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Abstract

Sulfate assimilation and glutathione synthesis were traditionally believed to be differentially compart-
mentalised in C4 plants with the synthesis of cysteine and glutathione restricted to bundle sheath and
mesophyll cells, respectively. Recent studies, however, showed that although ATP sulfurylase and aden-
osine 5¢ phosphosulfate reductase, the key enzymes of sulfate assimilation, are localised exclusively in
bundle sheath in maize and other C4 monocot species, this is not true for the dicot C4 species of Flaveria.
On the other hand, enzymes of glutathione biosynthesis were demonstrated to be active in both types of
maize cells. Therefore, in this review the recent findings on compartmentation of sulfate assimilation and
glutathione metabolism in C4 plants will be summarised and the consequences for our understanding of
sulfate metabolism and C4 photosynthesis will be discussed.

Introduction

Sulfate assimilation is an essential pathway of
plant primary metabolism delivering reduced sul-
fur for synthesis of amino acids, co-enzymes, and a
variety of secondary compounds. Among the sul-
fur-containing metabolites, glutathione (GSH) has
a special place as it plays an important role in
plant defence against biotic and abiotic stress and
in maintaining a cellular redox status. As reviewed
in this issue and several current reviews (Kopriva
and Koprivova 2003, 2004; Leustek et al. this
issue), sulfate taken up in the cells by sulfate
transporters is first activated by ATP sulfurylase
(ATPS) to adenosine 5-phosphosulfate (APS). In
plastids, APS is reduced to sulfite by APS reduc-
tase (APR) and further reduced to sulfide by sulfite
reductase (SiR). Sulfide is then incorporated into
the amino acid skeleton of O-acetylserine (OAS) to
form cysteine by OAS thiolyase (OASTL). OAS
itself is produced from serine by acetylation
catalysed by serine acetyltransferase (SAT). The

synthesis of cysteine, a final product of sulfate
assimilation, is a reaction in which the pathway
merges with the assimilation of nitrogen and car-
bon. It is therefore not surprising that sulfate
assimilation is highly regulated by light, carbon,
and nitrogen compounds (Neuenschwander et al.
1991; Brunold 1993; Kopriva et al. 1999; Kopriv-
ova et al. 2000; Kopriva et al. 2002; Kopriva and
Koprivova 2003; Kopriva and Rennenberg 2004).
Indeed, APR activity is greatly reduced in the dark
or in the absence of CO2 but can be restored upon
feeding sugars or OAS (Neuenschwander et al.
1991; Kopriva et al. 1999; Kopriva et al. 2002;
Hesse et al. 2003). Similarly, it has been long
known that sulfur and nitrogen assimilatory
pathways are well-coordinated; a deficiency for
one element represses the other pathway (Reuveny
et al. 1980; Koprivova et al. 2000; Migge et al.
2000; Prosser et al. 2001). Several reports revealed
that APR is more susceptible to regulation than
other enzymes of the pathway and has the highest
control over the flux through sulfate assimilation
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(Koprivova et al. 2000; Westerman et al. 2001;
Vauclare et al. 2002). The reduction of sulfate
occurs predominantly in the leaf, and reduced
sulfur compounds are distributed to sink tissues
via phloem (Herschbach and Rennenberg 2001).
However, other tissues, including developing
seeds, are capable of sulfate reduction (Tabe and
Droux 2002). This is not surprising since, given the
absolute requirement of plant tissues for reduced
sulfur, most cells can be expected to cover their
needs for reduced sulfur by reduction of sulfate
instead of relying on long distance transport of
organic sulfur compounds, such as glutathione or
S-methylmethionine (Herschbach and Rennenberg
2001). Accordingly, available microarray data in
the Genevestigator database reveals the presence
of APR transcript in all Arabidopsis organs,
including flowers and siliques (Zimmermann et al.
2004). However, there is a group of plants that
lacks the ability to reduce sulfate in a great portion
of their cells, the monocot C4 plants. This review
thus concentrates on the special features of sulfate
assimilation and glutathione synthesis in maize
and other C4 plants.

