier et al. 2004b; Fernandes and Holmgren 2004;

Shelton et al. 2005; Holmgren et al. 2005; Herrero et al.

in this special issue). GRX seem to play a major role in

oxidative stress responses. Indeed, genes coding for

GRX are induced by oxidants in bacteria and yeast

(Prieto-Alamo et al. 2000; Grant 2001). Moreover,

GRX have been reported to exhibit dehydroascorbate

reductase (Park and Levine 1996; Washburn and Wells

1999), glutathione reductase (Collinson et al. 2002) and

glutathione-S-transferase (Collinson and Grant 2003)

activities. These proteins are also involved in redox

signaling by regulating transcription factors related to

oxidative stress in mammals: NF-1, PEBP2, NF-jB and

AP-1 (Bandyopadhyay et al. 1998; Zheng et al. 1998;

Nakamura et al. 1999; Hirota et al. 2000). These func-

tions are partially redundant with those of TRX. GRX

are also able to catalyze protein deglutathionylation by

reduction of GSH-mixed disulfides, while TRX are

much less efficient (Jung and Thomas 1996; Nulton-

Persson et al. 2003). In non-photosynthetic organisms,

three major types of GRX have been identified. Clas-

sical GRX harbor a CPYC active-site sequence (GRX1

and GRX3 in E. coli, GRX1 and GRX2 in S. cerevisi-

ae). A second group, with a CGFS active-site, corre-

sponds to yeast GRX3, GRX4 and GRX5 and E. coli

GRX4. Finally, E. coli GRX2 is an atypical GRX cor-

responding to a GST containing the GRX CPYC ac-

tive-site (Xia et al. 2001). GRX can reduce disulfide

bridges using a monothiol or dithiol mechanism (Vla-

mis-Gardikas and Holmgren 2002). Recent studies have

suggested that GRX could also be involved in iron–

sulfur cluster assembly. Indeed, a yeast mutant deficient

in GRX5, a mitochondrial CGFS-type GRX, is unable

to assemble iron–sulfur clusters (Rodriguez-Manzane-

que et al. 2002; Tamarit et al. 2003). This function ap-

pears to be conserved in other organisms (Wingert

et al. 2005; Molina-Navarro et al. 2006). Moreover,

some GRX were shown to form a complex with iron–

sulfur clusters (Lillig et al. 2005; Feng et al. 2006).

In photosynthetic organisms, studies have focused

on TRX while very little is known about GRX even

though cDNA sequences have been available for a

long time (Minakuchi et al. 1994; Szederkenyi et al.

1997). Recent genomic analyses (Lemaire 2004;

Rouhier et al. 2004b) have identified three different

types of GRX: the CPYC and CGFS groups already

described in E. coli and yeast; and an additional type

called CC, composed of GRX with a CCXC or CCXS

active-site (Fig. 2). This latter subgroup seems to be

specific of higher plants. Chlamydomonas contains six

GRX (2 CPYC-type GRX and 4 CGFS-type GRX)

while Arabidopsis contains at least 31 GRX (6 CPYC-

type GRX, 4 CGFS-type GRX, and 21 CC-type GRX).

Therefore, the situation is different from that observed

for the TRX family. Indeed, the number of isoforms of

TRX and GRX is higher in Arabidopsis (19 TRX, 31

GRX) than in Chlamydomonas (8 TRX, 6 GRX).

However, in the case of TRX, all types (h, o, m, f, x,

and y) are present in Chlamydomonas with fewer iso-

forms for each type. In contrary, in the case of GRX,

the difference in the number of isoforms is mainly due

to the absence of the CC-type in Chlamydomonas.

Glutaredoxins were shown to be abundant in the

phloem sap, like TRX and PRX (Ishiwatari et al. 1995;

Balachandran et al. 1997, Szederkenyi et al. 1997;

