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Abstract
Background Remote sensing based on multispectral imaging may be useful for detecting 
vegetation stress responses in agriculture.
Objectives To evaluate the potential of orbital multispectral imaging in discriminating the 
most effective strategies for reducing plant-parasitic nematode populations, thereby pre-
venting yield losses in coffee production.
Methods Coffee plants were treated with eleven treatments, including Bacillus spp. iso-
lates, commercial biological products, commercial chemical nematicides, and water (con-
trol group). Initial and final nematode populations in the soil were quantified, and surface 
reflectance data were collected using the Planet orbital multispectral sensor. The data were 
classified using the random tree algorithm.
Results The population of plant-parasitic nematodes was reduced by 35.90% and 55.13% 
following the application of B. amyloliquefaciens isolate B266 and B. subtilis isolate B33, 
respectively. Under the conditions of this experiment, multispectral imaging accurately dis-
criminated the most nematicidal treatments, with a global accuracy of 80%.
Conclusions Orbital multispectral imaging can discriminate the most effective treatments 
used for nematode management in coffee plants, highlighting its potential as a supportive 
tool in agriculture.

Keywords Bacillus spp · Biological control · Machine learning · Pest management · 
Remote sensing

Introduction

Biophysical analysis of vegetation by remote sensing is a non-destructive and sustain-
able approach with a wide range of uses in agriculture (Ponzoni et al., 2012; Formaggio & 
Sanches, 2017; Ali et al., 2019). Attack by pests and pathogens alters the reflectance of the 
vegetation canopy due to nutritional imbalances in the plant, and changes in the spectral 
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response of plants can be detected by remote sensors (Ponzoni et al., 2012; Martins et al., 
2017). Plant-parasitic nematodes infect coffee roots and impair plant development (Oliveira 
& Rosa, 2018). The greater the density of nematodes parasitizing the roots, the greater the 
damage and the reflex symptoms in the aerial parts of the plants. Thus, remote sensing may 
be used to monitor different levels of severity of nematodes on coffee plantations (Martins, 
2016; Martins et al., 2017).

The management of plant-parasitic nematodes may require the use of various strategies, 
including preventive practices, crop rotation, the use of antagonistic plants, host resistance, 
fallow, physical methods, and the application of chemical and/or biological nematicides 
(Coyne et al., 2018). The cleaning of equipment and the use of planting materials free of 
nematodes are the main procedures used to hinder the dispersion of these pathogens (Fer-
raz et al., 2010). Fallow and solarization are useful control methods for nematodes but 
must be adopted before coffee planting. Crop rotation and the use of antagonistic plants 
are two of the most important approaches to control plant-parasitic nematodes, although 
they have limited value for perennial crops such as coffee. The number of high yielding 
nematode-resistant cultivars for coffee growers in Brazil is limited (Oliveira & Rosa, 2018). 
When susceptible coffee cultivars are cultivated in nematode-infested soils, the main control 
methods are the application of chemical and biological nematicides. Due to the health and 
environmental risks associated with chemical nematicides, biological control agents have 
been increasingly used for nematode management under tropical conditions (Tolardo et al., 
2019).

Bacteria of the genus Bacillus are widely used as biological control agents for plant 
pathogens (Hashem et al., 2019; Mhatre et al., 2019). A wide range of antagonistic com-
pounds produced by Bacillus species can suppress different stages of the nematode life 
cycle, especially survival as eggs or active dispersion and penetration into host roots as 
juveniles or adults (Liu et al., 2013; Bruzos & Grayston, 2019; Mhatre et al., 2019). Bacil-
lus-based formulations have been used for nematode control in soybean (Kang et al., 2020), 
common bean (Fernandes et al., 2013), tomato (Fernandes et al., 2014), and coffee (Tolardo 
et al., 2019).

In general, the assessment of the efficacy of bioproducts and chemical nematicides relies 
on analyses of soil and plants, which may be laborious, time-consuming, and expensive. 
Since coffee plants infected by nematodes have a spectral variation in their leaves (Martins 
et al., 2017), remote sensing may be used to detect and map nematode-infected plants in the 
field under controlled experimental conditions. In this case, orbital multispectral imaging 
may discriminate plant responses to different management approaches.