C4 photosynthesis

C4 photosynthesis is characterised by spatial sep-
aration of a primary CO2 fixation step into C4

acids from their decarboxylation and refixation of
the released CO2 by Rubisco. Until very recently
this separation of the photosynthetic reactions was
linked with the occurrence of two distinct cell
types – the bundle sheath cells (BSC) and meso-
phyll cells (MC) arranged around vascular tissue
in a radial pattern known as Kranz anatomy
(Laetsch 1974). CO2 is initially fixed by phospho-
enolpyruvate carboxylase (PEPCase) in the MC to
form a C4 compound oxaloacetate which is sub-
sequently converted to malate and/or aspartate.
These C4 acids diffuse to BSC, where they become
decarboxylated by one of three enzymes – NADP-
dependent malic enzyme (ME), NAD-dependent
malic enzyme, and phosphoenolpyruvate carb-
oxykinase (PEP-CK), thus defining the three C4

photosynthesis subtypes. The CO2 released from
these decarboxylation reactions is refixed by
Rubisco in the Calvin cycle, similarly as in C3

plants (Edwards and Huber 1981; Edwards and
Walker 1983; Hatch 1987). The advantage of this

scheme (Figure 1) is that CO2 concentration is
increased at the site of its photosynthetic fixation
and thus eliminates the oxygenation reaction of
Rubisco and, therefore, photorespiration. The
spatial separation of PEPCase and Rubisco is
achieved by a morphological differentiation of MC
and BSC and cell-specific localisation of the
enzymes. BSC have thick cell walls and numerous
large starch-containing chloroplasts whereas MC
have smaller randomly distributed chloroplasts
that do not accumulate starch. Besides the distinct
leaf anatomy, C4 plants exhibit a low photosyn-
thetic CO2 compensation point, a lack of O2 sen-
sitivity in photosynthesis, high maximal rates of
CO2 fixation, high water use efficiency, low values
of carbon isotope discrimination, and improved
nitrogen use efficiency. The pathway is therefore
advantageous especially in hot and dry conditions.

A characteristic feature of C4 plants is a cell-
specific localisation of many enzymes of primary
metabolism in BSC or MC. Clearly, the enzymes
involved in the primary CO2 fixation and malate
and/or aspartate synthesis, such as cytosolic car-
bonic anhydrase, PEPCase, pyruvate phosphate
dikinase, and NADP-malate dehydrogenase, are
localised predominantly in the MC, whereas
NAD(P)-ME, Rubisco, Rubisco activase, and
some enzymes of the Calvin cycle are found
exclusively in BSC (reviewed in Sheen 1999;
Edwards et al. 2001). In most C4 species analysed,
including maize and Sorghum, BSC chloroplasts
lack Photosystem II and therefore exhibit very
little oxygen evolution (Hatch and Osmond 1976).
Consequently, noncyclic electron flow and the

Figure 1. Schematic representation of distribution of major
steps in assimilation of carbon (green), nitrogen (blue), and
sulfur (black) between mesophyll (MC) and bundle sheath
(BSC) of maize.
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capacity for NADPH formation are restricted in
BSC chloroplasts. In addition, glycine decarbox-
ylase (GDC), a key enzyme of photorespiration, is
localised exclusively in BSC of C4 and C3–C4

intermediate plants (Hylton et al. 1988). The
C3–C4 intermediate plants were originally identi-
fied by having a CO2 compensation point inter-
mediate between C3 and C4 species and can be
considered as evolutionary intermediates in the
path from C3 to C4 photosynthesis (Monson and
Moore 1989; Kopriva et al. 1996). The interme-
diate species possess a Kranz-like anatomy and
their apparent photorespiration rate is reduced,
due to the confinement of GDC to the BSC and
efficient refixation of photorespired CO2 in these
cells (Hylton et al. 1988; Rawsthorne 1992). Some
C3–C4 plants are able to fix CO2 into malate and
aspartate to some extent (Bassüner et al. 1984;
Monson et al. 1986) as in C4 species, but the
compartmentalisation of the photosynthetic
enzymes is not complete (Bauwe 1984). The pres-
ence of C3–C4 intermediates and C4 plants in
several orders of dicots and monocots reveals that
C4 photosynthesis evolved several times indepen-
dently. This surely contributed to the great diver-
sity of C4 plants reaching from the three classical
Kranz-type subtypes namely NAD-ME, NADP-
ME, and PEP-CK, to recently discovered single
cell C4 photosynthesis without Kranz anatomy in
two species of Chenopodiaceae (Voznesenskaya
et al. 2001), aquatic C4 photosynthesis of Hydrilla
and Egeria (Bowes et al. 2002), and even a C4 cycle
in marine alga Udotea flabellum (Bowes et al. 2002)
and perhaps in a diatom Thalassiosira weissflogii
(Reinfelder et al. 2000).