Rouhier et al. 2001). To date, the only biochemical

data have been obtained on poplar CPYC-type GRX

and have revealed that a GRX was able to reduce a

type II PRX, involving GRX in oxidative stress

responses (Rouhier et al. 2001, 2002). A CC type

glutaredoxin, called ROXY1 has also been shown to be

involved in petal development in A. thaliana (Xing

et al. 2005). However, the targets of GRX remain

largely unknown. A first approach has been led re-

cently to identify glutaredoxin targets in photosyn-

thetic organisms, using affinity columns made with a

mutated GRX from poplar (a classical GRX with an

active-site sequence mutated into CPYS), a strategy

similar to those used to identify TRX targets. This

approach allowed identification of 94 putative GRX

targets from different higher plant tissues (Rouhier

et al. 2005). However, most targets identified in this

study had already been retained on monocysteinic

TRX columns, setting again the problem of the speci-

ficity of targets identified using such approaches (Table

1, supplemental data). Clearly, additional work is

required to clarify the respective specific functions

and/or redundancy of TRX and GRX as well as the

interplay between the two systems. Further studies will

also be necessary to validate putative GRX targets

biochemically and to identify new targets using

additional approaches and other types of GRX.

Redox signaling

Redox-signaling mechanisms mediated by dithiol/

disulfide exchanges under the control of TRX have
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been extensively studied. It is the best characterized

mechanism of redox signaling in photosynthetic

organisms. Apart from the particular case of light

dependent TRX signaling in the chloroplast, the

concepts of redox signaling and redox regulation

have evolved, during the last 30 years, from the

concept of oxidative stress tending to consider ROS

as ‘‘bad’’ and antioxidants as ‘‘good’’ (Ghezzi et al.

2005). Many studies have established that ROS and

antioxidants could function as intracellular messen-

gers being produced by cells on purpose under nor-

mal growth conditions and not only in stress

conditions. Reversible oxidations of cysteine residues

appear to play a major role in ROS mediated sig-

naling under the control of TRX, GRX, and related

proteins. In non-photosynthetic organisms, transcrip-

tion factors such as E. coli OxyR or yeast Yap1 play

an important role in stress signaling. They are regu-

lated by oxidants through oxidation of cysteine resi-

dues into sulfenic acids leading to the formation of

disulfide bonds (reviewed in Poole et al. 2004). These

transcription factors can be later regenerated in their

reduced form by TRX and GRX. Recently, it has

been suggested that the oxidation of 2-cys PRX cat-

alytic-cysteine into sulfinic acid and its reduction by

sulfiredoxins could play a major role in H2O2 intra-

cellular messenger function (Wood et al. 2003; Rhee

et al. 2005a, 2005b). Moreover, in mammals, the

programmed cell death (PCD) or apoptosis is

induced by ROS production in mitochondria, under

the control of the mitochondrial TRX (Tanaka et al.

2002).

In photosynthetic organisms, several redox-signal-

ing mechanisms have been described. During plant

pathogen reactions, ROS are intensively produced.

This increase in ROS production is due to an en-

hanced enzymatic activity of plasma-membrane-bound

NADPH-oxidase, cell wall-bound peroxidases and

amine oxidases in the apoplast, concomitant with a

decrease in catalase and ascorbate peroxidase activi-

ties. This oxidative burst activates PCD, which allows

to limit the spread of disease from the infection point

(Apel and Hirt 2004). The OXI1 kinase seems to

participate in redox signaling during oxidative burst

(Rentel et al. 2004). ROS produced by NADPH

oxidases also play a role in abscissic acid and auxin

signaling mechanisms (reviewed in Laloi et al. 2004).

Consequently, ROS are involved in stomatal closure

(Kwak et al. 2003), root elongation (Foreman et al.

2003) and germination (Torres et al. 2002), processes

known to be under the control of abscissic acid. A role

for H2O2 in auxin signaling and gravitropism in maize

roots has also been reported (Joo et al. 2001). ROS

produced in plant cells can influence the expression of

several genes (Neill et al. 2002), but the mechanisms

of signal sensing and signal transduction remain

unknown. In Arabidopsis, a signaling cascade involv-

ing Mitogen Activated Protein Kinases and Protein

Tyrosine Phosphatase (PTP) seems to control indi-

rectly the activation of transcription factors in

response to H2O2 (reviewed in Apel and Hirt 2004;

Laloi et al. 2004). A more direct activation of tran-

scription factors, similar to OxyR or Yap1 activation

has recently been shown in plants in the systemic ac-

quired resistance process. NPR1 and TGA1 factors

are redox-regulated by reduction of disulfide bonds in

response to salicylic acid (Mou et al. 2003; Després

et al. 2003). This regulation seems to be linked with

the glutathione pool, suggesting that GRX could

participate in the reduction of these transcription

factors.