This study proposes that multispectral imaging can distinguish the effectiveness of chem-
ical and biological nematicides in coffee plantations under field conditions. To validate this 
hypothesis, the research aims to assess the capability of orbital multispectral imaging to 
differentiate between strategies aimed at reducing populations of plant-parasitic nematodes 
on a commercial scale.
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Materials and methods

The steps of this work were carefully defined to evaluate the performance of orbital multi-
spectral image in the discrimination of more nematicidal treatments. The overall framework 
of the research is shown in Fig. 1.

Experimental conditions

The study was carried out in the municipality of Monte Carmelo, MG, Brazil (18°41′59″S, 
47° 33′53″W; 826 m altitude, Tropical climate with dry winters) in an area of 15,113 m2 
with 55 plots cultivated with Coffea arabica L. cultivar “Bourbon Amarelo” and drip irri-
gated (Fig. 2). The plantation was established in 2013, with a spacing of 3.8 m between 
rows and 0.7 m between plants. The experimental area, plots, and plants were georefer-
enced using centimeter-accuracy coordinates obtained with Topcon HiPer V dual-frequency 
GNSS receivers (L1/L2) through real-time kinematic (RTK) positioning. Flags and ribbons 
were set to identify the plants to be assessed throughout the experiment.

This study consisted of three field stages. In the first stage, held in the week of September 
23, 2019, soil samples were collected to determine the initial populations of total plant-
parasitic nematodes and the first application of the chemical and biological nematicides 
was performed. The second stage was carried out in the week of November 25, 2019, with 
the second application of treatments. In the week of March 12th, 2020, the third stage was 
carried out, with the acquisition of orbital image and the collection of soil samples to deter-
mine the final populations of plant-parasitic nematodes per plot. The method for evaluating 
nematode populations will be detailed in the nematological analysis section.

The corresponding dates have been chosen due to the ideal conditions observed at this 
time of year for the life cycle of nematodes: phytonematodes are obligate parasites and need 
metabolically active roots to fully develop their life cycle. Soil temperatures between 25 ℃ 
and 30 ℃ and soil moisture between 40% and 60% of field capacity (when all soil micro-
pores are filled with water) are ideal for nematode development.

It should be noted that drip irrigation (the irrigation system implemented in the plot of 
this experiment) only provides enough water to keep the coffee plants turgid and with suffi-
cient metabolism to pass stress phases (between May and September). Only when the rainy 

Fig. 1 Overall flowchart of methodology
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season begins (beginning of September for the Cerrado region of Minas Gerais), conditions 
become favorable for nematodes.

Biological and chemical treatments

The experiment was arranged in a randomized design with 11 treatments and five replicates 
(Fig. 3), with each experimental plot consisting of 28 plants, with two plants at each end 
used as buffer zone. All bacterial isolates and commercial products were applied on the soil 
surface on both sides of each plant using a backpack sprayer. A spray volume of 500 L ha− 1 
was used and covered a 50-cm-wide band under the plant canopy. The organic materials 
present on the soil surface, such as leaves and small branches, were removed before the 
application and replaced after the soil treatment.

For the management of plant-parasitic nematodes, coffee plants were treated with seven 
Bacillus isolates separately (B. subtilis isolates B18, B202 and B33; B. thuringiensis isolate 
B22; B. safensis isolate B53; B. amyloliquefaciens isolate B266; Bacillus methylotrophicus 
isolate B05). The isolates belong to the Laboratory of Microbiology and Plant Pathology of 
the Federal University of Uberlândia – Campus Monte Carmelo and were applied at a dose 
of 4 L ha-1 and with a concentration of 1 × 109 CFU (colony forming unit) mL-1. In addition, 
in isolated plots the plants were treated with a commercial biological product based on B. 
subtilis + B. licheniformis (CB – commercial biological treatment; dose of 300 g of product 
ha-1); combined application of abamectin (dose of 375 mL ha-1) (first application) + appli-
cation of commercial biological product based on B. subtilis + B. licheniformis (dose of 
300 g of product ha-1) (second application) (CCB - commercial chemical and biological 

Fig. 2 Location of the experimental field in Monte Carmelo, Minas Gerais, Brazil. In (A) the analyzed 
orbital image of the Planet sensor.In (B) the area is represented in an aerial image
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treatment); and a commercial chemical nematicide based on fluensulfone (CC – commer-
cial chemical treatment; dose of 2 L ha-1). Water was applied as a control (CT – Control 
treatment).

