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Abstract
Given the high costs of soil sampling, low and extra-low sampling densities are still being 
used. Low-density soil sampling usually does not allow the computation of experimental 
variograms reliable enough to fit models and perform interpolation. In the absence of geo-
statistical tools, deterministic methods such as inverse distance weighting (IDW) are rec-
ommended but they are susceptible to the “bull’s eye” effect, which creates non-smooth 
surfaces. This study aims to develop and assess interpolation methods or approaches to 
produce soil test maps that are robust and maximize the information value contained in 
sparse soil sampling data. Eleven interpolation procedures, including traditional methods, a 
newly proposed methodology, and a kriging-based approach, were evaluated using grid soil 
samples from four fields located in Central Alberta, Canada. In addition to the original 0.4 
ha⋅sample−1 sampling scheme, two sampling design densities of 0.8 and 3.5 ha⋅sample−1 
were considered. Among the many outcomes of this study, it was found that the field aver-
age never emerged as the basis for the best approach. Also, none of the evaluated interpo-
lation procedures appeared to be the best across all fields, soil properties, and sampling 
densities. In terms of robustness, the proposed kriging-based approach, in which the nugget 
effect estimate is set to the value of the semi-variance at the smallest sampling distance, 
and the sill estimate to the sample variance, and the IDW with the power parameter value 
of 1.0 provided the best approaches as they rarely yielded errors worse than those obtained 
with the field average.

Keywords Soil properties · Robust interpolator · Geostatistics · Inverse distance 
weighting · Kriging

In the 2021 Precision Agriculture Dealership Survey (Erickson & Lowenberg-Deboer, 
2021), grid and zone sampling are among the most often offered and adopted precision ser-
vices in the United States. According to the same survey, the use of grids with the common 
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cell size of 1 ha predominates over zone sampling, while many continue to sample using 
larger grids.

Thus, a scenario in which a field of ≥ 100 ha is soil sampled using grid cells of > 1 
ha would not be uncommon. In such a case, the total number of soil samples would be 
smaller than 100, whereas 100 is recommended as the minimum sample size to obtain 
adequate experimental variograms for soil properties (Webster & Oliver, 1992). It fol-
lows that to produce an interpolated surface, at least some of the available deterministic 
interpolation methods should be considered. Among them, inverse distance weighting 
(IDW) is one of the most popular as it has no limitations on the number of samples, is 
computationally efficient, and easy-to-apply (Kravchenko, 2003).

As IDW is an exact interpolator (i.e., it predicts values identical to observed values 
at sampling locations), a known issue with maps obtained with this method is the influ-
ence of isolated extreme values on their surroundings, which creates an effect called 
“bull’s eye.” Although many modifications of the original IDW method (Shepard, 1968) 
have been tested and compared to other interpolation methods (Franke & Nielson, 1980; 
Robinson & Metternicht, 2006), further evaluation and improvement of interpolation 
techniques for low-density soil sampling is needed.

One could argue that when measurements are sparse or weakly correlated in space, 
an interpolation method using co-variables observed at a higher resolution (e.g., satel-
lite imagery, soil sensing techniques) may improve interpolation accuracy (Goovaerts, 
1999). This is a valid point, but it assumes that the co-variables are spatially cross-
correlated with the target variable (Isaaks & Srivastava, 1989; Webster & Oliver, 2007). 
If this assumption is proven to be wrong for co-variables for which historical or free-
access datasets are available, new information must be collected, which may not be fea-
sible due to additional costs or lack of time.

Clearly, sampling soils with low-density grids imposes difficulties in extracting use-
ful information from the data. Thus, more efficient and accurate sampling strategies for 
precision agriculture practitioners and the industry are still required. Since the 1990s 
(Larocque et  al., 2007; Laslett & McBratney, 1990; Wadoux et  al., 2019), research 
results have supported that slight modifications made to a grid sampling design (e.g., 
by collecting extra samples close to grid sampling nodes) can improve the estimation 
of variogram model parameters and decrease kriging interpolation errors. Nevertheless, 
the 2021 survey mentioned above suggests that, in large part, soil sampling data may 
continue to be collected in agricultural fields using the traditional grid sampling design 
at low or extra-low resolution.

Therefore, methodologies or approaches that maximize the value of datasets with too 
small a size to use classical geostatistical methods must be developed and explored further. 
Sobjak et al. (2023) used samples collected at a density of approximately 3 samples⋅ha−1 to 
build and test an automated process to improve the selection of the parameters that maxi-
mize the accuracy for ordinary kriging (OK) and IDW. These authors reported an improve-
ment in the interpolation accuracy when the best interpolation parameters were identified 
using a newly proposed assessment index (i.e., effective spatial dependence index). Others 
have focused on evaluating the potential of machine learning algorithms for interpolating 
soil properties. Hengl et al. (2018) proposed an approach that uses the distance between 
samples as co-variables in a random forest model to perform spatial interpolation. Pereira 
et al. (2022b) reported a potential improvement in the interpolation accuracy of soil proper-
ties when using a combination of support vector machines and IDW to interpolate samples 
collected from one field at densities ranging from 1.4 to 5.7 samples⋅ha−1 when compared 
to OK and IDW. However, there is still a lack of comprehensive comparison of different 
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interpolation methods and the definition of universal approaches for interpolating low-den-
sity soil sampling datasets.

The objective of this study was to develop alternative interpolation procedures and to 
assess them in comparison with other methods to produce soil test maps that are robust 
and maximize the information value contained in datasets collected with low soil sampling 
density.

Material and methods

Study area and data

Soil samples were collected from four fields in Central Alberta, Canada (Fig. 1a). The four 
fields were mainly grown under wheat, barley, and canola crop rotation. A summary of the 
field characteristics is presented in Table 1.

Fig. 1  Experimental sites: a map of the Canadian province of Alberta with a zoomed-in window show-
ing the distribution of the four experimental sites located within a region known as Central Alberta, and b 
field boundaries and grid centroids representing the three sampling design densities—different shapes, and 
colors are used to represent the distribution of the sampling locations for 0.4 (solid black circles), 0.8 (hal-
low red circles), 3.5 (hallow blue squares) ha⋅sample−1, and validation points (solid green diamonds); the 
latter are only available for Field 1 (Color figure online)

Table 1  Description of the studied fields

Field Area (ha) Central Coordinates Predominant soil subgroup ASIC (2001)

1 43 51° 46′ 11.1″ N 114° 05′ 19.2″ W Orthic Black Chernozem
2 92 51° 46′ 22.8″ N 114° 00′ 57.4″ W Orthic Black Chernozem
3 126 51° 39′ 23.8″ N 114° 15′ 20.0″ W Orthic Black Chernozem
4 66 51° 40′ 27.2″ N 112° 47′ 54.0″ W Southwest—Orthic Humic Vertisol

Northeast—Vertic Dark Brown 
Chernozem and Orthic Dark Brown 
Chernozem
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All soil samples from 0 to 0.15 m deep were collected during Fall 2022, using grids of 
cells of about 0.4 ha. A total of 128 (including 20 independent validation samples), 216, 
274, and 144 samples were collected from Fields 1, 2, 3, and 4, respectively (Fig. 1b). The 
locations for the validation samples from Field 1 were chosen based on the spatial vari-
ability of the field data observed in previous years; see the diamond shapes in Fig. 1b for 
Field 1. These validation samples were collected on the same day and under the same con-
ditions as the grid samples from this field. All samples were sent to the same laboratory 
for the analysis of their chemical properties. The reported values for pH, plant-available 
phosphorus (P), and potassium (K) were used to compare the interpolation approaches and 
methods. P and K values were reported in parts per million (ppm), while the pH followed 
the scale from 0 (most acidic) to 14 (most basic). These three soil chemical properties were 
chosen to evaluate the interpolation methods due to their relevance in the soil management 
practices performed in precision agriculture. Thematic maps from pH are often used to 
determine areas with lower pH values, which can be amended through site-specific lime 
application. Similarly, prescription maps can be generated by mapping the spatial distribu-
tion of P and K to address and improve the levels of these two macronutrients in regions 
within the field where their availability is below the ideal values for crop development.