As in animals, the glutathione pool constitutes a

major redox buffer in photosynthetic organisms.

However, in contrast to most animal cells, plant cells

also synthesize abundant amounts of ascorbate (vita-

min C) and tocopherols (vitamin E), which constitute

additional redox buffers. The balance between the

different redox buffers and oxidants, called redox

homeostasis, determines ROS signaling duration and

specificity (Foyer and Noctor 2005). In photosynthetic

cells in the light, the chloroplast is the main site of

oxidants production (Foyer et al. 1997). Several

environmental parameters, such as light and temper-

ature, can affect the efficiency of photosynthetic

electron transfer and change the redox state of the

chloroplast. High light, for instance, can lead to en-

hanced ROS production (Foyer and Noctor 2003).

The chloroplast can thus participate in the sensing of

environmental conditions and redox signals derived

from the chloroplast can allow adaptation to stress

conditions. While it has been well established that the

redox state of the plastoquinone pool can control the

expression of several nuclear genes (Pfannschmidt

2003; Fey et al. 2005; Beck 2005), the signaling cas-

cade allowing transduction of the signal from the

chloroplast to the nucleus remains to be identified.

Chloroplasts, and especially H2O2 molecules produced

as byproducts of photosynthesis and photorespiration,

seem to play a key role in PCD mechanisms (for a

review, see Foyer and Noctor 2005). Recent studies

have also shown that cell death induced by singlet

oxygen produced in chloroplasts is not a result of the

oxidative damage caused by this extremely reactive

ROS but is due to the execution of a genetic program

of PCD via the EXECUTER1 pathway (Wagner

et al. 2004).
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Reactive oxygen species have been involved in

various cell processes but the underlying pathways as

well as the sensors of these signals remain poorly

understood. These mechanisms of redox signaling are

likely to involve regulations by oxidation of cysteine

residues. In photosynthetic organisms, much attention

has been paid to regulation by dithiol/disulfide

exchanges controlled by TRX while the function of

GRX remains largely unknown. Similarly, many

studies have been focused on the importance and

function of glutathione in plants, but very little is

known on glutathionylation while the importance of

this post-translational modification and its role in

redox signaling begins to appear in mammals.

Glutathionylation and signaling

S-thiolation consists in the formation of a mixed

disulfide between a free thiol on a protein and a low

molecular weight thiol (Gilbert 1984, 1990, 1995).

Since glutathione represents the major non-proteic

thiol in both photosynthetic and non-photosynthetic

cells, the main S-thiolation occurring in cells is

S-glutathionylation. This post-translational modifica-

tion of growing importance in mammals remains much

less documented in plants. After an introduction on

the function of glutathione, this section will detail the

mechanisms, functions and targets of glutathionylation

in non-photosynthetic and photosynthetic organisms.

Glutathione

Glutathione is a tripeptide (c-L-glutamyl-L-cysteinyl-

glycine) of 307 Da that can exist in a reduced

(GSH), or oxidized (GSSG) form. Oxidized gluta-

thione is continuously regenerated into GSH by

glutathione reductase using NADPH as a reductant.

As the main free soluble thiol of low molecular

weight, glutathione is classically considered to con-

stitute a redox buffer that maintains the intracellular

environment in a reduced state. In photosynthetic

organisms, the chloroplastic concentration of gluta-

thione is estimated between 1 and 4.5 mM in the

stroma, GSSG representing ca. 10% of this pool

(Noctor and Foyer 1998). Glutathione has multiple

functions in plants (reviewed in Ogawa 2005; Meyer

and Hell 2005; Foyer and Noctor 2005). This trip-

eptide plays a major role in oxidant detoxification

either by direct reaction with ROS and RNS, via the

ascorbate-glutathione cycle, or as an electron donor

for antioxidant enzymes such as some GST and

GRX exhibiting glutathione peroxidase activities.

