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Abstract
This research aims at analyzing the determinants of the adoption and the intensity of adop-
tion of precision agriculture technologies (PATs) by sugarcane farmers in the state of São 
Paulo, Brazil. A sample survey of 131 sugarcane farmers provided the data. Six adopted 
PATs were identified: GNSS and images for planting row orientation (52 adopters), tractor/
harvester with automatic guidance system (32), georeferenced grids for soil sampling (15), 
images (satellite and/or drone) for mapping pests and yields (8), variable-rate applicators 
of fertilizers (8), and variable-rate applicators of pesticide (3). The adoption and adoption 
intensity (dependent variable) were measured as the number of PATs used by farmers. 53 
farmers adopted at least one of these technologies, while 78 farmers did not adopt PATs. 
A count data model was used to test hypotheses on factors explaining both adoption and 
the intensity of adoption. The results suggested that the information provided by the sugar-
cane mills, the production scale and farmer perception that PATs would increase yield are 
determining factors for adoption. Information provided by private technical advisors and 
obtained at agricultural events plays an important role in the intensity of adoption. Such 
intensity is also affected by farmers’ previous experience with PATs, their perception that 
PATs would increase yield, and the availability of low-cost credit.
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Introduction

Precision agriculture (PA) has been defined by the International Society of Precision Agri-
culture as “a management strategy that gathers, processes and analyzes temporal, spatial 
and individual data and combines it with other information to support management deci-
sions according to estimated variability for improved resource use efficiency, productivity, 
quality, profitability and sustainability of agricultural production (ISPA, 2021).” The dif-
fusion of PA brings economic and environmental benefits, mainly because it improves the 
efficiency in the use of resources such as land, water, fertilizers, pesticides, and other agri-
cultural inputs (Stafford, 2000; Batchelor et al., 2002; Finger et al., 2009; Shock & Wang, 
2011; Amorim et al., 2019; Karatay & Aurich, 2019).

In Brazil, the Ministry of Agriculture, Livestock and Food Supply established the Bra-
zilian Commission for Precision and Digital Agriculture as a government advisory body 
(Federal Decree No. 10,052, of 2019). The commission’s role includes supporting the dis-
semination of PATs, the design of policies and the identification of trends. In 2022, the 
Brazilian government established the National Incentive Policy for Precision Agriculture 
and Livestock (Law No. 14,475, of December 13, 2022) to accelerate the diffusion of PATs.

A range of Precision Agriculture Technologies (PATs) is used in PA operations, such as 
GPS (Global Positioning System), soil sampling, GNSS (Global Navigation Satellite Sys-
tem) equipment, sensor data collection, machine guidance, controlled traffic farming, pre-
cision mapping, driver assistance and variable-rate applicators (Barnes et al., 2019). The 
success of policies aimed at the diffusion of PATs depends on a good understanding of the 
determinants of adoption. Theories on adoption and diffusion of agricultural innovations 
have been developed since Griliches’ (1957) study on the diffusion of hybrid corn in the 
USA using the epidemic model. Other analytical models followed. The threshold model, 
for example, provided the theoretical basis for testing hypotheses on determinants of adop-
tion (Bocquet et  al., 2007; Geroski, 2000; Milgron & Roberts, 1990). Empirical studies 
used this theoretical approach to analyze data from samples of adopters and non-adopters 
of an innovation. Most studies made use of binary probit/logit statistical models, in which 
a binary dependent variable identifies adopters and non-adopters. This variable is then 
regressed on predictors of adoption, which are proxies for socioeconomic characteristics of 
farms and farmers, as well as institutional and environmental characteristics (Daberkow & 
McBride, 2003; Tamirat et al., 2018). Empirical studies on adoption of PATs have evalu-
ated determinants of adoption using the approach. They have shown that younger farmers 
with better education and higher income are more likely to adopt (Watcharaanantapong 
et al., 2014). The role of many sources of information in adoption have also been investi-
gated (Larson et al., 2008; Walton et al., 2008). Other studies have shown that the adoption 
is favored by the scale of production, usually measured by farm area and size of the agri-
cultural activity (Walton et al., 2010; D’Antoni et al., 2012).