From the original 0.4 ha⋅sample−1 sampling scheme, samples were gradually removed 
to create sampling design densities of 0.8 and 3.5 ha⋅sample−1, thus, broadening the scope 
of the comparison. Only regular grid designs were considered because they still predomi-
nate over other sampling designs (Erickson & Lowenberg-Deboer, 2021). The three sam-
pling designs for the four fields are presented in Fig. 1b.

Conventional interpolation methods

The three datasets from each of the four fields were submitted to Shepard’s original IDW 
algorithm (Shepard, 1968). This algorithm requires setting two parameters: the power and 
the search neighborhood. The power value controls the influence of the closest samples 
to an interpolated location—the higher the power, the greater the influence of the sam-
ples closer to the interpolated point. The search neighborhood is defined by the number of 
points used for estimating the value at the interpolation location; for example, with a search 
neighborhood of 4, the interpolated value is determined from the 4 closest sample data. 
This study used power values of 1 and 2 and a search neighborhood equal to all available 
neighbors (108, 216, 274, and 144 for Fields 1, 2, 3, and 4, respectively) to evaluate Shep-
ard’s original IDW.

An approach, called “Optimal IDW” hereafter, was also evaluated. This approach uses 
brute-force search and Leave One-Out Cross-Validation (LOOCV) to assess a wide range 
of combinations of values for the power and search neighborhood parameters. Power values 
between 1 and 5, in increments of 0.2, and a search neighborhood from 4 to all available 
neighbors, in increments of 1, were tested. Based on the Mean Absolute Error (MAE) from 
this procedure, a combination of both parameters that minimized the MAE was selected. In 
addition, a separate approach in which the power value is set to 0 and the search neighbor-
hood to 1 was evaluated as “Nearest neighbor.” Both approaches described above are vari-
ants of Shepard’s original IDW algorithm (Shepard, 1968).

The local modified Shepard’s IDW interpolator (Franke & Nielson, 1980), another IDW 
variant, uses estimates from a locally fitted polynomial and a limited neighborhood for the 
inverse distance weights calculation to address some of the caveats imposed by the original 
Shepard’s IDW (e.g., the influence of isolated extreme values). This interpolator requires 
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setting two independent parameters that control the neighborhood size for a local quad-
ratic polynomial fitting and inverse distance weights. According to Franke and Nielson 
(1980), properly setting these two parameters can significantly influence the performance 
of this method. In implementing the local modified Shepard’s IDW, a brute-force search 
was employed to select the combination of parameters that minimized the MAE from a 
LOOCV. Neighborhood sizes varying from 4 to all available neighbors, in increments of 1, 
were tested for both parameters.

The original OK, called “Fitted variogram model” hereafter, was evaluated as an inter-
polation option in the geostatistical approach. Thus, using the R library gstat (Pebesma, 
2004), experimental variograms were computed for all datasets from all fields, soil prop-
erties, and sampling designs. Spherical, exponential, and Gaussian models were fitted to 
each experimental variogram, and the best model was selected based on the residual sum 
of squares for a weighted least-squares fitting procedure. Even though Webster and Oliver 
(1992) recommend 100 as the minimum sample size to obtain adequate experimental vari-
ograms for soil properties, “Fitted variogram model” was used to broaden the discussion of 
results when this minimum number was not reached in this study.

In the following two subsections, two new methods are proposed for interpolating low-
density soil sample data, one model-based and the other model-free.

A modification of the kriging‑based approach

Due to limited information about variability below the shortest sampling distance and the 
small number of pairs of observations available to estimate semi-variances at a number of 
distance lags, fitting a model to an experimental variogram computed from a sparse dataset 
is challenging and highly uncertain. Accordingly, the proposed approach sets the sill and 
the nugget effect to values directly derived from the sample data without passing by the 
nugget-effect and sill estimates obtained from a fitted variogram model.

When data are not correlated, the sample variance is the classical estimator of the popu-
lation variance. Barnes (1991) already raised the awareness that if the data are evenly dis-
tributed in an area with dimensions greater than the range of spatial correlation, the sample 
variance could be a reasonable first estimate of the sill. Based on a different reason lead-
ing to the same outcome, instead of relying on an experimental variogram and variogram 
model parameter estimates that are uncertain due to a small sample size (Larocque et al., 
2007), it is proposed that a sample variance estimated under the assumption of independ-
ence should be used as an alternative to a sill estimate obtained from an experimental vari-
ogram that does not completely represent the correlation structure of the data.

The challenges mentioned above for the sill concern the estimation of the nugget effect 
in a similar way, more particularly the absence (lack) of direct (indirect) information in the 
data about the behavior of the semi-variance function at distances smaller than the shortest 
sampling distance (between grid nodes if regular). Thus, estimating the nugget effect accu-
rately by fitting a variogram model is at the least very difficult or practically impossible, so 
it is proposed that the semi-variance estimate at the shortest sampling distance be used as 
the nugget-effect estimate in that case. This nugget-effect estimator is likely to be biased 
upwards, and the nugget-effect estimates might even approach the sample variance, used 
as the sill estimate. This would then be interpreted as there is no spatial correlation in the 
data, and a flat, pure nugget-effect variogram model would be adopted. The expectation, 
however, is that the generated interpolated surface would be better than the field average 
and as good as the field average otherwise. For comparison purposes, interpolated surfaces 
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were also produced with the nugget effect set to 0 (“Set Sill, and Nugget = 0”), which rep-
resents the theoretical minimum value for this parameter in a variogram model.

Finally, the alternative estimates of the sill and the nugget effect described above are 
inserted in the equation of a spherical variogram model, and an estimate of the range of 
spatial correlation is obtained by fitting the equation to the experimental variogram by least 
squares. A spherical variogram model is preferred to a member of the Matérn family, such 
as the exponential and Gaussian variogram models, because the semi-variance reaches the 
process variance only asymptotically in them. The steps for this modification of the krig-
ing-based approach (“Set Sill and Nugget”) are summarized in Fig. 2.

Proposed modification of the original IDW

In this paper, a new model-free method is also proposed: IDW Smoothed. It postulates that 
a better, more representative interpolated surface can be produced by jointly minimizing 
the difference between an optimized value and the observed value at each sampling loca-
tion and a quantity called “distance gradient” (DG), which indicates the rate of change of 
measurements with distance. Therefore, the following Pareto multi-objective optimization 
procedure is proposed:

1. Define a search domain. The minimum and maximum values from the observed values 
are calculated for a specific soil test. The precision for the values reported in the lab 
results is determined and used as an incremental value to define the search domain (e.g., 
minimum, maximum, and precision of laboratory analysis of 1, 3, and 0.1, respectively, 
were determined; thus, a search domain is defined by all numbers between 1 and 3, in 
increments of 0.1)

2. Randomly select an array of values from inside the search domain with the same sample 
size (number of observations) as the input data. The newly selected values are referred 
to as “trial values.”

3. Calculate the Mean Absolute Error (MAE) between the observed and trial values. Using 
the trial values and the matrix of geographic distances between each sampling location 
and the n − 1 other sampling locations, calculate the distance gradients:

where n is the number of sampling locations, xk is the trial value for the sampling location 
(k) for which the distance gradient is calculated in Eq.  (1), xi denotes the trial value for 
sampling location i, and d(xk, xi) is the geographic distance between sampling locations k 
and i.