Glutathione also participates in xenobiotic detoxifi-

cation with glutathione-S-transferases (Edwards and

Dixon 2005) and heavy metals detoxification, as a

substrate for phytochelatin biosynthesis (Cobbett and

Golsbrough 2002). Glutathione seems to play a role

in various other cell processes such as the cell cycle

G1-to-S phase transition (Vernoux et al. 2000), cell

differentiation (Henmi et al. 2001, 2005), flowering

(Ogawa et al. 2001, 2004), anthocyanins accumulation

(Xiang et al. 2001), in PCD and in resistance against

pathogens (Mou et al. 2003; Després et al. 2003;

Foyer and Noctor 2005). In addition to all these

functions, recent studies have suggested that gluta-

thione could also play a major role in redox signaling

through modification of cysteine residues. Indeed,

glutathione can regulate the oxidation state of cy-

steines either directly by protein glutathionylation or

indirectly, via GRX. In mammals, it has been shown

that glutathionylation could modulate the activity,

the localization or the stability of a growing number

of proteins. Compared to the abundant literature on

mammals, data obtained in photosynthetic organisms

are rather scarce.

Glutathionylation as a redox regulation mechanism

If glutathionylation as a redox regulation mechanism

has only recently emerged, this modification has been

discovered a long time ago. It has been known for

many years that in liver, under normal conditions, 1%

of the glutathione molecules are bound to proteins

(Brigelius et al. 1982, 1983) and that under stress

conditions, these mixed disulfides can represent up to

20–50% of the glutathione pool (Gilbert 1984). Vari-

ous studies have allowed the identification of different

proteins susceptible to undergo glutathionylation since

then. This post-translational modification can consti-

tute an antioxidant mechanism that evolved to protect

cysteine residues from irreversible oxidation to sulfinic

or sulfonic acids (Fig. 1). Moreover, it has been clearly

established that glutathionylation can modulate either

positively or negatively the activity of numerous en-

zymes and play an important role in redox signaling.

Protein glutathionylation has been recently the subject

of several reviews detailing the role of this modification

in mammals (Fratelli et al. 2004; Ghezzi 2005a, b;

Ghezzi et al. 2005; Hurd et al. 2005; O’Brian and Chu

2005; Shackelford et al. 2005).

Mechanisms of glutathionylation

Protein glutathionylation is a dynamic process. Theo-

retically, several mechanisms can lead to protein

232 Photosynth Res (2006) 89:225–245

123



glutathionylation but the precise mechanisms occurring

in vivo are still far from being well understood.

The reaction can occur through a thiol/disulfide

exchange in the presence of GSSG:

PSHþGSSG! PSSGþGSH ð1Þ

Glutathionylation can also occur through direct

oxidation:

GSHþ PSH! PSSG þ 2Hþ ð2Þ

However, a direct oxidation of two thiols in the

presence of oxygen for instance is unlikely to occur

because this reaction would implicate a ternary

collision between the two thiols and the oxidant. This

kind of reaction can, however, be catalyzed by oxidants

such as diamide (Kosower and Kosower 1987):

where R and R¢ can be either glutathione (G) or a

protein (P).

Another possible mechanism requires prior oxida-

tion of one of the two thiols involved in the reaction.

Protein thiols oxidized into sulfenic acids can then

react with a molecule of glutathione and generate a

disulfide:

PSOHþGSH! PSSGþH2O ð4Þ

It has been shown that human protein tyrosine

phosphatase 1B can undergo glutathionylation via this

mechanism (Barrett et al. 1999b).

Glutathionylation can also occur if the thiol on the

glutathione molecule is oxidized into a sulfenic acid:

GSOHþ PSH! PSSGþH2O ð5Þ

The oxidation of protein thiols (6) or of glutathione

thiol (7) by the hydroxyl radical (HOÆ), can lead to the

formation of thiyl radicals:

PSHþHO� ! PS� þH2O ð6Þ

GSHþHO� ! GS� þH2O ð7Þ

Thiyl radical from a protein, reaction (8), or from

glutathione, reaction (9), can lead to a radical mixed

disulfide. This radical mixed disulfide will then transfer

an electron to oxygen to form the superoxide anion O2
Æ–

leaving a mixed disulfide:

ð8Þ

ð9Þ

It has been suggested that a GRX could catalyze

reaction (9) (Starke et al. 2003).

Glutathionylation can also be induced by nitric

oxide (NO). Nitrosylated thiols can react with gluta-

thione to form mixed disulfides:

PSNOþGSH! PSSGþHNO ð10Þ

NO exposure can also lead to glutathione nitrosy-

lation. This S-nitrosylated glutathione (GSNO) can

then react with a protein thiol and lead to glutath-

ionylation of the protein:

GSNOþ PSH! PSSGþHNO ð11Þ

Some oxidized forms of glutathione, such as GS–O–

SG can also favor the formation of GSH-protein mixed

disulfides (Huang and Huang 2002).