Empirical studies have identified farmers who adopted only one PAT, such as GNSS 
in tractors, while others adopted a large set of PATs, such as those for VRA opera-
tions. The adoption of two or more PATs can generate synergies and complementari-
ties that enhance their benefits. GNSS image and the auto-guidance harvester system, 
for example, allow reductions in operating time, fuel, and labor in sugarcane produc-
tion (Sparovek & Schnug, 2001). The number of maneuvers is reduced and, therefore, 
soil compaction is reduced, productivity increases and the economic life of the crop 
is extended (Molin et  al., 2013). The use of fertilizers is also reduced with the adop-
tion of VRA, which requires the adoption of georeferenced soil analyzes (Sanches et al., 
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2021). Therefore, it is possible to identify different categories of adopters according to 
the number of PATs they decide to adopt (Miller et al., 2018; Barnes et al., 2019). For 
example, farmers who adopt more PATs can be categorized as more intensive adopters, 
while those who adopt only one or a few PATs are less intensive adopters. This finding 
has led researchers to empirically assess the determinants of this "intensity of adoption" 
(Giua et al., 2022; Isgin et al., 2008; Kolady et al., 2021; Paxton et al., 2011). In such 
case, count regression models have become preferable to binary probit/logit as a statis-
tical tool. A count-dependent variable, which is a proxy for the intensity of adoption, 
assumes non-negative integer values representing the number of PATs that a farmer 
adopts. This variable can assume the value zero for non-adoption, followed by 1, 2, 3, 
and so on, representing the adopted number of PATs. Therefore, the value zero identi-
fies a category of non-adopters, while 1, 2, 3, and so on, identify two or more ordered 
categories of adopters. This dependent variable is then regressed on predictor variables, 
which are proxies for testing factors that explain the intensity of adoption. The approach 
provides additional results to statistical models such as binary logit/probit, in which 
information on the intensity of adoption is lost.

The aim of this article is to assess the determinants of adoption and the intensity of 
adoption of PATs by sugarcane farmers in the state of São Paulo, Brazil. The produc-
tion of sugarcane is of great importance for the economy and the environment in Brazil. 
It is an input not only for sugar, but also for ethanol. In 2017, Brazil produced 638.69 
million tons of sugarcane. The state of São Paulo accounted for 54% of this production 
(IBGE, 2017). Sugarcane is produced both by the mills in their fields and by independ-
ent farmers who are their suppliers. In the 2018/2019 harvest, 88 mill companies pro-
duced 186.08 million tons of sugarcane in the state (56% of the state production), while 
12,004 independent farmers produced 146.8 million tons (44% of the state production) 
(ORPLANA, 2020).

The cultivated area of sugarcane has increased in the state, thus increasing the com-
petition over land and land prices (Camara and Caldarelli, 2016). The diffusion of inno-
vations which increases efficiency in the use of resources, mainly land, water, fertilizers, 
and pesticides, became an important target of government policies and industry strate-
gies. Carrer et al. (2022) found that these set of information provided by PATs improve 
farmers decision-making process, considerably increasing the technical efficiency in 
sugarcane production. The sugarcane farmers that adopted PATs operated their farms 
with mean technical efficiency scores 18% higher than the non-adopters—i.e., on aver-
age, the PATs adopters produced 18% more sugarcane than the non-adopters with the 
same level of inputs (land, machinery, labor and agrochemicals), even controlling for 
sample selectivity and technological heterogeneities (Carrer et al., 2022). Therefore, a 
greater diffusion of PATs plays an important role to improve efficiency and sustainabil-
ity of sugarcane production in São Paulo state. Thus, the results of this article contribute 
for formulating public policies and private strategies to accelerate diffusion. Manufac-
turers and retailers of PATs, for example, can use the research results in their strategies 
of innovation and marketing. Advisors and extension services can improve their strat-
egy, and farmers can better evaluate adoption.