Obtain the mean DG by averaging the n DGs.

4. Repeat Steps 2 and 3 for a user-set number of times (trials), with the objective of mini-
mizing the MAE and mean DG. The two objectives are plotted in Fig. 3.

5. Obtain the optimal solution (shown with the red triangle in Fig. 3) by selecting the solu-
tion closest to the origin of the biplot from the Pareto optimal solutions (i.e., the blue 
squares in Fig. 3).

(1)
DGk =

∑n

i = 1

i ≠ k

�xk−xi�
d(xk ,xi)

n − 1
for k = 1, … , n
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Fig. 2  Flowchart explaining the proposed modification of the kriging-based approach to obtain interpolated 
surfaces from soil data collected at low and extra-low sampling densities; OK ordinary kriging
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6. Produce a continuous surface by using the optimized values and their respective spatial 
coordinates in an IDW with n − 1 neighbors for each sampling location and a small 
distance power value (e.g., 1).

A customized script written in Python 3 programming language was developed to 
implement the multi-objective optimization process for the proposed methodology. The 
Optuna library (Akiba et  al., 2019), Nondominated Sorting Genetic Algorithm II (Deb 
et al., 2002), and a total of 3500 trials were used to obtain the Pareto front and select the 
optimal solution for each soil property. In the definition of the search domain, increments 
were 0.1 for pH and 1 ppm for the K and P tests. To compare this method with the original 
IDW (Shepard, 1968), values of 1 and 2 were used for the power parameter (Step 6).

A summary of the 10 interpolation approaches and methods described above and the 
interpolation procedures used in each are provided in Table 2. In addition, for each sam-
pling density, the field average was used as a benchmark.

Data analysis

For a given sampling density and soil property (pH, K, P), the data were standardized 
to a zero mean and a unit variance before performing the interpolation, except for IDW 
Smoothed, where the data span is part of the optimization. The standardized data were 
back-transformed for the report of results.

The Mean Squared Error (MSE) and the G criterion (Eq.  2) proposed by Agterberg 
(1984) were used to assess the performance of the interpolation procedures. The G cri-
terion, which involves the MSE, compares the residuals for a specific approach with the 
residuals obtained if the field average was used:

where MSE is the mean of squared errors for the evaluated method, while  MSEAverage 
denotes the mean of squared error if the field average was used instead for the interpola-
tion. Positive G values indicate an advantage of using the evaluated interpolation method 

(2)G =

(
1 −

MSE

MSEAverage

)
× 100

Fig. 3  Biplot of Mean Distance 
Gradient (DG) versus Mean 
Absolute Error (MAE) for 3,500 
trials (black dots), with the 
Pareto-optimal solutions (blue 
squares) and the optimal solu-
tion (red triangle) (Color figure 
online)



Precision Agriculture 

1 3

Ta
bl

e 
2 

 S
um

m
ar

y 
ta

bl
e 

of
 a

ll 
th

e 
di

ffe
re

nt
 m

et
ho

ds
 a

nd
 a

pp
ro

ac
he

s e
va

lu
at

ed
 in

 th
is

 st
ud

y 
an

d 
th

ei
r r

es
pe

ct
iv

e 
re

fe
re

nc
e 

na
m

e 
us

ed
 fo

r fi
gu

re
s a

nd
 ta

bl
es

a  ID
W

 in
ve

rs
e 

di
st

an
ce

 w
ei

gh
tin

g;
 b P 

ID
W

 p
ow

er
 p

ar
am

et
er

Re
fe

re
nc

e 
na

m
e

B
as

e 
m

et
ho

d
A

pp
ro

ac
h

A
ve

ra
ge

A
ve

ra
ge

Fi
el

d 
av

er
ag

e 
ca

lc
ul

at
ed

 u
si

ng
 th

e 
av

ai
la

bl
e 

sa
m

pl
e 

da
ta

Fi
tte

d 
va

rio
gr

am
 m

od
el

O
rd

in
ar

y 
kr

ig
in

g
Fi

t a
 m

od
el

 to
 a

n 
ex

pe
rim

en
ta

l v
ar

io
gr

am
ID

W
a  P

:1
b

Sh
ep

ar
d’

s I
D

W
Po

w
er

 v
al

ue
 =

 1,
 a

nd
 se

ar
ch

 n
ei

gh
bo

rh
oo

d =
 al

l n
ei

gh
bo

rs
ID

W
 P

:2
Sh

ep
ar

d’
s I

D
W

Po
w

er
 v

al
ue

 =
 2,

 a
nd

 se
ar

ch
 n

ei
gh

bo
rh

oo
d =

 al
l n

ei
gh

bo
rs

O
pt

im
al

 ID
W

Sh
ep

ar
d’

s I
D

W
O

pt
im

iz
e 

w
ith

 re
sp

ec
t t

o 
po

w
er

 a
nd

 th
e 

si
ze

 o
f t

he
 se

ar
ch

 n
ei

gh
bo

rh
oo

d
N

ea
re

st 
N

ei
gh

bo
r

N
ea

re
st 

ne
ig

hb
or

A
ttr

ib
ut

e 
va

lu
es

 to
 th

e 
cl

os
es

t n
ei

gh
bo

r
ID

W
 M

od
ifi

ed
 S

he
pa

rd
Lo

ca
l m

od
ifi

ed
 S

he
pa

rd
’s

 ID
W

O
pt

im
iz

e 
w

ith
 re

sp
ec

t t
o 

th
e 

si
ze

 o
f t

he
 n

ei
gh

bo
rh

oo
d 

fo
r l

oc
al

 p
ol

yn
om

ia
l fi

tti
ng

 a
nd

 in
ve

rs
e 

di
st

an
ce

 w
ei

gh
t c

al
cu

la
tio

n
Se

t S
ill

 a
nd

 N
ug

ge
t

O
rd

in
ar

y 
kr

ig
in

g
U

se
 a

 sp
he

ric
al

 v
ar

io
gr

am
 m

od
el

 w
ith

 th
e 

si
ll 

=
 th

e 
sa

m
pl

e 
va

ria
nc

e 
an

d 
th

e 
nu

gg
et

 e
ffe

ct
 =

 th
e 

se
m

i-v
ar

ia
nc

e 
es

tim
at

e 
at

 th
e 

sh
or

te
st 

sa
m

pl
in

g 
di

st
an

ce
, a

nd
 e

sti
m

at
e 

th
e 

ra
ng

e
Se

t S
ill

, a
nd

 N
ug

ge
t =

 0
O

rd
in

ar
y 

kr
ig

in
g

U
se

 a
 sp

he
ric

al
 v

ar
io

gr
am

 m
od

el
 w

ith
 th

e 
si

ll 
=

 th
e 

sa
m

pl
e 

va
ria

nc
e 

an
d 

th
e 

nu
gg

et
 e

ffe
ct

 =
 0,

 
an

d 
es

tim
at

e 
th

e 
ra

ng
e

ID
W

 S
m

oo
th

ed
 P

:1
Sh

ep
ar

d’
s I

D
W

 a
nd

 o
pt

im
iz

at
io

n 
of

 sa
m

pl
e 

va
lu

es
Po

w
er

 v
al

ue
 =

 1,
 a

nd
 se

ar
ch

 n
ei

gh
bo

rh
oo

d =
 al

l n
ei

gh
bo

rs
ID

W
 S

m
oo

th
ed

 P
:2

Sh
ep

ar
d’

s I
D

W
 a

nd
 o

pt
im

iz
at

io
n 

of
 sa

m
pl

e 
va

lu
es

Po
w

er
 v

al
ue

 =
 2,

 a
nd

 se
ar

ch
 n

ei
gh

bo
rh

oo
d =

 al
l n

ei
gh

bo
rs



 Precision Agriculture

1 3

over the field average. Negative G values imply that the field average and the associated flat 
surface provide a more accurate interpolated surface. A zero G value means equivalency.