The higher nitrogen use efficiency observed in
C4 plants was initially attributed to a BSC
restricted, and thus lower, synthesis of Rubisco
(Brown 1978). However, differences exist also
between the C4 subtypes; the photosynthetic N-use
efficiency in NADP-ME plants, measured as
assimilation rate per unit leaf N, was consistently
greater than in NAD-ME ones due to higher
Rubisco catalytic turnover rates (Ghannoum et al.
2005). In addition, majority of leaf N was allo-
cated to BSC in NAD-ME plants but to MC in the
NADP-ME ones. Interestingly, enzymes partici-
pating in the assimilation of nitrogen are also
localised in cell-specific manner in various C4

plants (Figure 1); nitrate reductase (NR) and
nitrite reductase are specifically localised in MC,

whereas glutamine synthetase is equally distrib-
uted between MC and BSC, and glutamate syn-
thetase and glutamate dehydrogenase are
predominantly but not exclusively BSC localised
(Rathnam and Edwards 1976; Moore and Black
1979). These results were corroborated by immu-
nolocalisation studies demonstrating an exclusive
localisation of NR in cytosol of MC (Vaughn and
Campbell 1988) and the presence of both cytosolic
and plastidic isoforms of glutamine synthetase in
MC and BSC (Becker et al. 1993). Ferredoxin-
dependent glutamate synthase, however, was
found by immunolocalisation to be BSC-specific
(Becker et al. 1993). If the compartmentalisation
of nitrogen metabolism contributes to improved
nitrogen use efficiency in C4 plants and what the
mechanism could be is, however, still not known.

Sulfate assimilation in C4 plants

Given the number of cellular processes spatially
distributed in C4 plants, it was not a great surprise
that enzymes of sulfate assimilation were also
found to be differentially localised (Gerwick and
Black 1979; Gerwick et al. 1980; Passera and Ghisi
1982; Schmutz and Brunold 1984). Several groups
reported that 75–100% of total leaf ATP sulfury-
lase activity in maize was confined to BSC (Ger-
wick and Black 1979; Passera and Ghisi 1982;
Schmutz and Brunold 1984; Burnell 1984). These
findings were extended to 17 other C4 species of all
three C4 subtypes, where 95–100% of total leaf
ATPS activity was localised in chloroplasts of BSC
(Gerwick et al. 1980). Also APS reductase was
found almost exclusively in BSC of maize
(Schmutz and Brunold 1984; Burgener et al. 1998),
while the activities of SiR and OASTL were found
in MC and BSC at comparable levels (Passera and
Ghisi 1982; Burnell 1984; Schmutz and Brunold
1985). The mRNA levels for APR, ATPS, and
SiR, are accumulated in BSC only, whereas the
mRNA for OASTL was detected in both MC and
BSC (Kopriva et al. 2001). Therefore, the cell-
specific localisation of enzymes of sulfate assimi-
lation in maize seems to be regulated transcrip-
tionally, at least under standard growth
conditions. When maize plants were subjected to
chilling stress APR activity and mRNA level was
greatly increased in BSC, however, only mRNA
but not enzyme activity was also detectable in MC,

365



showing that post-transcriptional mechanisms also
participate in the compartmentalisation of sulfate
assimilation in maize (Kopriva et al. 2001). The
localisation of ATPS and APR in BSC of C4 plants
requires an efficient transport of reduced sulfur
compounds from BSC to MC. As MC possess
OASTL and are thus capable of cysteine synthesis,
a variety of compounds, such as sulfide, cysteine,
or glutathione, could represent the transport form
of reduced sulfur. However, since feeding isolated
bundle sheath strands with [35S]sulfate resulted in
secretion of radioactive cysteine into the nutrient
solution (Burgener et al. 1998), cysteine (or its
oxidised form cystine) is the most probable trans-
port metabolite (Figure 1). Interestingly, the
[35S]sulfate feeding experiments also revealed that
glutathione synthesis was predominantly in MC
(Burgener et al. 1998).