All these mechanisms are possible, but the one pre-

vailing in vivo remains unknown. Although glutath-

ionylation by thiol/disulfide exchange (reaction (1))

with oxidized glutathione is widely considered as the

major reaction leading to mixed disulfide formation,

this possibility is questioned by several studies. First,

this mechanism implies that protein glutathionylation is

directly linked to the redox state (GSH/GSSG) of the

glutathione pool. However, in vivo GSSG concentra-

tion is very low compared to GSH concentration and the

GSSG concentration required for efficient protein glu-

tathionylation in vitro is usually higher than the physi-

ological concentration. Moreover, during the oxidative

burst in human neutrophils, a massive increase in pro-

tein glutathionylation is observed without any increase

in GSSG concentration (Chai et al. 1994). Interestingly,

a glutathionylated protein, the human actin, does not

seem to undergo this modification by thiol/disulfide

exchange, in vitro as well as in vivo (Dalle-Donne et al.

ðCH3Þ2NCON ¼ NCONðCH3Þ2 þRS� þHþ ! ðCH3Þ2NCONðSRÞNHCONðCH3Þ2
ðCH3Þ2NCONðSRÞNHCONðCH3Þ2 þR0S� þHþ ! RSSR0 þ ðCH3Þ2NCONHNHCONðCH3Þ2

ð3Þ
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2003, 2005). Moreover, it has been suggested that a

proteic factor could be required for the glutathionyla-

tion of some proteins in vitro (Dixon et al. 2005b).

Glutathionylation is a reversible modification. It has

been shown that GRX can catalyze the deglutath-

ionylation of proteins by reducing the mixed disulfide

between a protein and the molecule of glutathione with

a far higher efficiency than TRX or protein disulfide

isomerases (Jung and Thomas 1996; Nulton-Persson

et al. 2003).

Glutathionylation targets in non-photosynthetic

organisms

Many studies on the function of protein glutathiony-

lation have been performed in non-photosynthetic

organisms, especially in mammals. These studies have

allowed to identify many targets of glutathionylation

thus implicating this modification in the regulation of

various cell processes. Glutathionylation can protect

vulnerable protein thiols from irreversible oxidation.

This modification can also regulate a specific protein

activity as in the case of the bifunctional carbonic

anhydrase III, which exhibits also a phosphatase

activity tightly regulated by the glutathionylation of

two cysteine residues (Koester et al. 1981; Thomas

et al. 1995; Cabiscol and Levine 1996). The activity of

the HIV protease 1 and of the HTLV-I protease is also

regulated by glutathionylation of two cysteine residues

(Davis et al. 1996, 1997, 2003).

The cytosolic glyceraldehyde-3-phosphate dehydro-

genase (GAPDH) can undergo glutathionylation. In

addition to the central role of this protein in glycolysis

and energy production, GAPDH has been recently

involved in many other functions including regulation

of apoptosis, DNA repair or nuclear RNA export

(reviewed in Sirover 1999, 2005). The enzyme presents

a very reactive active-site cysteine that is presumably

the target of glutathionylation, leading to inhibition

of the protein activity (Ravichandran et al. 1994;

Schuppe-Koistinen et al. 1994; Grant et al. 1999;

Mohr et al. 1999). In yeast, a H2O2 treatment leads to

glutathionylation of GAPDH as well as of two other

glycolytic enzymes: enolase and alcohol dehydrogenase

(Shenton and Grant 2003). Many other glycolytic

enzymes (aldolase, phosphoglycerate kinase, pyruvate

kinase and triose phosphate isomerase) can also

undergo glutathionylation in human cells (Fratelli

et al. 2003). These data suggest that glutathionylation

could coordinate cellular metabolism in response to

oxidative stress by modulating glycolysis.

Glutathionylation also seems to regulate several

enzymes involved in signaling pathways such as

enzymes of the protein kinase C (PKC) family: PKCe,

which stimulates cell growth, is inactivated by this

modification whereas PKCd, which play an important

role in DNA damage-initiated apoptotic pathways,

seem to be activated by S-thiolation (Ward et al. 2002;

Chu et al. 2003). PKCa can also be inactivated by

glutathionylation (Ward et al. 2000). Several tran-

scription factors can be regulated by glutathionylation

such as the c-Jun subunit of the AP-1 complex (Klatt

et al. 1999a; b), the p50 subunit of the NF-jB factor

(Pineda-Molina et al. 2001, 2002), or NF-1 (Nuclear

Factor 1) (Bandyopadhyay et al. 1998). Glutathiony-

lation of these transcription factors results in an inhi-

bition of DNA binding.