Independent validation samples were only available for Field 1, which allowed for vali-
dation at all three sampling densities. For Fields 2, 3, and 4, the samples discarded to pro-
duce the 0.8 and 3.5 ha⋅sample−1 sampling grids were used to validate the results for these 
two densities only (Fig. 1). Cross-validation could have been used but was considered to 
be out of the scope of the study, and biased results could be obtained by cross-validation in 
the case of low-density sampling designs (Wadoux et al., 2021).

A pairwise Levene’s test was employed to evaluate the standard errors calculated 
through the validation samples. When the above-mentioned statistical test rejected the null 
hypothesis (homogeneity of variances) at a significance level of 0.05 for a pair of interpola-
tion procedures, their interpolation accuracy was considered significantly different since 
there was heterogeneity in the variance of their standard errors. Data processing, interpo-
lation, and statistical analysis were performed using customized scripts written in the R 
language (R Core Team, 2022).

Results and discussion

The descriptive statistics for the different grid sampling designs and validation samples 
are reported in Table  3. For Field 1, the mean and median values of the K and P vari-
ables are slightly smaller for the validation set than for the grid samples, whereas the con-
trary is observed for pH. For Fields 2, 3, and 4, where the samples removed from the 0.4 
ha⋅sample−1 grid sampling design were used for validation, the descriptive statistics for 
grid and validation samples are very similar. From the highest sampling density down to 
0.8 and 3.5 ha⋅sample−1, the number of samples is reduced by about 50 and 90%, respec-
tively. However, the means and medians calculated from the grid samples in a given field 
for a given soil property present only slight changes across the different sampling densi-
ties. This indicates that representative samples from the underlying surface were collected 
regardless of the sampling density.

The experimental variogram from the highest sampling density available 
(0.4 ha⋅sample−1) and a weighted least-squares fitting procedure were used to obtain vari-
ogram model parameters estimates for each field and soil property (Table 4). The obtained 
values were considered the best available estimates of the spatial structure of the underly-
ing surface from which the samples were collected. Note that for this sampling density, the 
number of samples available was higher than 100 (Table 3), as Webster and Oliver (1992) 
recommended.

An analysis of Table 4 presents differences and similarities in the spatial variability of 
soil properties within and across fields. For example, for Field 1, an exponential model 
was selected for K. In contrast, a spherical model was selected for P and pH, indicating a 
difference in the behavior of the spatial correlation in the data. For this same field, all soil 
properties presented a strong spatial structure (classification modified from Cambardella 
et al., 1994), whereas, for Field 2, a strong spatial structure is only observed for pH and 
weak for K and P. In general, the different spatial structure classes in Table 4 highlight the 
differences in the spatial variability across the fields and soil properties, an important data 
characteristic when evaluating different interpolation methods.

Box plots showing the distribution of interpolation errors for the 11 procedures evalu-
ated for Field 1 (3 variables × 3 sampling densities) are presented in Fig. 4. In each panel, 
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box plots are sorted by increasing values of MSE from top to bottom. The letters a and b 
beside the reported MSE values correspond to the results of Levene’s test; two MSE values 
that are not followed by the same letter differ significantly at α = 0.05. The largest number 
of significant differences among MSE values are for variable P at the sampling densities 
of 0.4 and 0.8 ha⋅sample−1 (Fig. 4b and e). The G values (on the left in box plots) reveal 
advantages and disadvantages relative to the field average. For example, in Fig. 4g, G val-
ues indicate that “IDW Smoothed P:1 and P:2”, “Set Sill and Nugget,” and “IDW P:1” 
generated surfaces with MSEs similar to or better than “Average.” In contrast, interpolating 
data using “IDW P:2”, “Set Sill, and Nugget = 0”, “Optimal IDW,” “Nearest Neighbor,” 
and “IDW Modified Shepard” results in less accurate surfaces than when the field average 
is used. No box plot is presented for “Fitted variogram model” in Fig. 4g and i, because the 
model fitting algorithm failed to converge.

Only “IDW P:1” and “Set Sill and Nugget” show positive G values in all 9 panels of 
Fig. 4, meaning absolute superiority over “Average” in Field 1. With the field average set 
aside, some interpolation procedures proved to be more or less reliable than others. For 
example, based on MSE values, “Optimal IDW” and “Nearest Neighbor” surfaces were 
found to be the most accurate (Fig. 4b) or the least accurate (Fig. 4a), although Levene’s 
test detected no statistically significant differences in Fig. 4a. Overall, with a lower sam-
pling density, the advantage of using the evaluated interpolators over the field average is 
reduced. Also, as expected (Larocque et al., 2007; Webster & Oliver, 1992), fitting a vari-
ogram model becomes more difficult or even practically impossible at the lowest sampling 
density of 3.5 ha⋅sample−1; the variogram model fitting algorithm then failed to converge 
for two of the three soil properties sampled from Field 1 (number of samples: 12; Table 3).

Concerning the alternative interpolation methods proposed in this paper, “Set Sill and 
Nugget” shows signs of lesser performance than “Set Sill, and Nugget = 0” based on the G 

Table 4  Variogram model parameter estimates from a standard variogram fitting procedure for the four 
fields at the highest sampling density collection (Table 3) after data was standardized to a zero mean and a 
unit variance

a N:S nugget-effect-to-sill ratio, bSpatial structure classification based on the nugget-effect-to-sill ratio, 
N:S < 0.25 = strong spatial structure, 0.25 ≤ N:S ≤ 0.6 = medium spatial structure, and N:S > 0.6 = weak spa-
tial structure (classification modified from Cambardella et al., 1994, originally with 0.75 instead of 0.6 for 
the weak spatial structure)

Field DENSITY Soil property Model type Nugget effect Sill Range (m) N:Sa Spatial 
 structureb

1 0.4 ha 
 sample−1

K Exponential 0.21 1.07 93 0.20 Strong
P Spherical 0.18 1.12 400 0.16 Strong
pH Spherical 0.00 1.16 237 0.00 Strong

2 0.4 ha 
 sample−1

K Exponential 0.70 1.10 289 0.64 Weak
P Gaussian 0.94 1.50 1693 0.63 Weak
pH Spherical 0.21 1.04 244 0.20 Strong

3 0.4 ha 
 sample−1

K Exponential 0.33 1.17 288 0.28 Medium
P Spherical 0.43 1.16 635 0.37 Medium
pH Spherical 0.06 1.20 557 0.05 Strong

4 0.4 ha 
 sample−1

K Spherical 0.48 1.02 294 0.47 Medium
P Exponential 0.33 1.27 316 0.26 Medium
pH Exponential 0.45 1.12 256 0.40 Medium
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Fig. 4  Box plots of interpolation errors for Field 1 at grid sampling densities of 0.4 ha⋅sample−1 (a–c), 0.8 
ha⋅sample−1 (d–f), and 3.5 ha⋅sample−1 (g–i). Results are presented for a total of 11 interpolation procedures, 
each identified by a capital letter and a color; for details, see Table 2. “Fitted variogram model” was removed 
from the analysis and does not appear in a few panels because the variogram model fitting algorithm failed to 
converge for that specific sampling density and soil property. Letters a and b indicate the differences in MSE 
among interpolation procedures that are declared statistically significant (α = 0.05) with Levene’s test
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values from Fig. 4h and i. That might indicate some advantage to setting the nugget-effect 
value to 0. However, the G value of “Set Sill, and Nugget = 0” is negative in Fig. 4g (K, 
lowest sampling density), whereas the corresponding G value for “Set Sill and Nugget” is 
positive. Leading to the assumption that for Field 1, “Set Sill and Nugget” performed as 
expected, producing either better results than the field average (i.e., positive G values) or as 
good as the field average (i.e., G = 0; Fig. 4i), while the same does not apply for “Set Sill, 
and Nugget = 0”. Thus, even though “Sill and Nugget” might not be the highest-performing 
interpolator in all situations, it might be a reliable interpolation procedure for datasets from 
low and extra-low sampling densities since it did not produce results worse than average. 
As for “IDW Smoothed P:1” and “IDW Smoothed P:2”, slightly negative G values are 
observed only for pH at the 3.5 ha⋅sample−1 sampling density (Fig. 4i).