Glutathione in maize

The tripeptide glutathione (GSH) is the most
abundant low molecular weight thiol in plants.
GSH plays an important role in the defence
against various biotic and abiotic stress conditions
and in redox buffering of the cell (May et al. 1998;
Noctor et al. 1998). Moreover, GSH is the main
storage and transport form of reduced sulfur and
is involved in the regulation of sulfate assimilation
(Foyer and Rennenberg 2000). GSH is synthesised
from its constituent amino acids via the consecu-
tive action of c-glutamylcysteine synthetase
(c-ECS), synthesizing c-glutamylcysteine (c-EC)
from glutamate and cysteine, and glutathione
synthetase (GSHS), adding glycine to c-EC.
Although GSH is present in both the cytosol and
plastids, and GSH synthesis was long believed to
take place in both compartments (Hell and Berg-
mann 1990; Noctor et al. 1998), recently it was
shown that the two steps of GSH biosynthesis may
be spatially separated. A detailed analysis of sub-
cellular localisation of c-ECS and GSHS in Ara-
bidopsis and Brassica juncea revealed that at least
in Brassicaceae c-ECS is exclusively localised in
the plastids whereas GSHS is present in both
plastids and cytosol (Wachter et al. 2005). These
novel results indicate that c-EC may not only be a
precursor of GSH but also play important roles in
transport of reduced sulfur from plastids to the
cytosol and possibly in signalling of redox status of

the chloroplast, at least in Brassicaceae. On the
other hand, c-ECS and GSHS were detected by
immunohistochemistry in both chloroplasts and
cytosol of maize (Gómez et al. 2004). It thus
demonstrates that there are species-specific differ-
ences in the localisation of GSH biosynthetic
enzymes which possibly result in different regula-
tory mechanisms for sulfur assimilation, as seen
e.g. with the conflicting data on cysteine inhibition
of SAT in plastids and cytosol in various plants
(Noji et al. 1998; Droux 2003).

GSH is most important for the regeneration of
the primary reactive oxygen scavenger, ascorbate,
catalysed by GSH dependent dehydroascorbate
reductase (Noctor and Foyer 1998). The oxidised
glutathione (GSSG, glutathione disulfide) formed
in this reaction is subsequently reduced by gluta-
thione reductase (GR), using NADPH as reduc-
tant. Glutathione is particularly important in low
temperature sensitive C4 plants, such as maize,
where it protects against chilling stress by detoxi-
fication of H2O2. At low temperatures, GSH
content and reduction state were higher in chilling
tolerant genotypes of tomato, Sorghum, wheat,
and maize (Badiani et al. 1993; Walker and
McKersie 1993; Koczy et al. 1996, 2000a). Indeed,
Brunner et al. (1995) demonstrated that in maize,
chilling induced foliar activities of APR, c-ECS,
and GSHS, and consequently the content of thiols.
In addition to total GSH content, the activities of
APR and GR were increased in the chilling toler-
ant maize genotype compared to a sensitive one
(Koczy et al. 1997). A direct link between chilling
tolerance and GSH synthesis was revealed by
manipulation of GSH content in maize in two
approaches. In the first set of experiments, GSH
was depleted by treatment of the chilling-tolerant
maize with buthionine sulfoximine (BSO), a potent
inhibitor of c-ECS (Koczy et al. 2000b). Under
normal temperature, treatment with 1 mM BSO
decreased GSH content to very low levels but fresh
weight and relative injury, based on the extent of
shoot necrosis after a 7 day recovery, were unaf-
fected. However, application of 1 mM BSO to
plants grown at 5 �C resulted in reduction of both
fresh weight and dry weight and in visible leaf
injury (Koczy et al. 2000b). Addition of GSH or
c-EC together with BSO protected the plants from
the chilling injury by increasing GSH content and
GR activity. In a second approach, increasing
GSH content in the chilling sensitive maize by
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treatment with herbicide safeners significantly
reduced the chilling induced injury (Koczy et al.
2001). Again, a simultaneous addition of BSO
counteracted the protection resulting from treat-
ment with safeners. Altogether these experiments
clearly showed that, at least in maize, sensitivity to
chilling is a trait connected with GSH content and/
or reduction state.