Non-commercial bacterial isolates were streaked onto Petri dishes containing solid 
medium 523 (Kado & Heskett, 1970) and incubated at 25 °C for 48 h. After that, 1 cm³ of 
the colonized medium was transferred to 250 mL conical flasks containing liquid medium 
523. The flasks were shaken at 25 ± 2 °C and 150 rpm for 5 days in the dark. The bacterial 
suspensions adjusted to OD 600 = 1.8 corresponding to approximately 1 × 109 CFU mL− 1. 
The choice of this concentration was based on liquid formulations of commercial products 
based on Bacillus spp.

Nematological analysis

Soil samples were collected on September 23, 2019 (initial population) and March 12th, 
2020 (final population). Approximately 150 cm3 of soil was collected from the rhizosphere 
(up to 20 cm deep) of the central plant of each experimental plot. In the laboratory, nema-
todes were extracted by the centrifugal flotation method (Jenkins, 1964). The experimen-
tal area was initially infested on average with 247 J2/150 cm3 of soil of total nematodes 
(including genera Pratylenchus, Meloidogyne, Rotylenchulus), considering that the J2 (sec-
ond juvenile stage) is the infective stage of the nematode. Furthermore, in the area there is 
an annual calendar of insecticide and fungicide applications to control pests and diseases, 
however nematicides have not been applied for control.

The difference between the values of the final (March 12th, 2020) and initial (September 
23, 2019) populations of plant-parasitic nematodes in each plot was used to evaluate the 
effectiveness of the treatments. The effects were classified into three categories based on the 
magnitude of the nematode population reduction. These categories are: high reduction of 
individuals (High effect) for reductions above 15%, moderate reduction or a slight increase 
of individuals (No effect) for reductions between 15% and increase up to 25%, and increase 

Fig. 3 Distribution of treatments in the experimental field. CB - commercial biological treatment; CCB 
- commercial chemical and biological treatment; CC - commercial chemical treatment; CT – control 
treatment
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of individuals (Negative effect) for cases where the nematode population increased above 
25%. These classifications were determined by comparing nematode reproduction factors 
based on the control treatment (CT), with specific limits defined to categorize the degree of 
reduction or increase in individuals.

Data processing

Acquisition of multispectral image

Orbital image was obtained from the Planet sensor on March 12th, 2020. The PS2 (telescope 
name) instrument was used from the PlanetScope constellation with a bayer-mask CCD 
sensor and a spatial resolution of 3 m. The spectral bands of this instrument are Blue (455–
515 nm), Green (500–590 nm), Red (590–670 nm) and NIR (780–860 nm). This image has 
a surface reflectance product suitable for analytical and visual applications with a 3b pro-
cessing level. The frame size was approximately 24 km x 8 km. The image was deposited 
in a repository (www.planet.com), after atmospheric and geometric corrections; that is, the 
pixels were orthorectified and presented in surface reflectance.

According to Planet imagery product specifications (2022), for atmospheric correction, 
atmospheric models are used using MODIS water vapour, ozone and aerosol data, provid-
ing reliable data and consistent surface reflectance scenes. Still according to Planet imagery 
specifications, the geometric corrections applied to this product correct optical distortions 
caused by optical sensors and band co-registration.

Vegetation indices

In order to better characterize each treatment, consolidated spectral indices of vegetation 
were calculated (Table 1). Vegetation indices are mathematical formulations used as an 
image processing technique to analyze the spectral behavior of vegetation reflectance, 
potentiating the discrimination of agricultural targets. In this study, vegetation indices 
designed to estimate vegetation biomass, plant vigor, and leaf pigments were used: NDVI – 
Normalized Difference Vegetation, VARI – Visible Atmospherically Resistant Index, ARVI 
– Atmospherically Resistant Vegetation Index, SR – Simple Ratio, CVI – Chlorophyll Veg-
etation Index, GNDVI – Green Normalized Difference Vegetation Index, MPRI – Modi-
fied Photochemical Reflectance Index, TGI – Green Triangular Index, and SIPI – Structure 
Insensitive Pigment Index.