The interpolated surfaces for P—the only variable that presented some statistical sig-
nificance among the different interpolation procedures and for which the variogram fitting 
converged for all sampling densities—are presented in Figs. 5, 6, 7. These maps exemplify 
the effect of the 10 different interpolation procedures in the spatial variability of P for all 
three sampling densities. Clearly, some procedures generate rougher surfaces, with abrupt 
changes between neighboring values (e.g., Nearest Neighbor—Figs. 5g, 6g, and 7g), while 
others generate smoother surfaces, presenting little to no spatial variability (e.g., IDW 
Smoothed P:1—Fig. 5d).

From a soil management perspective, challenges can be encountered in both extreme 
scenarios mentioned above. For example, the “Nearest Neighbor” interpolated surface 
would generate variable rate maps with neighboring regions with abrupt changes in the 
amount of P fertilizer. These sudden changes in the prescribed fertilizer rate, combined 
with the rate adjustment lag existing in most variable rate applicators (Fulton et  al., 
2005), would reduce the quality and accuracy of the application. On the other hand, 

Fig. 5  Interpolated maps from Field 1 representing the spatial variability for phosphorous (P) using the 0.4 
ha⋅sample−1 sampling density and 10 different interpolation procedures (maps for the “Average” procedure 
were not included as it does not show spatial variability). All the maps share the same legend—depicted 
between the two rows of maps
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Fig. 6  Interpolated maps from Field 1 representing the spatial variability for phosphorous (P) using the 0.8 
ha⋅sample−1 sampling density and 10 different interpolation procedures (maps for the “Average” procedure 
were not included as it does not show spatial variability). All the maps share the same legend—depicted 
between the two rows of maps

Fig. 7  Interpolated maps from Field 1 representing the spatial variability for phosphorous (P) using the 3.5 
ha⋅sample−1 sampling density and 10 different interpolation procedures (maps for the “Average” procedure 
were not included as it does not show spatial variability). All the maps share the same legend—depicted 
between the two rows of maps
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extremely smooth surfaces (e.g., “IDW Smoothed P:1”; Fig. 5d) could lead to the rec-
ommendation of a uniform rate application of P, even though there is a clear spatial 
variability of this nutrient in Field 1 (Fig. 5a). Applying the same rate of P throughout 
Field 1 would result in a surplus and deficiency of this macronutrient in the field, nega-
tively affecting the crop yield and potentially contaminating surface and groundwater 
(Liu et  al., 2021). Although the levels of plant-available P in Field 1 are classified as 
medium to very-high for western Canadian soils (Alberta Ministry of Agriculture and 
Irrigation, n.d.), the above-described scenarios highlight the impact of interpolation 
procedures on soil management practices.

A visual comparison of Figs.  5, 6, 7 shows similarities among “Set Sill, and Nug-
get = 0”, “IDW Modified Shepard,” and “Optimal IDW” maps, and that smoother maps 
are obtained from “IDW Smoothed P:1 and P:2” in comparison to the original IDW. Also, 
compared to “Set Sill, and Nugget = 0” and “Fitted variogram model,” “Set Sill and Nug-
get” tends to generate smoother surfaces, an effect of the higher nugget-effect estimates 
obtained from the latter procedure, a well-known behavior in geostatistics (Chilès & Delf-
iner, 2012).

Box plots for Field 2 are presented in Fig. 8. Due to the similarity/dissimilarity in spa-
tial structure of the three soil properties in this field (weak for K and P, and strong for pH; 
Table 4), the behavior of the G criterion is not only influenced by sampling density, but 
also by the spatial correlation present in the data. At the 0.8 ha⋅sample−1 sampling density 
(i.e., the higher evaluated density in Field 2), the G values are higher for pH (Fig. 8c) than 
for K and P (Fig. 8a and b). At the lower density in Field 2 (3.5 ha⋅sample−1), the G values 
of pH show a clear worsening in performance of the interpolation procedures relative to the 
field average for this soil property (see Fig. 8c vs. f), while the G values of K and P rather 
tend to show a statu quo (see Fig. 8a and b vs. d and e).

The above result is consistent with findings reported in the literature. For example, 
Kravchenko (2003) compared kriging and IDW by simulating surfaces with various spa-
tial structures and sampling densities, and found that for surfaces with stronger spatial 
structures, a reduction in sampling density produces a drop of the G values, whereas for 
weaker spatial structures, only slight changes are observed. This does not imply that the 
selection of a reliable interpolator can be neglected for soil properties with weak spatial 
structure. Indeed, the results for P in Fig. 8e indicate that depending on the choice of the 
interpolation procedure, the G value can be as low as –264%, the exception to the statu quo 
rule mentioned above. Also, the data are not ‘known’ before sampling, nor is their spatial 
correlation.

Besides “IDW Smoothed P:1”, all the other interpolation procedures are less accurate 
than the field average in Fig. 8e. In particular, the G value for the modified kriging-based 
procedure “Set Sill and Nugget” is slightly negative (− 13.6%), while “Set Sill, and Nug-
get = 0” is one of the worst when compared to “Average” (G = − 106.0%). It is noteworthy 
that for a soil property with a stronger spatial structure, or equivalently a smaller nugget 
effect (e.g., pH in Field 2; see Table 4), setting the nugget effect value to zero yields a more 
accurate surface than “Set Sill and Nugget.” In contrast, for properties with a larger nugget 
effect (e.g., P and K in Field 2; see Table 4), setting this model parameter (or its estimate) 
to zero produced less accurate interpolated surfaces than when the semi-variance estimate 
at the shortest sampling distance was used. For example, for P sampled at the density of 
3.5 ha⋅sample−1 in Field 2, the interpolated surface of “Set Sill and Nugget” is significantly 
more accurate than that of “Set Sill and Nugget = 0” based on Levene’s test (Fig. 8e), even 
though both their G values are negative. The interpolation procedure “IDW Smoothed P:1” 
is the only one that produced surfaces more accurate than those of “Average” for all three 
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soil properties in Field 2 at the extra-low sampling density of 3.5 ha⋅sample−1, but not so 
much at the 0.8 ha⋅sample−1 density (Fig. 8b).

Soil properties K and P show medium spatial structure in Field 3, while the spatial 
structure for pH appears strong (Table 4). Field 3 is the largest in size of the four study 
sites, thus yielding the largest number of observations at the sampling densities of 0.8 and 
3.5 ha⋅sample−1. Since a medium to strong spatial structure and a larger number of sam-
ple data reduce the uncertainty in variogram analysis, including the estimation of model 
parameters (Larocque et al., 2007), the variogram model fitting algorithm converged with-
out exception for Field 3 (Fig. 9).