A count regression approach was used to analyze primary data from a sample of 131 
sugarcane farmers in the state of São Paulo. Some of these farmers have adopted one or 
more PATs, while others did not adopt any. Predictor variables were used to test hypotheses 
on factors that explain both adoption and the intensity of adoption. Section 2 presents an 
explanation of the data, the variables, and the count regression models. Section 3 presents 
results and discussion. Conclusions are in Sect. 4.
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Data, adoption predictor variables, and count regression models

Data

A survey provided information on the socioeconomic characteristics of 131 independent 
sugarcane farmers and their farms in 47 municipalities of the state of São Paulo, Brazil 
(Fig. 1). Face-to-face interviews were conducted from May to November 2019, obtaining 
information from adopters and non-adopters regarding the 2018/2019 season. Adopters 
were selected with the help of the technical staff of Coplacana, a cooperative of sugarcane 
farmers of the state. They were asked to provide the best possible representation of farmers 
using PATs. For each adopter, a nearby non-adopter (counterfactual) sugarcane farmer was 
chosen, thus reducing the scope for discriminating adopters from non-adopters in terms 
of their environmental characteristics, such as soil types, topography, and climate. The 
sampling method could not be based on random selection due to two reasons: the number 
of adopters in relation to total number of farmers in the State was expected to be small, 
which would make it difficult to obtain a satisfactory number of observations from a ran-
dom selection; and a list of adopters, from which a sample could be drawn, did not exist. 
The sample does not include farms owned by sugarcane mills. The municipalities where 
the selected farms were located accounted for 14.1% of the harvested area and 14.5% of the 
production of sugarcane of the state in 2017 (IBGE, 2017) (Appendix, Table 5).

The sample consisted of 53 adopters of at least 1 PAT and 78 non-adopters. Adopters 
have adopted at least one of the following PATs: GNSS and images for planting row ori-
entation, tractor/harvester with automatic guidance system, georeferenced grids for soil 

Fig. 1   Production of sugarcane and municipalities in the state of São Paulo, Brazil. Source: IBGE, 2017
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sampling, images (satellite and/or drone) for mapping pests and yields, variable-rate appli-
cators of fertilizers, and variable-rate applicators of pesticides.

GNSS and images for planting row orientation is the most adopted PAT. A map with 
detailed characteristics of the land is obtained, allowing the planning of planting rows and 
vehicle paths. Planting and harvesting follows this plan using GNSS and autopilot, so soil 
erosion, soil compaction and vehicle maneuvers can be reduced. In addition, the use of 
GNSS allows better planning of intercropping sugarcane with other crops, such as soy-
beans and peanuts, in the year of field renewal (every 5 or 6 year) (Bordonal et al., 2018). 
In this case, on a 2:8 scale, the sugarcane is planted in two rows to provide seedlings, and 
the other crop is planted in the remaining eight rows. After 6 to 8 months, the other crop is 
harvested, and the sugarcane seedlings are planted in its rows. This strategy, called Inter-
rotational Method of Simultaneous Occurrence (MEIOSI, Portuguese acronym), aims to 
reduce seedling transport costs and the incidence of pests and diseases. The production of 
the other crop is mostly carried out in partnership with another farmer, who follows the 
GNSS row orientation plan.

Table 1 shows the six adopted PATs and the number of farmers who adopted each one. 
The number of farmers who adopted 0 (non-adopters), 1, 2, 3, 4, 5 and 6 PATs is also 
shown. As can be observed, 78 (60.6%) farmers chose not to adopt any of them (non-adop-
ters). Some PATs were adopted by many farmers: 52 adopted GNSS and images for plant-
ing row orientation (satellite/drone), 32 adopted tractor/harvester with automatic guidance 
system, and 15 farmers adopted georeferenced grids for soil sampling. Previous studies 
also identified many farmers who adopted PATs that do not require special skills or addi-
tional training, such as driver assistance systems (e.g., row guidance) (Groher et al., 2020; 
Kolady et al., 2021). More expensive and skill-demanding PATs had few adopters: 8 farm-
ers adopted images (satellite/drone) for mapping pests and yields, 8 farmers adopted VRA 
of fertilizers and 3 farmers adopted VRA of pesticides.