Supervised classification using the random tree algorithm

To evaluate the potential of using images to discriminate between the most effective nema-
ticidal treatments, a decision tree-based algorithm was applied, following the methodology 
outlined in remote sensing studies of coffee trees by Marin et al. (2021). Specifically, the 
study opted for the random tree algorithm over random forest, as indicated by Mishra and 
Ratha (2016), who found random tree classification to be marginally superior in certain 
contexts. The decision tree structured algorithm, such as random tree, was chosen for its 
ability to analyze multispectral or hyperspectral imagery data and classify different treat-
ments based on their spectral signatures.
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Machine learning techniques allow systematic processing and classification of remote 
sensing data. In this process, the operator identifies some of the pixels belonging to the 
desired classes, allowing the algorithm to locate the other pixels belonging to those classes. 
The overall processing is based on pre-established statistical rules, including the random 
tree algorithm, which is used when the dependent variable is qualitative (Kalmegh, 2015; 
Zanotta et al., 2019).

The data were subjected to cross-validation, with random division into 10 data sets 
(Dash, 2013; Kuhn & Johnson, 2013). After tests with empirical values, zero was assigned 
to the maximum depth of the random tree making it unlimited. Then, a model was adjusted 
using all samples, except for the first subset, so that at the end, all data were trained and 
tested by the random tree algorithm using the Weka 3.9.4 software (Witten & Frank, 2002).

The extraction of surface reflectance from the bands and spectral indices was performed 
for the three central plants of each plot, which were georeferenced and positioned on the 
Planet image, resulting in a data set of 165 sample elements (3 plants for each of the 55 
plots). Segmentation and labeling of each sample element was performed using the ROI 
(Region of Interest) tool of the software Envi 5.0 (Exelis Visual Information Solutions, 
Boulder, Colorado).

Data mining was previously performed to select the best data sets for each classification. 
These sets are detailed below.

Classification of the most nematicidal treatments

The classification was performed with the objective of verifying the discrimination potential 
of the radiometric dataset of the orbital image. The radiometric dataset was composed of B, 
G, R, NIR bands and the vegetation indices NDVI, CVI, GNDVI, MPRI, VARI, SR, TGI, 

Table 1 Vegetation indices used in this study
Vegetation indices Formula Reference
NDVI (NIR−R)

(NIR+R)
Rouse et al. (1974)

CVI NIR ∗ R
G2

Vincini et al. (2008)

GNDVI (NIR−G)
(NIR+G)

Gitelson et al. (1996)

MPRI (G−R)
(G+R)

Yang et al. (2008)

VARI (G−R)
(G+R−B)

Gitelson et al. (2002)

SR (R)
(NIR)

Jordan (1969)

TGI G − (0,39 ∗ R) − (0,61 ∗ B) Hunt et al. (2011)

ARVI (NIR − (2∗R)+B)
(NIR+(2∗R)+B)

Kaufman and Tanre (1992)

SIPI (NIR −B)
(NIR −R)

Zarco-Tejada (2000)

NDVI (Normalized Difference Vegetation); CVI (Chlorophyll Vegetation Index); GNDVI (Green 
Normalized Difference Vegetation Index); MPRI (Modified Photochemical Reflectance Index); VARI 
(Visible Atmospherically Resistant Index); SR (Simple Ratio); TGI (Green Triangular Index); ARVI 
(Atmospherically Resistant Vegetation Index); SIPI (Structure Insensitive Pigment Index). R = red 
wavelength (590–670 nm); G = green wavelength (500–590 nm); B = blue wavelength (455–515 nm); 
NIR = near infrared wavelength (780–860 nm)
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ARVI, and SIPI. The classes for nematode control were: High effect; No effect and Nega-
tive effect.

Classification accuracy analys

A confusion matrix was created to assess the accuracy of the classifications (Sartori et al., 
2009; Martins et al., 2017). Errors of commission and omission of the confusion matrices 
were analyzed using the software Weka. The error of commission is the error of assign-
ing a pixel to one class when it belongs to some other reference class (Eq. 1). The error of 
omission, as seen in Eq. 2, occurs when the pixels belonging to the reference class was not 
recognized by the classifier. Both equations are derived from the confusion matrix.