Fields 1 and 2 results indicated limited advantages reflected by positive G values for 
some interpolation procedures over “Average,” with little evidence for statistical signif-
icance. For Field 3, many of the MSEs computed from the interpolation errors show a 

Fig. 8  Box plots of interpolation errors for Field 2 at grid sampling densities of 0.8 ha⋅sample−1 (a–c) and 
3.5 ha⋅sample−1 (d–f). Results are presented for a total of 11 interpolation procedures, each identified by a 
capital letter and a color; for details, see Table 2. “Fitted variogram model” was removed from the analy-
sis and does not appear in most panels because the variogram model fitting algorithm frequently failed to 
converge. Letters a, b, c, d, and e indicate the differences in MSE among interpolation procedures that are 
declared statistically significant (α = 0.05) with Levene’s test
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significant improvement in interpolation accuracy over the field average. Except for P sam-
pled at the extra-low density in Field 3 (Fig. 8e), all the panels in Fig. 8 identify a group of 
procedures yielding interpolated surfaces declared significantly more accurate than “Aver-
age” by Levene’s test. “Fitted variogram model” and “Set Sill and Nugget” are the only two 
interpolation procedures that consistently appear in these groups.

Following the interpretation rules developed and applied for Fields 1 and 2, the results 
obtained for Field 3 can be presented and discussed as follows. The G value of “Set Sill, 
and Nugget = 0” is greater than that of “Set Sill and Nugget” for pH at both sampling 
densities in Field 3, which was expected as the estimated nugget effect was close to zero 
(Table 4). Since the estimated nugget effect for K and P were higher than for pH in Field 
3 but did not reach 0.5 for a maximum value of 1.0 (Table 4), it is ‘as expected’ that “Set 
Sill and Nugget” performed better than “Set Sill, and Nugget = 0” for one of these two 
soil properties (K), but not the other (P) at the low sampling density (Fig. 8b). Levene’s 

Fig. 9  Box plots of interpolation errors for Field 3 at grid sampling densities of 0.8 ha⋅sample−1 (a–c) and 
3.5 ha⋅sample−1 (d–f). Results are presented for a total of 11 interpolation procedures, each identified by a 
capital letter and a color; for details, see Table 2. Letters a, b, c, d, and e indicate the differences in MSE 
among interpolation procedures that are declared statistically significant (α = 0.05) with Levene’s test
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test for P detected no significant difference between “Set Sill and Nugget” and “Set Sill, 
and Nugget = 0” at both sampling densities in Field 3. Concerning the interpolation proce-
dures “IDW Smoothed P:1” and “IDW Smoothed P:2”, their G values were mostly posi-
tive, except for K at 0.8 ha⋅sample−1 (Fig. 8a); in the comparisons with “Average,” “IDW 
Smoothed P:2” consistently presents an advantage over “IDW Smoothed P:1” in Field 3, 
with no significant difference between the two.

Several of the results obtained for Field 4 (Fig. 10), located approximately 100 km 
east of the other three fields (Fig.  1a), resemble some of those obtained for Field 1 
(Fig.  4). For example, there is no significant difference among most of the interpola-
tion procedures that are compared at their respective sampling densities. Notably, “IDW 
Smoothed P:1 and “P:2” consistently yielded positive G values for all the soil proper-
ties and densities. The variogram model fitting algorithm failed to converge for K and 

Fig. 10  Box plots of interpolation errors for Field 4 at grid sampling densities of 0.8 ha⋅sample−1 (a–c) and 
3.5 ha⋅sample−1 (d–f). Results are presented for a total of 11 interpolation procedures, each identified by a 
capital letter and a color; for details, see Table 2. Fitted variogram model” was removed from the analysis 
and does not appear in a few panels because the variogram model fitting algorithm failed to converge for 
that specific sampling density and soil property. Letters a and b indicate the differences in MSE among 
interpolation procedures that are declared statistically significant (α = 0.05) with Levene’s test



Precision Agriculture 

1 3

pH at the extra-low sampling density (Fig. 10d and f). For the same soil properties and 
sampling density, a flat variogram was obtained with “Set Sill and Nugget.” For obvi-
ous reasons, “Set Sill and Nugget” presents a clear advantage over “Set Sill, and Nug-
get = 0” in these two cases.

Based on the results presented, none of the interpolation procedures consistently 
emerged as the best for all fields, soil properties, and sampling densities, suggesting that 
the optimal interpolator will change depending on the spatial structure present in the data 
and sampling density. This conclusion is consistent with the findings reported in the litera-
ture (Kravchenko, 2003; Kravchenko & Bullock, 1999; Robinson & Metternicht, 2006). It 
is noteworthy that for all fields, the field average never emerged as being the basis for the 
best approach.

Concluding the investigation at this point would leave the research question, “What 
is a robust and reliable interpolation procedure that maximizes the value of low-density 
soil sampling data?” unanswered. The keywords here are “reliable” and “robust,” and not 
“best,” as the presented results suggest that without having prior knowledge about the spa-
tial structure of the data and the collection of validation samples, it would be difficult, if 
not impossible, to know which interpolation procedure would result in the most accurate 
surface.

Considering that a reliable and robust interpolator for low and extra-low sampling den-
sity is based on a procedure that will hardly yield surfaces less accurate than the field aver-
age and possibly represent the most accurate surface. The G values reported in the box 
plots (Figs. 4, 8, 9, 10) were classified in three groups—G < 0 (surface less accurate than 
field average), 0 ≤ G < Highest G (surface is as accurate as the field average but not the 
highest G value), and Highest G (interpolation approach with the most accurate surface), 
and the frequency of each category was assessed for the procedures. The results are pre-
sented in Fig. 11.

Focusing the analysis on the two lower sampling densities in Fig. 11 and evaluating the 
different procedures by their robustness and reliability, following the definition provided 
earlier, the most robust procedure at 0.8 ha⋅sample−1 would be “Set Sill and Nugget.” For 
the extra-low sampling design, determining which procedure is the most robust proves to 
be challenging, as negative G values or “No convergence or Flat Variogram” are observed 
in all procedures with no exceptions.

One might argue that the “Fitted variogram model” could be considered the most robust 
procedure for the 3.5 ha⋅sample−1 sampling density, as it did not yield any negative G val-
ues. If, in cases where the fitting algorithm failed to converge, the field average would be 
used instead, this would be a plausible affirmation. However, 7 out of 12 maps would lack 
spatial information. Moreover, over or underestimation of the variogram model parameters 
during the fitting procedure could produce highly inaccurate surfaces—a scenario not cov-
ered by the dataset used in this paper but supported by the findings from Webster and Oli-
ver (1992) and Larocque et al. (2007) which suggest that a variogram originating from a 
low number of samples can present a wide confidence interval, leading to high uncertainty 
in the estimation of the model parameters.

The “Set Sill and Nugget” results are not too different from the “Fitted variogram 
model,” for 5 out of 12 maps, a flat variogram would be used to obtain the kriging esti-
mates, producing the same result as for the field average (assuming global neighborhood—
all available neighbors—was used). In contrast to the “Fitted variogram model,” “Set Sill 
and Nugget” once generated the most accurate surface for the 3.5 ha⋅sample−1 but also 
presented a negative G value—a specific case where most of the procedures also presented 
G < 0 (Fig. 8e). Notably, both model-based approaches presented difficulties in consistently 
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estimating model parameters that would generate an interpolated surface with a representa-
tion of the field spatial variability. Two other potential candidates for a robust interpolation 
procedure for this extra-low-density design were “IDW P:1” and “IDW Smoothed P:1”. 
Since “IDW P:1” was among the most robust methods for the 0.8 ha⋅sample−1 sampling 
density, this method could be selected as the most robust. However, by using IDW, the 
issues with non-smooth surfaces due to the “bull’s eye” effect would remain, affecting the 
quality of prescription maps created based on the IDW surface.