Some PATs were adopted individually, while others were adopted in combination with 
others. Column “1” of Table 1 shows that 13 farmers adopted only one PAT, GNSS and 
images for planting row orientation (satellite/drone). Column “2” shows that combinations 
of two PATs were adopted by 25 farmers, comprising two of the following PATs: GNSS 
and images for planting row orientation (satellite/drone), tractor/harvester with automatic 
guidance system, georeferenced grids for soil sampling, and images (satellite/drone) for 

Table 1   Number of farmers who adopted each PAT, and number of farmers who adopted 0 (non-adopters), 
1, 2, 3, 4, 5 and 6 PATs

PATs Adopters 
of the 
PAT

Number of Adopted PATs (Y)

0 1 2 3 4 5 6

GNSS and images for planting row orientation (satellite/
drone)

52 0 13 25 10 1 1 2

Tractor/harvester with automatic guidance system 32 0 0 21 7 1 1 2
Georeferenced grids for soil sampling 15 0 0 2 8 2 1 2
Images (satellite/drone) for mapping pests and yields 8 0 0 2 2 1 1 2
VRA of fertilizers 8 0 0 0 3 2 1 2
VRA of pesticides 3 0 0 0 0 1 0 2
Frequency of Y (n) 78 13 25 10 2 1 2
Frequency of Y (%) 59.6 9.9 19.1 7.6 1.5 0.8 1.5
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mapping pests, and for mapping yields. Only two farmers adopted the six PATs combina-
tion. Different purposes and complementarities determine combinations (Giua et al., 2022; 
Isgin et al., 2008; Kolady et al., 2021; Paxton et al., 2011). The number of PATs (0 through 
6) adopted by each farmer is the count variable which is used as a dependent variable in the 
statistical model described in Sect. 2.3.

Adoption predictor variables

Predictor variables were used to test the role played by five factors explaining the adoption 
of these PATs: agricultural information, human capital, scale, financial resources, depend-
ence on sugarcane and perceived benefits. Table 2 shows the description of each predictor 
variable and a list of authors who had evaluated these explanatory factors in their empirical 
studies. Hypotheses on the expected effect of each variable on the adoption and the inten-
sity of adoption are in column H.

The effect of several information sources on technology adoption has been investigated. 
Agricultural advisors, suppliers of machinery and equipment, technical lectures, field days 
and agricultural fairs are sources of information investigated in studies on the adoption of 
PATs (Larson et al., 2008; Walton et al., 2008; Watcharaanantapong et al., 2014; Barnes 
et al., 2019; Kanal et al., 2019). Walton et al. (2008) and Barnes et al. (2019) found a posi-
tive effect of information from agricultural advisors on the adoption VRA technologies. 
Khanal et al. (2019) identified that the greater the number of events and courses that the 
farmer attended, the higher probability of adopting PATs.

Human capital has also been investigated as a determinant of technology adoption. 
Hypotheses on the positive effect of schooling and previous experience with technology 
have been tested. Walton et al. (2008) and Paxton et al. (2011) found that farmers with the 
highest level of education are more likely to adopt PATs when compared to farmers at the 
lowest level. It is argued that the high level of education improves the ability to understand 
information and data generated by PATs. For Cohen and Levinthal (1990), the ability to 
absorb new information depends on the level of prior knowledge in the specific area related 
to the new technology. “Learning by doing” has been considered an important process for 
creating human capital (Bell and Pavitt, 1993). Organizations find it difficult to assess and 
assimilate new information without previous experience (Zahra and George, 2002). The 
effect of farmers’ previous experience with PATs has not been evaluated to date. In the 
empirical approach proposed in this article, farmers were asked if they had off-farm experi-
ence with any PAT. Adopters were instructed to consider their experience prior to adoption.

The effect of production scale has been tested in several studies on the adoption of 
PATs, in which farm size was used as a predictor variable (Daberkow and McBride, 2003; 
Walton et al., 2010; D’Antoni et al., 2012; Tamirat et al., 2018; Barnes et al., 2019). In all 
cases, farm size had a positive effect on adoption.

The availability of financial resources is an important issue in the design of innova-
tion diffusion policies, especially in cases of high-cost innovations. Lack of credit supply is 
sometimes a barrier to adoption. According to Daberkow and McBride (2003), some PATs 
fit the capital-intensive technology model, especially if training and education costs are 
considered. Therefore, lack of credit supply can delay adoption. The authors found a posi-
tive effect of access to rural credit on the adoption of PATs.