Although GSH is essential for protection not
only against a chilling injury, but also against
many other stresses, it is not equally distributed
between MC and BSC in maize. GSHS activity is
greater in MC than in BSC leading to GSH syn-
thesis predominantly in the MC (Burgener et al.
1998) and higher GSH levels in this cell type
(Doulis et al. 1997; Burgener et al. 1998; Kopriva
et al. 2001). Doulis et al. (1997) did not find GSSG
in MC, whereas Kopriva et al. (2001) found GSSG
in both the cell types at comparable levels. The
reason for the discrepancy is probably due to the
different methodology used. Whereas in the former
report thiols were measured in whole leaf and
mesophyll sap and their distribution between MC
and BSC was calculated according to the distri-
bution of Rubisco as a marker, Kopriva et al.
(2001) determined the thiols directly in isolated
bundle sheath strands and mesophyll extracts.
Probably due to the low capacity for NADPH
formation in BSC, GR was found exclusively in
MC of maize (Doulis et al. 1997; Pastori et al.
2000). The MC specific localisation of GR is
dependent on a post-transcriptional regulation,
since the corresponding mRNA was found in both
cell types (Pastori et al. 2000). Very recently, the
enzymes of GSH synthesis and corresponding
mRNAs were localised in both MC and BSC of
maize by immunohistochemistry and in situ RNA
hybridisation, respectively (Gómez et al. 2004).
Chilling caused in an induction of c-ECS mRNA
in BSC but not in MC; correspondingly, foliar
GSH content increased in cold-treated plants
(Gómez et al. 2004). It seems, therefore, that at
least in maize both cell types possess the capacity
to synthesize GSH, but the enzymes in BSC are
more affected by stress. Although these recent
results seem to be in contrast with the previous
data (Doulis et al. 1997; Burgener et al. 1998) there
may be marked differences in the enzymatic
properties and activities in the two cell types
leading to the different distribution of GSH. The
distinct stress response might be explained by the

fact that cysteine, the limiting factor in GSH syn-
thesis, is synthesised only in BSC and can be used
for GSH synthesis without the necessity for
transport (Burgener et al. 1998; Kopriva et al.
2001). On the other hand, the oxidised form of
GSH can probably be reduced only in MC
(Figure 1; Pastori et al. 2000). Consequently,
GSSG formed during the stress in BSC has to be
transported to MC for reduction and thus the
GSH pool in MC increases while the BSC pool
becomes depleted. This results in increased
demand for GSH synthesis in BSC but not in MC.

Sulfate assimilation in Flaveria

As the significance of the cell-specific distribution
of sulfate assimilation is not clear, the question
whether the exclusive localisation of ATPS and
APR in BSC is a pre-requisite or a consequence of
C4 photosynthesis, is of great importance.
Koprivova et al. (2001) therefore addressed the
distribution of these enzymes in Flaveria species
with different types of photosynthesis. The dicot
genus Flaveria (Flaveriinae Asteraceae) is an
excellent model to study the evolution of C4 pho-
tosynthesis because, besides C3 and C4 species, a
relatively large number of C3–C4 intermediates
occur in this genus (Ku et al. 1991) and a contin-
uous gradation both in the physiology and bio-
chemistry of photosynthesis exists among Flaveria
species (Monson and Moore 1989). Indeed, based
on phylogenetic analysis of the H-protein subunit
of GDC, Kopriva et al. (1996) showed that C3–C4

intermediate species of Flaveria are true evolu-
tionary intermediates in the path from C3 to C4

photosynthesis.
Interestingly, APR activity, cysteine, and GSH

levels are significantly higher in leaves of C4-like
and C4 species than in those of C3 and C3–C4

species (Koprivova et al. 2001). When CO2 com-
pensation point was used as a measure of the
degree of C4 photosynthetic characteristics, there
was a clear correlation with foliar APR activity,
cysteine and GSH content and the development of
C4 photosynthesis (Figure 2). The absolute con-
centrations of GSH vary significantly among dif-
ferent plant species and in one species due to
environmental conditions. Nevertheless, the clear
tendency in Flaveria, which were grown at identi-
cal conditions, towards higher APR activity and
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GSH content with increasing C4 photosynthesis
syndrome could result from the adaptation of
these plants to different habitats. C4 photosyn-
thesis is especially advantageous in dry and warm
conditions which, on the other hand, are con-
nected with increased oxidative stress. The higher
GSH contents in C4 Flaveria might thus be a
mechanism to cope with this increased stress and
the elevated APR activity might be necessary to
supply sufficient cysteine for the increased GSH
synthesis.