Cytoskeletal arrangements and intracellular traf-

ficking can also be regulated by glutathionylation.

Indeed, this modification can regulate actin polymeri-

zation (Wang et al. 2001, 2003; Dalle-Donne et al.

2003, 2005). Moreover, annexin A2, which interacts

with actin, is also glutathionylated (Caplan et al. 2004),

as well as tubulin (Landino et al. 2004).

Several enzymes that have a cysteine in their active-

site, like GAPDH, are inhibited by S-thiolation, such

as a-ketoglutarate dehydrogenase (aKGDH) (Nulton-

Persson et al. 2003), creatine kinase (Reddy et al.

2000) or cAMP Dependent Protein Kinase (CDPK)

(Humphries et al. 2002). Protein tyrosine phosphatase

1B (PTP 1B), which is involved in the regulation

of aKGDH activity, is also inhibited (Barrett et al.

1999a, b).

However, protein glutathionylation has not always

an inhibitory effect. H-ras, for instance, a G protein

involved in many different transduction pathways, is

activated by glutathionylation (Adachi et al. 2004a).

The calcium pump SERCA, implicated in muscle

relaxation, apoptosis and proliferation, is also activated

by glutathionylation (Adachi et al. 2004b) whereas this

kind of regulation inhibits the chloride channel CFTR

(Wang et al. 2005). The regulation of several chaper-

ones of the HSP family has also been described. The

multimeric aggregate size of HSP27 seems to be reg-

ulated by glutathionylation (Eaton et al. 2002a) and

the chaperonin activity of HSP70 is activated by this

modification (Hoppe et al. 2004).

Glutathionylation in non-photosynthetic organisms

has been also studied by proteomic approaches (Klatt

et al. 2000; Eaton et al. 2002b; Fratelli et al. 2002,

2003; Lind et al. 2002; Shenton and Grant 2003). Most

of the techniques used were based on 35S radioactive

labeling of the glutathione pools. Alternative methods

using biotinylated glutathione, anti-glutathione anti-

bodies or affinity columns with oxidized or reduced

glutathione as well as immobilized glutathione ana-
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logs, have been also developed (for review, see Fra-

telli et al. 2004). More than 120 proteins have been

identified as putative glutathionylation targets in

mammals (Table 1, supplemental data). However, in

most cases, the functional effect of this modification

remains unknown.

Glutathionylation targets in photosynthetic

organisms

Very few data are available about glutathionylation in

photosynthetic organisms. To our knowledge, the first

study reporting that a plant protein could undergo

glutathionylation has been published by Dixon and

co-workers (2002). These authors identified GST

proteins from Arabidopsis with dehydroascorbate

reductase and/or GSH-dependent thiol transferase

activity. These GST have a catalytic cysteine that is

essential for their activity. This cysteine can undergo

glutathionylation in vitro in the presence of GSSG,

leading to inhibition of enzymatic activity. However,

the authors suggested that the mixed disulfide formed

between the catalytic cysteine and glutathione could

be an intermediary step in the reaction mechanism of

glutathione-dependent dehydroascorbate reduction.

In 2003, a second publication reported a larger scale

approach to identify glutathionylated proteins in

Arabidopsis cell suspensions using biotinylated-

glutathione labeling (Ito et al. 2003). In this study, 20

glutathionylated proteins have been visualized, two of

which have been identified: chloroplastic fructose-

1,6-bisphosphate aldolase, a Calvin cycle enzyme, and

cytosolic triose phosphate isomerase (TPI), a glycolytic

enzyme. Additional experiments revealed that

recombinant TPI could be inactivated by GSSG in vitro.

The inactivation of a soybean PTP by S-thiolation

has also been recently reported (Dixon et al. 2005a).

However, this regulation seems to involve a mecha-

nism different from the regulation of human PTP,

which is also inactivated by glutathionylation (Barrett

et al. 1999a).