Further analysis of the results presents that when the “Set Sill and Nugget” results in 
“pure nugget effect” (Figs. 4g, i, 8d, f, and 10d), “IDW P:1” and “IDW Smoothed P:1” 
presented positive G values, with an exception for the latter which presented slightly nega-
tive G value for pH from Field 1 sampled at 3.5 ha⋅sample−1 (Fig.  4g). Thus, “Set Sill 
and Nugget” could be used when some spatial structure is still available in the data, but 
when a flat variogram is estimated, either “IDW P:1” or “IDW Smoothed P:1” could be 
employed to generate an interpolated surface that would at least provide a general trend 
of that soil property in the field. To make the newly proposed interpolation procedures 
readily available to precision agriculture practitioners, they could be implemented in exist-
ing open-source tools such as the Smart-Map (Pereira et al., 2022a) plugin for QGIS and 
AgDataBox-Map web platform (Michelon et al., 2019).

Even though the results indicate a potential for the use of the combination of “Set Sill 
and Nugget” with “IDW P:1” or “IDW Smoothed P:1,” the analysis was still limited to 
soils available in Central Alberta. Also, since the samples used for validation were not con-
sistent for all sampling densities (except for Field 1), a formal statistical analysis of the 
effect of sampling density in each interpolation procedure was not performed, as it could 
generate biased results.

Fig. 11  Robustness and reliability analysis for the 11 interpolation procedures at the three different sam-
pling densities. G values from Figs.  4 and 8, 9, 10 were grouped in the categories listed in the legend. 
“No Convergence” applies to the kriging approach “B—Fitted variogram model” when the model fitting 
algorithm failed to converge, and “Flat Variogram” applies to the modified kriging approach “J—Set Sill 
and Nugget” when estimated nugget-effect is the equal or higher than sample variance (Color figure online)
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Therefore, future research should further explore the above-suggested combination of 
procedures and compare these to some of the already available machine learning-based 
spatial interpolation methodologies (Hengl et al., 2018; Pereira et al., 2022b). In addition, 
the robustness of the different interpolation methods could be evaluated from a perspec-
tive of the risks (economic and environmental) related to the soil management decisions 
that the practitioners would adopt based on the resulting interpolated surfaces. Based on 
the results from the comprehensive analysis presented in this paper, the focus should not 
be on identifying the best overall method but on the one that would be the most robust 
(e.g., lower economic and environmental risks) in a wide range of scenarios. Also, for 
more representative results and identification of a “universal” solution for interpolation, 
soil samples from more fields, different sampling designs, and parts of the world should be 
included in future analysis.

Conclusions

A total of eleven interpolation procedures were undertaken—including a newly proposed 
methodology, two proposed approaches, and the use of field average—but none emerged 
as the best interpolator across all different fields, soil properties, and sampling densities. 
In terms of robustness, the proposed modification to the kriging approach, IDW, and IDW 
Smoothed with a power parameter of 1 appear among the most robust approaches, as they 
rarely yielded errors worse than when using the field average. In addition, when the krig-
ing-based approach estimated a flat, “pure nugget effect,” variogram interpolated surfaces 
using IDW and IDW Smoothed often presented an advantage over using the field average, 
which indicates that a combination of these procedures could lead to interpolated surfaces 
that would maximize the value of low-density sampling designs.

A few other important outcomes were identified while performing this extensive com-
parison of interpolation methods and approaches. Among all fields, soil properties, and 
sampling density, at least one interpolation method always yielded a surface more accu-
rate than the field average (not necessarily producing a statistically significant difference). 
Moreover, the best interpolation procedure is tied to the sampling density and spatial struc-
ture present in the data. Finally, forcing the nugget to be zero when there is poor informa-
tion about the behavior of the variogram at short distances is a high-risk decision, as it can 
lead to a low accuracy result if the spatial correlation of the underlying surface is weak—
information that cannot be determined based on low and extra low-density data.

Therefore, PA practitioners should avoid using interpolation tools that tend to force the 
nugget to be zero unless the variogram estimates calculated from the data provide enough 
direct (indirect) information about the absence of a nugget effect. Also, to identify a “uni-
versal” interpolation approach for low-density sampling designs, a focus should be given 
to methods that hardly produce results worse than average and not necessarily the best 
results. Before making any soil management decisions based on thematic maps, practition-
ers should carefully evaluate different interpolation procedures through validation samples 
(when available) or cross-validation to avoid causing economic or environmental impacts.

Acknowledgements We thank Olds College of Agriculture & Technology and Olds College Center for 
Innovation for providing the infrastructure, support, and data for the development of this project. We also 
thank the Canadian Agri-Food Automation and Intelligence Network (CAAIN), Mitacs, and Telus for the 
funds provided for the project and data collection. This research is part of the “Agricultural Multi-Layer 
Data Fusion to Support Cloud-Based Agricultural Advisory Services” project funded through the Mitacs 
Accelerate program.



 Precision Agriculture

1 3

Author contributions Conceptualization: FHSK, VA; Methodology: FHSK, VA, PD, and AM; Formal anal-
ysis and investigation: FHSK; Writing—original draft preparation: FHSK; Writing—review and editing: 
PD, VA, and AM; Funding acquisition: AM, VA, and FHSK; Supervision: VA, AM, and PD.

Data Availability The data supporting this study’s findings are available from the authors, but restrictions 
apply to the availability of these data. Olds College of Agriculture & Technology and project partners own 
the rights to the dataset. Data are available from the authors upon reasonable request and with permission 
from Olds College of Agriculture & Technology and project partners.

Declarations 

Conflict of interest The research leading to these results received funding from the Canadian Agri-Food Au-
tomation and Intelligence Network (CAAIN), Mitacs, and Telus. The authors declare they have no financial 
interests.

References

Agterberg, F. P. (1984). Trend surface analysis. Spatial statistics and models (pp. 147–171). Springer.
Akiba, T., Sano, S., Yanase, T., Ohta, T., & Koyama, M. (2019). Optuna. Proceedings of the 25th ACM SIG-

KDD international conference on knowledge discovery & data mining (pp. 2623–2631). ACM.
Alberta Ministry of Agriculture and Irrigation. (n.d.). Phosphorus management in crops. https:// www. alber 

ta. ca/ phosp horus- manag ement- in- crops. Accessed 23 February 2024
Barnes, R. J. (1991). The variogram sill and the sample variance. Mathematical Geology, 23(4), 673–678. 

https:// doi. org/ 10. 1007/ BF020 65813
Cambardella, C. A., Moorman, T. B., Novak, J. M., Parkin, T. B., Karlen, D. L., Turco, R. F., & Konopka, 

A. E. (1994). Field-Scale variability of soil properties in central Iowa soils. Soil Science Society of 
America Journal, 58(5), 1501–1511. https:// doi. org/ 10. 2136/ sssaj 1994. 03615 99500 58000 50033x

Chilès, J.-P., & Delfiner, P. (2012). Geostatistics. Wiley.
Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algo-

rithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197. https:// doi. org/ 10. 
1109/ 4235. 996017

Erickson, B., & Lowenberg-Deboer, J. (2021). 2021 Precision agriculture dealership survey. https:// ag. pur-
due. edu/ digit alag/_ media/ cropl ife- report- 2021. pdf

Franke, R., & Nielson, G. (1980). Smooth interpolation of large sets of scattered data. International Journal 
for Numerical Methods in Engineering, 15(11), 1691–1704. https:// doi. org/ 10. 1002/ nme. 16201 51110

Fulton, J. P., Shearer, S. A., Higgins, S. F., Darr, M. J., & Stombaugh, T. S. (2005). Rate response assess-
ment from various granualar VRT applicators. Transactions of the ASAE, 48(6), 2095–2103. https:// 
doi. org/ 10. 13031/ 2013. 20086