The major goal of the study with Flaveria was
to compare the intercellular distribution of sulfate
assimilation in C3, C3–C4, and C4 species. Sur-
prisingly, however, northern analysis of cell-spe-
cific RNA and in situ hybridisation revealed that
ATPS and APR mRNAs were present at com-
parable levels in both MC and BSC of the C4

species Flaveria trinervia. Also immunogold elec-
tron microscopy confirmed the presence of APR

protein in chloroplasts of both cell types
(Koprivova et al. 2001). Consequently, the
localisation of assimilatory sulfate reduction in
BSC is not ubiquitous among C4 plants. How
does the study of Koprivova et al. (2001) relate to
the previous ones, most notably to Gerwick et al.
(1980)? Gerwick et al. (1980) analysed distribu-
tion of ATPS in 17 C4 species of all three sub-
types, however, all those species were monocots.
Flaveria trinervia and F. australasica analysed by
Koprivova et al. (2001) were thus the first and
only C4 dicots where the subcellular localisation
of sulfate assimilation was addressed. Therefore,
it was concluded that the exclusive BSC locali-
sation of sulfate assimilation occurs only in C4

monocots and is thus neither a pre-requisite nor a
consequence of C4 photosynthesis (Koprivova et
al. 2001). Moreover, the sole fact that maize is a
monocot does not explain the cell-specific com-
partmentation since in wheat, a C3 monocot,
ATPS and APR occur in all cell types (Schmutz
and Brunold 1984). The results of Koprivova
et al. (2001) also throw a shadow on the other
proteins described as differentially distributed
between BCS and MC in C4 plants after analysis
of maize and a few C4 grasses. Indeed, Ketchner
and Sayre (1992) demonstrated that in contrast to
maize, in C4 Flaveria species Photosystem II is
present in BSC chloroplasts to the same extent as
in MC. Therefore, especially the nitrogen assim-
ilation pathway should be revisited in C4 dicot
species to examine whether it is exclusively MC
localised and whether this indeed has conse-
quences for improved N use efficiency as a part of
the general C4 photosynthesis trait.

Physiological significance of BSC localisation

of sulfate assimilation

Whether linked to C4 photosynthetic mechanism
or not, in maize sulfate is reduced in the BSC
only. This, however, is in conflict with the previ-
ous discussions about the low rate of NADPH
production in BSC chloroplast being the driving
force of MC localisation of nitrate assimilation
and GSH reduction (Doulis et al. 1997). Fol-
lowing the same argument one would actually
expect sulfate reduction to be localised in MC.
What is then the significance of this compart-
mentation? Burgener et al. (1998) speculated that

Figure 2. Correlation of APR activity and cysteine and GSH
contents in leaves with the CO2 compensation points of Flaveria
trinervia ((; C4), F. australasica (4; C4), F. palmeri (s;
C4-like), F. anomala (m; C3–C4), F. pringlei (n; C3), and
F. cronquistii (d; C3). The CO2 compensation points are taken
from Ku et al. (1991) and the APR activity, cysteine and GSH
contents data are derived from Koprivova et al. (2001).
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a low concentration of oxygen in BSC, due to the
lack of water-splitting complex of Photosystem II
in this cell type, could prevent oxidation of
intermediates of sulfate assimilation, sulfite and
sulfide. But if such oxidation would be a draw-
back of sulfate assimilation, the pathway would
not be functional in chloroplasts of C3 plants and
elaborate structures would have to be built, per-
haps with the help of bacterial symbiosis, similar
to N2 fixation in legumes. Another possible
explanation would be the co-localisation with
photorespiration, namely with GDC, the major
source of serine in plants. After activation by
acetylation serine is the acceptor of sulfide and a
direct precursor of cysteine. However, serine
synthesised in BSC must be transported into MC
for protein synthesis and a shortage of this amino
acid in MC seems unlikely. Moreover, a proposed
link between photorespiration and sulfate assim-
ilation through co-localisation is not supported
by the data for Flaveria, where in C4 species GDC
is BSC-specific but sulfate assimilation is not
(Koprivova et al. 2001). MC specific ferredoxin
FdI (Matsumura et al. 1999) was an efficient
donor for sulfite reductase (Yonekura-Sakakibara
et al. 2000), so cell-specific differences in electron
flux can also be excluded.