Farmer dependence on agricultural income is another predictor investigated in stud-
ies on PAT adoption (Walton et al., 2008; Watcharaanantapong et al., 2014; Paustian and 
Theuvsen, 2016). According to Watcharaanantapong et al. (2014), farmers whose income 
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comes mainly from agriculture are more likely to adopt PATs to reduce production risks. 
In the approach proposed in this article, the positive effect of the farmer’s dependence on 
sugarcane production is tested.

The effect of farmers’ perceptions of the benefits and the costs of an agricultural inno-
vation has been tested in empirical studies. In the case of the adoption of PATs, a posi-
tive effect of the perception that PATs increase yield was found by Paxton et al. (2011), 
D’Antoni et al. (2012), Watcharaanantapong et al. (2014), and Allahyari et al. (2016). The 
perception of high cost of an innovation has the opposite effect. Khanal et al. (2019) found 
that the probability of adoption decreases when farmers perceive that production cost 
would increase with the adoption of PATs.

Table 3 shows means and standard deviations of the predictor variables for non-adop-
ters and adopters of at least one of the six PATs. The hypothesis of equal means of the 
two groups was rejected for all variables at 10% significance level. The threshold at 0.05 
commonly used in academia is an arbitrary and not fixed value. The magnitude of p-value 
depends on the sample size. Lower thresholds could increase sample size and cost. The 
cutoff for statistical significance at 0.10 has been used in empirical studies for identifying 
suggestive factors affecting the decision to adopt PATs (D’Antoni et al., 2012; Daberkow & 
McBride, 2003; Gardezi & Bronson, 2020; Isgin et al., 2008; Kolady et al., 2021; Larson 
et al., 2008; Paxton et al., 2011; Tamirat et al., 2018; Watcharaanantapong et al., 2014).

Count data regression models

Table 1 shows the number of PATs (0 through 6) adopted by each farmer, which is a count 
variable that assumes the values 0, 1, 2, 3, 4, 5 and 6. Studies on the adoption of agricul-
tural technologies have used this type of variable as an indicator of intensity of adoption 

Table 3   Means and standard 
deviations (in parentheses) of 
predictor variables, non-adopters, 
and adopters

a a adopters of at least one of the six PATs; Standard deviations are 
pointed within the parenthesis
***, ** and * indicate that, according to the results of the hypothesis 
test, the mean values of the variables are statistically different between 
the adopted and non-adopted at the significance levels of 1%, 5% and 
10%, respectively. The t test was used to compare means (continuous 
and discrete variables) and Chi-squared test to test the equality of pro-
portions (binary variables)

Variable Non-adopter Adoptera

Agricultural advisor (binary) 0.06 (0.25) 0.26 (0.45) ***
Machinery supplier (binary) 0.37 (0.49) 0.58 (0.50) **
Sugarcane mill (binary) 0.45 (0.50) 0.66 (0.48) **
Agricultural event (discrete) 7.99 (6.81) 11.51 (8.40) ***
Schooling (binary) 0.23 (0.42) 0.49 (0.50) ***
Experience (binary) 0.05 (0.22) 0.15 (0.36) *
Log sugarcane area (continuous) 4.71 (1.31) 6.21 (1.39) ***
Credit (binary) 0.59 (0.50) 0.74 (0.45) *
Sugarcane dependence (continuous) 0.75 (0.29) 0.86 (0.19) ***
Yield perception (binary) 0.72 (0.45) 0.86 (0.35) **
Cost perception (binary) 0.54 (0.50) 0.38 (0.49) *
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(Giua et al., 2022; Isgin et al., 2008). A count data regression model is used to test hypoth-
esis on predictors of the intensity of adoption. The count variable is the dependent variable, 
Y, in these regressions. Such models have been used in other studies on the adoption of 
PATs (Isgn et al., 2008; Paxton et al., 2011; Barnes et al., 2019; Kolady et al., 2021).