A mitochondrial TRX from poplar has been

reported to undergo glutathionylation in vitro

(Gelhaye et al. 2004a). The increase of the redox

potential of the active-site disulfide upon glutathiony-

lation suggests that the activity of this TRX towards

still unidentified targets could be affected. Casagrande

and co-workers (2002) have reported specific glutath-

ionylation of human TRX on an extra cysteine, distinct

from those of the active-site. Moreover, S-thiolation

appears to affect TRX activity, probably by decreasing

the efficiency of TRX reduction by NTR. These find-

ings prompted us to investigate the glutathionylation of

all chloroplastic TRX from Arabidopsis and Chla-

mydomonas (Michelet et al. 2005). This study revealed

that f-type thioredoxins are the only chloroplastic TRX

able to undergo glutathionylation in vitro. The target

residue is an extra cysteine, distinct from the two

active-site cysteines, which is strictly conserved in all

f-type TRX. Moreover, the reconstitution of the thy-

lakoid dependent reduction system allowed to dem-

onstrate that glutathionylation of the protein impairs

its reduction in the light, resulting in impaired activa-

tion of targets. Since f-type TRX appear to be specif-

ically involved in the regulation of carbon assimilation

enzymes by light, their glutathionylation could consti-

tute a new mechanism of regulation of photosynthetic

metabolism under oxidative stress (Michelet et al.

2005).

In addition to studies focused on a particular type

of enzymes, a proteomic approach has been recently

led on Arabidopsis cell suspensions in order to

identify a large number of proteins undergoing glu-

tathionylation in vivo (Dixon et al. 2005b). However,

technical difficulties only allowed the identification of

a limited number of proteins: sucrose synthase, tub-

ulins a and b, Acetyl-CoA Carboxylase, actin, cyto-

solic GAPDH, transducin, and Hsc70–1. Due to these

problems, the authors have then studied in vitro

glutathionylation of proteins in the presence of bio-

tinylated-GSSG. Proteic extracts from Arabidopsis

cells grown in the dark were used in this study be-

cause of the problems encountered with foliar ex-

tracts. A total of 73 proteins have been identified

with among them, methionine synthase and alcohol

dehydrogenase. Interestingly, the in vitro thiolation

of the two latter proteins was found to require

unidentified proteic factors present in Arabidopsis

cell extracts. This is the first large-scale approach led

in a photosynthetic organism to identify glutathiony-

lated proteins, pinpointing the many technical diffi-

culties inherent to this kind of studies. Other studies

in more physiological conditions will be needed to

identify other proteins susceptible to undergo glu-

tathionylation with particular emphasis on chloro-

plastic targets since chloroplast is the major site of

oxidant production under light. Regulation by glu-

tathionylation thus could play an important role in

this compartment.

TRX, GRX, and glutathione: new crosstalks
to explore

Emerging evidence suggests that TRX, GRX and glu-

tathione/glutathionylation could constitute a complex
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network involved in redox signaling with multiple

crosstalks between these three components. As previ-

ously mentioned, most of the 94 putative plant targets

bound to a GRX column were previously identified as

possible TRX targets underlining the connections and/

or redundancy between these two redox regulators.

Studies on redox-regulated proteins in non-photo-

synthetic organisms have focused essentially on the

identification of glutathionylated proteins while the

diversity of TRX targets remains to be examined by

proteomics approaches. In contrary, work on photo-

synthetic organisms has allowed identification of many

putative TRX and GRX targets while much less is

known on glutathionylated proteins. However, it can

be noticed that several proteins identified as glutath-

ionylatable in mammals and in Arabidopsis exhibit a

direct or indirect link with TRX and/or GRX. In order

to get a complete overview of these possible interac-

tions, we have collected the list of proteins identified

as established or putative targets of TRX or GRX but

also those undergoing glutathionylation (Table 1,

supplemental data). Analysis of these data revealed

that many proteins were identified as being both glu-

tathionylated and putative targets of TRX and/or

GRX (Table 2). Among the glutathionylated proteins

identified in non-photosynthetic organisms, many

homologous proteins have been identified as putative

TRX targets on monocysteinic TRX columns in plants

such as actin, adenylate kinase, enolase, NAD

dependent malate dehydrogenase, HSP 60, HSP 70,

Ran, TPI, and fructose-1,6-bisphosphate aldolase. For

some of these proteins a double regulation by reduc-

tion of a disulfide bond under the control of TRX/

GRX on one side and by glutathionylation of a cys-

teine on the other side is possible. For example, the

transcription factors c-Jun and NF-j B are TRX tar-

gets and are glutathionylated. TRX are also known to

be efficient electron donors to PRX and human PRX

I, IV, V, and VI have been identified as proteins

susceptible to undergo glutathionylation. Similarly,

cyclophilin A is glutathionylated in human cells

(Ghezzi et al. 2006) while several chloroplastic cyclo-

philins have been shown to be redox-regulated by

TRX (Motohashi et al. 2003; Gopalan et al. 2004;