To find out the significance of the BSC specific
distribution of sulfate assimilation, one should ask
what advantage maize may have gained by this
change. With high probability a simple answer
would be ‘‘none’’. On one hand, maize plants
probably invest less into synthesis of the proteins of
sulfate assimilation pathway, but on the other hand
they must possess an efficient transport system for
cysteine and GSH. Maize does not require signifi-
cantly more or less sulfate than other plant species
and is not known for especially good or poor sulfur
use efficiency. It is not particularly resistant or sen-
sitive to heavy metals, physiological condition with
a high demand for reduced sulfur (Nussbaum et al.
1988). On the other hand, maize is chilling sensitive,
another trait connected with GSH and sulfate
assimilation, so the BSC localisation might even be
a limitation of the capacity to reduce sulfate and
provide enough GSH to cope with the chilling
stress. It seems, therefore, that the significance of
compartmentation of sulfate assimilation in maize
will further remain an open question.

The second major question to ask is about
consequences. Maize was a favourite subject of

investigations of assimilatory sulfate reduction in
the pre-Arabidopsis age. The results on regulation
of sulfate assimilation obtained with maize fitted
well to the general hypothesis of demand driven
control (Lappartient and Touraine 1996). Coor-
dinate increase in mRNA levels for sulfate trans-
porters, ATPS, and APR was observed in maize
roots and leaves upon sulfate starvation (Bolchi
et al. 1999; Hopkins et al. 2004) and the ATPS
mRNA level was repressed in presence of reduced
sulfur compounds (Bolchi et al. 1999). Accord-
ingly, ATPS and APR activities were increased
upon treatments of maize with cadmium or chill-
ing, which result in higher demand for reduced
sulfur (Nussbaum et al. 1988; Rüegsegger and
Brunold 1992; Brunner et al. 1995). ATPS activity
was depressed by nitrogen deficiency (Saccomani
et al. 1984) and APR induced by NO2 fumigation
(Kast et al. 1995). In all these reports, the regula-
tion of sulfate assimilation in maize is not distin-
guishable from other plants. Bolchi et al. (1999)
however, described an interesting result which
differentiates maize from other plant species
analysed to date. In order to identify the thiol
compound responsible of feedback repression of
sulfate assimilation, plants can be treated with
cysteine, glutathione, and cysteine together with
BSO to prevent its conversion to GSH. Such
analysis performed with Brassica napus, Arabid-
opsis, and poplar clearly identified GSH as the
molecular regulator (Lappartient and Touraine
1996; Vauclare et al. 2002; Kopriva S., unpub-
lished) whereas in maize cysteine is acting directly
without conversion to GSH (Bolchi et al. 1999).
Nothing is known about the molecular mecha-
nisms of this feedback inhibition, but it is rea-
sonable to expect that the responsible trans-factor
in maize binds cysteine in contrast to its ortho-
logues in other species being GSH specific. This
variation might well be a consequence of the BSC
localisation of sulfate assimilation. As GSH can be
synthesised both in MC and BSC (Gómez et al.
2004) and only Cys but not GSH is transported
from BSC protoplasts (Burgener et al. 1998) it is
probable that the GSH pools in MC and BSC are
not rapidly interchangeable. On the other hand,
Cys pools in the two cell types are in permanent
connection to enable efficient protein and GSH
synthesis in MC and rapid modulation of Cys
biosynthesis in BSC upon even subtle changes in
demand for reduced sulfur in the whole leaf.
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Therefore, Cys is much better suited as a signal of
sulfur status at the site of sulfate assimilation than
GSH. No other specific variations in regulation of
sulfate uptake and assimilation have been descri-
bed to date.

Concluding remarks

The recent investigations of the plant sulfate
assimilation pathway and application of molecular
methods have resolved many of the old open
questions. Unfortunately, the function of the cell-
specific distribution of sulfate assimilation in
maize does not belong to them and remains to be
elucidated. The variation in localisation of assim-
ilatory sulfate reduction in maize is clearly not
linked to C4 photosynthesis per se. On the other
hand, the previous belief that GSH is synthesised
predominantly in MC is not valid; GSH biosyn-
thetic enzymes were clearly localised in both cell
types. The finding of different compartmentation
of ATPS and APR in maize and Flaveria revealed
how dangerous generalisation is and that some of
the conclusions about C4 plants derived from work
on monocots might be worth revisiting in a C4

dicot system.
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Brunner M, Kocsy G, Rüegsegger A, Schmutz D and Brunold
C (1995) Effect of chilling on assimilatory sulfate reduction
and glutathione synthesis in maize. J Plant Physiol 146:
743–747