Goovaerts, P. (1999). Geostatistics in soil science: State-of-the-art and perspectives. Geoderma, 89(1–2), 
1–45. https:// doi. org/ 10. 1016/ S0016- 7061(98) 00078-0

Hengl, T., Nussbaum, M., Wright, M. N., Heuvelink, G. B. M., & Gräler, B. (2018). Random forest as a 
generic framework for predictive modeling of spatial and spatio-temporal variables. PeerJ. https:// doi. 
org/ 10. 7717/ peerj. 5518

Isaaks, E. H., & Srivastava, R. M. (1989). Applied geostatistics. Oxford Univeristy Press, Inc.
Kravchenko, A. N. (2003). Influence of spatial structure on accuracy of interpolation methods. Soil Science 

Society of America Journal, 67(5), 1564–1571. https:// doi. org/ 10. 2136/ sssaj 2003. 1564
Kravchenko, A., & Bullock, D. G. (1999). A comparative study of interpolation methods for mapping soil 

properties. Agronomy Journal, 91(3), 393–400. https:// doi. org/ 10. 2134/ agron j1999. 00021 96200 91000 
30007x

Larocque, G., Dutilleul, P., Pelletier, B., & Fyles, J. W. (2007). Characterization and quantification of uncer-
tainty in coregionalization analysis. Mathematical Geology, 39(3), 263–288. https:// doi. org/ 10. 1007/ 
s11004- 007- 9086-8

Laslett, G. M., & McBratney, A. B. (1990). Estimation and implications of instrumental drift, random meas-
urement error and nugget variance of soil attributes—A case study for soil pH. Journal of Soil Science, 
41(3), 451–471. https:// doi. org/ 10. 1111/j. 1365- 2389. 1990. tb000 79.x

Liu, L., Zheng, X., Wei, X., Kai, Z., & Xu, Y. (2021). Excessive application of chemical fertilizer and organ-
ophosphorus pesticides induced total phosphorus loss from planting causing surface water eutrophica-
tion. Scientific Reports, 11(1), 1–8. https:// doi. org/ 10. 1038/ s41598- 021- 02521-7

https://www.alberta.ca/phosphorus-management-in-crops
https://www.alberta.ca/phosphorus-management-in-crops
https://doi.org/10.1007/BF02065813
https://doi.org/10.2136/sssaj1994.03615995005800050033x
https://doi.org/10.1109/4235.996017
https://doi.org/10.1109/4235.996017
https://ag.purdue.edu/digitalag/_media/croplife-report-2021.pdf
https://ag.purdue.edu/digitalag/_media/croplife-report-2021.pdf
https://doi.org/10.1002/nme.1620151110
https://doi.org/10.13031/2013.20086
https://doi.org/10.13031/2013.20086
https://doi.org/10.1016/S0016-7061(98)00078-0
https://doi.org/10.7717/peerj.5518
https://doi.org/10.7717/peerj.5518
https://doi.org/10.2136/sssaj2003.1564
https://doi.org/10.2134/agronj1999.00021962009100030007x
https://doi.org/10.2134/agronj1999.00021962009100030007x
https://doi.org/10.1007/s11004-007-9086-8
https://doi.org/10.1007/s11004-007-9086-8
https://doi.org/10.1111/j.1365-2389.1990.tb00079.x
https://doi.org/10.1038/s41598-021-02521-7


Precision Agriculture 

1 3

Michelon, G. K., Bazzi, C. L., Upadhyaya, S., de Souza, E. G., Magalhães, P. S. G., Borges, L. F., et al. 
(2019). Software AgDataBox-Map to precision agriculture management. SoftwareX, 10, 100320. 
https:// doi. org/ 10. 1016/j. softx. 2019. 100320

Pebesma, E. J. (2004). Multivariable geostatistics in S: The gstat package. Computers and Geosciences, 
30(7), 683–691. https:// doi. org/ 10. 1016/j. cageo. 2004. 03. 012

Pereira, G. W., Valente, D. S. M., de Queiroz, D. M., de Coelho, A. L. F., Costa, M. M., & Grift, T. (2022). 
Smart-map: an open-source QGIS plugin for digital mapping using machine learning techniques and 
ordinary kriging. Agronomy, 12(6), 1350. https:// doi. org/ 10. 3390/ agron omy12 061350

Pereira, G. W., Valente, D. S. M., de Queiroz, D. M., Santos, N. T., & Fernandes-Filho, E. I. (2022b). Soil 
mapping for precision agriculture using support vector machines combined with inverse distance 
weighting. Precision Agriculture, 23(4), 1189–1204. https:// doi. org/ 10. 1007/ s11119- 022- 09880-9

R Core Team. (2022). R: A language and environment for statistical computing. R Core Team.
Robinson, T. P., & Metternicht, G. (2006). Testing the performance of spatial interpolation techniques for 

mapping soil properties. Computers and Electronics in Agriculture, 50(2), 97–108. https:// doi. org/ 10. 
1016/j. compag. 2005. 07. 003

Shepard, D. (1968). A two-dimensional interpolation function for irregularly-spaced data. In R. B. S. Blue 
& A. M. Rosenberg (Eds.), Proceedings of the 1968 23rd ACM national conference (pp. 517–524). 
ACM Press.

Sobjak, R., de Souza, E. G., Bazzi, C. L., Opazo, M. A. U., Mercante, E., & Aikes Junior, J. (2023). Process 
improvement of selecting the best interpolator and its parameters to create thematic maps. Precision 
Agriculture, 24(4), 1461–1496. https:// doi. org/ 10. 1007/ s11119- 023- 09998-4

Wadoux, A. M. J. C., Heuvelink, G. B. M., de Bruin, S., & Brus, D. J. (2021). Spatial cross-validation is not 
the right way to evaluate map accuracy. Ecological Modelling, 457, 109692. https:// doi. org/ 10. 1016/j. 
ecolm odel. 2021. 109692

Wadoux, A. M. J. C., Marchant, B. P., & Lark, R. M. (2019). Efficient sampling for geostatistical surveys. 
European Journal of Soil Science, 70(5), 975–989. https:// doi. org/ 10. 1111/ ejss. 12797

Webster, R., & Oliver, M. A. (1992). Sample adequately to estimate variograms of soil properties. Journal 
of Soil Science, 43(1), 177–192. https:// doi. org/ 10. 1111/j. 1365- 2389. 1992. tb001 28.x

Webster, R., & Oliver, M. A. (2007). Geostatistics for environmental scientists. Wiley. https:// doi. org/ 10. 
1002/ 97804 70517 277

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under 
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable 
law.

https://doi.org/10.1016/j.softx.2019.100320
https://doi.org/10.1016/j.cageo.2004.03.012
https://doi.org/10.3390/agronomy12061350
https://doi.org/10.1007/s11119-022-09880-9
https://doi.org/10.1016/j.compag.2005.07.003
https://doi.org/10.1016/j.compag.2005.07.003
https://doi.org/10.1007/s11119-023-09998-4
https://doi.org/10.1016/j.ecolmodel.2021.109692
https://doi.org/10.1016/j.ecolmodel.2021.109692
https://doi.org/10.1111/ejss.12797
https://doi.org/10.1111/j.1365-2389.1992.tb00128.x
https://doi.org/10.1002/9780470517277
https://doi.org/10.1002/9780470517277

	Comparative study of interpolation methods for low-density sampling
	Abstract
	Material and methods
	Study area and data
	Conventional interpolation methods
	A modification of the kriging-based approach
	Proposed modification of the original IDW
	Data analysis

	Results and discussion
	Conclusions
	Acknowledgements 
	References