Buchanan and Luan 2005). Nevertheless, if GRX are

far more efficient than TRX in reducing GSH/protein

mixed disulfides, TRX are also able to catalyze this

reaction (Jung and Thomas 1996). It is thus possible

that some proteins bind to monocysteinic TRX col-

umns because of their glutathionylation. This would

suggest that some of the proteins identified using these

approaches could not only be TRX and GRX targets

but also S-thiolation targets.

In addition, several studies have demonstrated the

existence of more direct interactions between TRX,

GRX, and glutathione/glutathionylation. Human TRX

has been shown to undergo glutathionylation in human

cells (Casagrande et al. 2002). In photosynthetic

organisms, chloroplastic f-type thioredoxins (Michelet

et al. 2005) as well as a mitochondrial TRX from poplar

(Gelhaye et al. 2004a) have also been shown to undergo

this modification. Interestingly, glutathionylation of

these TRX is susceptible to affect their activity toward

their targets and thereby could lead to metabolic chan-

ges. Another direct link was observed in plants when a

thioredoxin from poplar was found to be reduced by

GRX and GSH instead of NADPH-thioredoxin reduc-

tase (Gelhaye et al. 2003) and two glutathione perox-

idases were shown to be TRX-dependent (Herbette

et al. 2002). Direct crosstalks have also been observed in

non-photosynthetic organisms: Saccharomyces cerevi-

siae GRX5 (CGFS type) could be more efficiently

reduced by TRX than by GSH (Tamarit et al. 2003) and

E. coli Grx4, a CGFS-type GRX, has been reported to

act as a substrate for E. coli thioredoxin reductase after

GSSG oxidation (Fernandes et al. 2005). In addition, in

some organisms such as drosophila that have apparently

no glutathione reductase to regenerate GSH, the TRX

system is involved in GSSG reduction (Kanzok et al.

2001). It has also been recently shown that a protein,

called TGR for Thioredoxin/Glutathione Reductase,

composed of a thioredoxin reductase and a GRX

domain, was able to reduce both TRX and GSSG, and

that it was able to use GSH as an electron donor to the

GRX domain (Sun et al. 2001, 2005). Another link be-

tween TRX and GRX systems has been evidenced with

human mitochondrial GRX2. This GRX harbors a

CSYC active-site and lacks one conserved non-active-

site cysteine residue present in human GRX1. Due to

the absence of this cysteine, human GRX2 is less prone

to inactivation by oxidants and GSSG. Moreover, this

GRX can be reactivated directly by TRX reductase as

well as GSH, suggesting that human GRX2 could

operate in an oxidative cell environment (Johansson

et al. 2004).

Additional studies are thus required to clarify the

respective specific functions and redundancy of TRX,

GRX and glutathione/glutathionylation as well as the

interplay between these three key components of the

cellular redox-signaling network. Unraveling the role

and importance of this crosstalk will probably consti-

tute one of the main challenges of future studies on

redox signaling.
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Åslund F, Berndt KD, Holmgren A (1997) Redox potentials of
glutaredoxins and other thiol-disulfide oxidoreductases of
the thioredoxin superfamily determined by direct protein–
protein redox equilibria. J Biol Chem 272:30780–30786

Balachandran S, Xiang Y, Schobert C, Thompson GA, Lucas WJ
(1997) Phloem sap proteins from cucurbita maxima and
ricinus communis have the capacity to traffic cell to cell
through plasmodesmata. Proc Natl Acad Sci USA 94:14150–
14155

Balmer Y, Koller A, del Val G, Manieri W, Schürmann P,
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Zheng M, Åslund F, Storz G (1998) Activation of the OxyR
transcription factor by reversible disulfide bond formation.
Science 279:1718–1721

Photosynth Res (2006) 89:225–245 245

123