Brunold C (1993) Regulatory interactions between sulfate and
nitrate assimilation. In: De Kok LJ (ed) Sulfur Nutrition and
Sulfur Assimilation in Higher Plants, pp 61–75. SPB
Academic Publishing, The Hague

Burgener M, Suter M, Jones S and Brunold C (1998) Cyst(e)ine
is the transport metabolite of assimilated sulfur from bundle-
sheath to mesophyll cells in maize leaves. Plant Physiol 116:
1315–1322

Burnell JN (1984) Sulfate assimilation in C4 plants. Plant
Physiol 75: 873–875

Doulis AG, Debian N, Kingston-Smith AH and Foyer CH
(1997) Differential localization of antioxidants in maize
leaves. Plant Physiol 114: 1031–1037

Droux M (2003) Plant serine acetyltransferase: new insights for
regulation of sulphur metabolism in plant cells. Plant Physiol
Biochem 41: 619–627

Edwards GE, Franceschi VR, Ku MS, Voznesenskaya EV,
Pyankov VI and Andreo CS (2001) Compartmentation of
photosynthesis in cells and tissues of C4 plants. J Exp Bot 52:
577–590

Edwards GE and Huber SC (1981) The C4 pathway. In: Hatch
MD and Boardman NK (eds) Biochemistry of Plants, pp
238–281. Academic Press, New York/London

Edwards GE and Walker DA (1983) C3, C4: Mechanisms and
Cellular and Environmental Regulation of Photosynthesis,
Blackwell Scientific, Oxford

Foyer CH and Rennenberg H (2000) Regulation of glutathione
synthesis and its role in abiotic and biotic stress defence. In:
Brunold C (ed) Sulfur Nutrition and Sulfur Assimilation in
Higher Plants: Molecular, Biochemical and Physiological
Aspects, pp 127–153. Paul Haupt, Bern, Switzerland

Gerwick BC and Black CC (1979) Sulfur assimilation in C4

plants. Plant Physiol 64: 590–593
Gerwick BC, Ku SB and Black CC (1980) Initiation of sulfate
activation: a variation in C4 photosynthesis plants. Science
209: 513–515

Ghannoum O, Evans JR, Chow WS, Andrews TJ, Conroy JP
and Caemmerer Svon (2005) Faster Rubisco is the key to
superior nitrogen-use efficiency in NADP-malic enzyme
relative to NAD-malic enzyme C4 grasses. Plant Physiol
137: 638–650
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Pvon, Krähenbühl U, Opden Camp R and Brunold C (2002)
Flux control of sulphate assimilation in Arabidopsis thaliana:
adenosine 5¢-phosphosulphate reductase is more susceptible
to negative control by thiols than ATP sulphurylase. Plant J
31: 729–740

Vaughn KC and Campbell WH (1988) Immunogold localiza-
tion of nitrate reductase in maize leaves. Plant Physiol 88:
1354–1357

Voznesenskaya EV, Franceschi VR, Kiirats O, Freitag H and
Edwards GE (2001) Kranz anatomy is not essential for
terrestrial C4 plant photosynthesis. Nature 414: 543–546

Wachter A, Wolf S, Steininger H, Bogs J and Rausch T (2005)
Differential targeting of GSH1 and GSH2 is achieved by
multiple transcription initiation: implications for the com-
partmentation of glutathione biosynthesis in the Brassica-
ceae. Plant J 41: 15–30

Walker MA and McKersie BD (1993) Role of the ascorbate-
glutathione antioxidant system in chilling resistance of
tomato. J Plant Physiol 141: 234–239

Westerman S, Stulen I, Suter M, Brunold C and De Kok JL
(2001) Atmospheric H2S as sulphur source for Brassica
oleracea: consequences for the activity of the enzymes of the
assimilatory sulphate reduction pathway. Plant Physiol
Biochem 39: 425–432

Yonekura-Sakakibara K, Onda Y, Ashikari T, Tanaka Y,
Kusumi T and Hase T (2000) Analysis of reductant supply
systems for ferredoxin-dependent sulfite reductase in photo-
synthetic and nonphotosynthetic organs of maize. Plant
Physiol 122: 887–894

Zimmermann P, Hirsch-Hoffmann M, Hennig L and Gruissem
W (2004) GENEVESTIGATOR. Arabidopsis Microarray
Database and Analysis Toolbox. Plant Physiol 136: 2621–
2632

372



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