 
Eco =

X+i − Xii

X+i
 (1)

Where Eco is the error of commission; Χ+i is the sum of the column i of the confusion 
matrix; Χii is the diagonal value of column i.

 
Eo =

Xi+ − Xii

Xi+
 (2)

Where Eo i is the error of omission; Χi+ is the sum of line i of the confusion matrix; Χii = diag-
onal value of line i.

From the confusion matrix and using the software Weka, the global accuracy (%), which 
uses only the elements that express the real agreement (main diagonal of the matrix), and the 
Kappa coefficient (Cohen, 1960) (Eq. 3) was calculated. This later considers all elements of 
the confusion matrix in its calculation. The kappa index varies from 0 to 1. The higher its 
value, the better the classification.

 
Kappa =

Po − Pe

1 − Pe
 (3)

Where Po is the relative observed agreement among raters, and Pe is the hypothetical prob-
ability of chance agreement.

The visual representations of the discrimination potential of the proposed methods, 
including image analysis, manual segmentation, and classification methods, were created 
using QGIS 3.12.2 software (QGIS Development Team, 2009). An aerial survey image from 
a conventional aerial sensor, chosen for its higher spatial resolution, was used as a refer-
ence for the maps to ensure accurate cartographic representation. The blue color was used 
to represent the correct classifications, while the wrong classifications were represented by 
the red color.
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Results

Table 2 shows that treatments B33, B266, B202, CB and CCB had a reduction in plant 
parasitic nematode populations. Thus, treatments that resulted in reductions above 15% 
were classified as a high reduction of individuals and a high nematicidal effect. The highest 
reduction of nematodes was observed after soil treatment with Bacillus subtilis isolate B33 
(− 55.13), followed by B. amyloliquefaciens B266, Bacillus subtilis isolate 202, CB and 
CCB (Table 2). Treatments B18 and B53, which resulted in reductions of less than 15% and 
an increase in nematodes of less than 25%, were classified as having no effect. In the plots 
used as control (CT), a reduction of approximately 20% in the total number of nematodes 
was observed. This variation occurs naturally in field situations due to climatic changes 
affecting soil conditions, such as temperature and moisture fluctuations (Rani & Resha, 
2018). The application of B. subtilis isolate B18 and B. safensis isolate B53 resulted in an 
ineffective treatment, similarly to the application of water (Table 2). Soil treatment with B. 
thuringiensis isolate B22, B. methylotrophicus isolate B05, and the chemical nematicide 
fluensulfone increased nematode populations by up to 56.41% (Table 2).

Using the random tree algorithm to classify the multispectral image from the Planet 
sensor, it was observed that the global accuracy and Kappa coefficient values were 80% 
and 0.68, respectively. The confusion matrix of the data from the orbital multispectral sen-
sor revealed that the highest errors of omission (26.6%) and commission (23.2%) were 
observed for the negative effect class (Table 3). The best classification result was observed 
for the class with a high effect class (Table 3), with the lowest omission error (14.6%) and 
commission error (17.9%), indicating that the highest accuracy was achieved for the most 
nematicidal class.

Figure 4 depicts the classification results generated by the random tree algorithm. In the 
map, numerical values denote identified classes, where red signifies incorrect classifications 
and blue denotes correct classifications. The figure highlights areas where treatments were 
less effective or where there was an increase in nematode populations, which may be influ-
enced by the natural spatial variability of the experimental field. In zones where treatments 

Treatment Repro-
duction 
factor 
(RF)¹

% reduc-
tion (-) or 
increase 
(+) of RF²

Class

Bacillus subtilis isolate B33 0.35 − 55.13 High 
effectB. amyloliquefaciens isolate B266 0.50 − 35.90

B. subtilis isolate B202 0.51 − 34.61
B. subtilis + B. licheniformis (CB) 0.64 − 17.95
Abamectin + B. subtilis + B. licheni-
formis (CCB)

0.66 − 15.38

Water (CT) 0.78 No 
effectB. subtilis isolate B18 0.79 + 1.28

B. safensis isolate B53 0.94 + 20.51
B. thuringiensis isolate B22 1.22 + 56.41 Neg-

ative 
effect

B. methylotrophicus isolate B05 1.28 + 64.10
Fluensulfone (CC) 1.31 + 67.95

Table 2 Effect of chemical and 
biological treatments on the 
population of plant-parasitic 
nematodes (PPN) in coffee plants 
under field conditions

¹Reproduction factor (RF = final 
population/initial population) 
for each treatment ²Expressed as 
the percent difference between 
the reproduction factor in 
each treatment and the control 
(water)
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were effective, these are concentrated in specific locations, showing that treatments with B. 
subtilis and other biological products had a significant impact on reducing nematodes.

Discussion

The study utilized orbital multispectral images to discriminate nematode management strat-
egies in coffee plants. This non-destructive method provided a comprehensive view of plant 
responses to nematode stress compared to traditional soil sampling and laboratory analysis, 
which are laborious and costly. Planet orbital images have the potential to allow for continu-
ous and large-scale monitoring, offering valuable data for agricultural management.

Studies such as Rodriguez-Gallo et al. (2023) show that drones offer higher spatial reso-
lution and operational flexibility, allowing images to be captured at critical moments in the 
coffee growing cycle. However, limited space coverage and the need for frequent flights for 
continuous monitoring can be disadvantages. Proximal sensing, while providing extremely 

Fig. 4 Pictorial representation of the discrimination of nematicidal treatments by the random tree algo-
rithm. Class 1 = high reduction of individuals (High effect); Class 2 = moderate reduction of individuals 
(No effect); Class 3 = increase of individuals (Negative effect)

 

Class High 
effect

No effect Nega-
tive 
effect

∑ Eo 
(%)

High effect 64 5 6 75 14.6
No effect 6 35 4 45 22.2
Negative effect 8 4 33 45 26.6
∑ 78 44 43 165
Eco (%) 17.9 20.4 23.2

Table 3 Confusion matrix of the 
nematode classes obtained from 
an orbital multispectral sensor

Eco (%) = Error of commission. 
Eo = Error of omission
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detailed data, is limited in terms of area covered and requires significant data collection 
effort in the field.

Specifically, the Planet sensor used in this study, with a spatial resolution of 3 m and spe-
cific spectral bands (Blue, Green, Red, and NIR), enabled the acquisition of surface reflec-
tance data from coffee plants, essential for classifying the different treatments, as shown 
in Pereira et al. (2022). The choice of the Planet sensor was based on its ability to provide 
atmospherically and geometrically corrected images, ensuring the accuracy of spectral data.

Image classification was performed using the random tree algorithm, which proved to be 
effective in discriminating the most nematicidal treatments with an overall accuracy of 80% 
and a Kappa coefficient of 0.78, which indicates a substantial degree of accuracy (Landis & 
Koch, 1977). This machine learning method allowed a detailed analysis of the spectral vari-
ations of plants, being a significant advance over conventional biological analysis methods. 
The study by Martins et al. (2017) used hyperspectral data and RapidEye images to discrim-
inate between healthy and nematode-infected coffee plants, achieving an overall accuracy 
of 78% and a Kappa coefficient of 0.71. In comparison, our study used multispectral data 
and achieved slightly higher accuracy, highlighting the effectiveness of vegetation indices 
and the random tree algorithm in discriminating plant responses to nematicide treatments.

The high classification accuracy in areas with a significant treatment effect suggests that 
effective nematicide treatments result in detectable spectral changes in the plants. The use of 
the random tree algorithm proved to be effective in discriminating treatment classes based 
on spectral data. Although random forest may offer slight improvements in accuracy, the 
simplicity and computational efficiency of random tree justify its choice in this study. Fur-
thermore, the use of cross-validation and random division of the data into 10 sets ensured 
the robustness of the model.

The highest omission and commission errors occurred in the class indicating an increase 
in nematode population, highlighting the difficulty the algorithm faced in distinguishing 
areas where ineffective treatments or nematode populations increased. The errors were 
greater in the first and last row, potentially due to variations in the efficiency of the drip 
irrigation, creating microenvironments with different soil moisture levels and impacting the 
spectral response of plants.

Although low, the altimetric variation in the experimental area can influence the dis-
tribution and drainage of irrigation water, affecting plant health and nematode infestation. 
This introduces noise into the spectral data, making precise classification more difficult by 
the algorithm. A similar condition occurred in Giridhar et al. (2016), who investigated the 
spectral response of different soils under varying moisture conditions. The results showed 
that soil moisture variability affected spectral reflectance, introducing noise into the data 
and making accurate classification difficult. This variability may occur due to the uneven 
distribution of irrigation water, influenced by elevation variations, affecting plant health and 
nematode infestation. Furthermore, the initial condition of the plants significantly impacts 
the results. Healthier plants or those with better vigor may respond differently to treatments, 
and physiological variation among plants within the same treatment can result in varied 
responses captured in the spatial analysis.

Regarding the treatments used, the results support the use of biological control agents, 
particularly Bacillus isolates, as a viable alternative to chemical nematicides, since this 
application resulted in nematode population reductions of 50.45% (B. amyloliquefaciens) 
and 65.12% (B. subtilis), respectively. These findings align with previous research indicat-
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ing the efficacy of Bacillus species in suppressing nematode populations (Liu et al., 2013; 
Bruzos & Grayston, 2019; Mhatre et al., 2019). The ability of these isolates to produce a 
wide range of antagonistic compounds that target various stages of the nematode life cycle 
could explain their high nematicidal activity.

Limitations and future challenges

The methodology applied in this study is potentially applicable to other crops and agricultural 
conditions, standing out for its ability to provide continuous and large-scale monitoring. The 
accurate classification of the most nematicidal treatments using orbital multispectral imag-
ing and machine learning can be generalized to different regions and soil types, provided it 
is adequately calibrated.

Although the results are promising, it is necessary to consider the limitations imposed by 
environmental variations, such as topography and soil moisture, which can introduce noise 
into the spectral data. Additionally, the physiological variability of plants within the same 
treatment can affect the classification accuracy.

Future investigations should focus on integrating different data sources, such as hyper-
spectral, proximal sensors, and drone data, to increase the spatial and temporal resolution 
of the analyses. The application of the Random Tree algorithm showed good classification 
capabilities but may be limited by the complexity of the interaction between nematicide 
treatments and the natural characteristics of the experimental field. Exploring deep learning 
techniques, such as convolutional neural networks (CNNs), could offer significant improve-
ments in classification ability, especially when dealing with complex and heterogeneous 
data. Cross-validation and calibration of the models with larger datasets can also enhance 
the accuracy and robustness of the classifications.

Additionally, it is important to conduct validation studies in different field conditions 
and with different coffee varieties to confirm the robustness and general applicability of the 
proposed methodology. The development of integrated management strategies that consider 
the spatial and temporal variability of nematode infestations can contribute to more sustain-
able and efficient agricultural practices.

Conclusions

This study aimed to evaluate the potential of orbital multispectral imaging to discriminate 
the effectiveness of different nematicide treatments in coffee plantations. The results con-
firm that orbital remote sensing can effectively identify spectral changes in coffee trees asso-
ciated with infection with plant-parasitic nematodes, as well as treatments used to reduce 
populations of these pathogens.

The results showed that treatments with B. subtilis (B33) and B. amyloliquefaciens 
(B266) were particularly effective, significantly reducing nematode populations. The ran-
dom tree algorithm yielded a global accuracy of 80%, underscoring its reliability in classify-
ing treated areas based on their spectral responses.

However, differences in topography, irrigation, soil type, and climate conditions can 
affect the spectral signatures of plants and lead to errors in the classification process. Thus, 
the complexity of the interactions between nematicide treatments and environmental factors 
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suggests that future management strategies should account for these natural variations to 
improve accuracy.

For practical applications, this approach could complement traditional nematode control 
and provide an integrated strategy for sustainable agriculture. This study highlights the need 
to refine remote sensing techniques and algorithms to improve nematode control strategies. 
Future research should integrate other methods, such as hyperspectral imaging and drone-
based platforms, to improve detection. In conclusion, the ability to non-destructively and 
accurately monitor nematode populations using orbital multispectral imaging represents a 
significant advancement, offering a promising tool for enhancing crop health and yields.
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