At least eight count data regression models can be found in statistics: Poisson Regres-
sion, Negative Binomial Regression (NB), Zero-inflated Poisson (ZIP), Zero-inflated Neg-
ative Binomial (ZINB), Zero-truncated Poisson, Zero-truncated Negative Binomial, Hurdle 
Models and Random-effects Count Models (Cameron & Trivedi, 2013). The choice of the 
best model largely depends on the distribution of the dependent variable, Y. In the Poisson 
model, a Poisson distribution is assumed:

� is the incidence rate ratio (IRR). The mean and the variance are the same in the Poisson 
distribution, which is known as equidispersion. (Cameron & Trivedi, 2013; Greene, 2003). 
If this assumption is violated, the NB becomes more appropriate. An unobserved effect is 
introduced on the conditional mean to obtain a generalized Poisson model (Greene, 2003):

The disturbance term, �i, holds the specification error as in the classical regression 
model. Therefore, the conditional distribution of the NB model keeps a Poisson distribu-
tion, but with conditional mean and varianceui:

An excess of zeros in the dependent variable generates a problem frequently confronted 
in studies that use count data models (Cameron & Trivedi, 2013). This is the case of the 
dependent variable in this study, which has 78 zeros (non-adopters). The ZIP and ZINB 
models are used to solve the problem. Both the ZIP and ZINB include a logit (or probit) 
regression for the group of observations at zero, followed by the Poisson estimate (if the 
model is ZIP), or the NB estimate (if the model is ZINB). Therefore, two internal regres-
sions are estimated consecutively: a binary logit/probit and a count regression data. In the 
binary logit/probit, two groups of observations are discriminated: one with observations at 
zero (non-adopters) and another with observations at non-zeros (adopters). Therefore, pre-
dictors of the probability of belonging to the group at zero are estimated. In the count data 
regression, predictors of the count dependent variable are estimated. The choice between 
the ZIP and ZINB models will depend on the equidispersion of the distribution of the 
dependent variable, which can be tested by the Pearson goodness-of-fit tests and the likeli-
hood-ratio test. The Vuong statistical test can be additionally performed to verify if a zero 
inflated model is preferable to traditional models (Poisson and NB) (Cameron & Trivedi, 
2013; Greene, 2003).

Count regression models can provide additional information to binary probit/logit 
models. In binary probit/logit models, the dependent variable assumes two values, such 
as 0 for non-adoption and 1 for adoption. Heterogeneity among adopters, such as the 
level of intensity, is not considered. Therefore, a count data regression model is a rea-
sonable choice for the analysis proposed in this article. The dependent count variable 
Y, which assumes non-negative integer values (0 through 6) and measures the intensity 

(1)P
[
Y = y

]
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of adoption, would be regressed against a vector of predictors X. The hypothesis on the 
role of predictors in the intensity of adoption could then be tested.

Results and discussion

The analysis started with Poisson regression estimation, as suggested by Cameron and 
Trivedi (2013). Stata® software was used to obtain the estimates and the correlation 
matrix variables, which are in the Appendix, Tables 6 and 7. Pearson’s goodness of fit 
was then performed to test the hypothesis of equidispersion of the Poisson distribution 
of the dependent variable (Appendix Table  8). The p-value of the Pearson’s test pre-
sented statistical significance level above 10%, indicating that the mean and the vari-
ance of the count dependent variable (the indicator of intensity of adoption) are equal. 
Therefore, the equidispersion assumption of the Poisson distribution was confirmed, 
indicating the validity of the Poisson model. The alpha = 0 likelihood ratio test was 
also performed. The p-value of the test was 0.5000, indicating that the alpha dispersion 
parameter is equal to zero, therefore the Poisson model fits the data better than the NB 
model.

The dependent count variable has high incidence of zero observations, as 78 out of 
131 farmers were non-adopters. The solution to this problem is the estimation of a ZIP 
model (Cameron and Trivedi, 2013). Estimates of this model are in Table  4. The χ2 
likelihood ratio was 27.21, with 11 degrees of freedom, and the p-value is close to zero. 
These results indicate that the model with predictors fits better than the model without 
predictors. The P >|z|= 0.0000 of the Vuong test was statistically significant, which also 
indicates that the ZIP model is the most suitable. The ZIP model includes a logit regres-
sion for non-adopters (observations at zero), followed by the Poisson estimate for inten-
sity of adoption. The predictors of both models are discussed in the next two sections.

Table 4   Coefficients, IRR and OR of the ZIP regression model predictors

*p ≤ 0.10; **p ≤ 0.05.; and ***p ≤ 0.01

Variable Logit for non-adoption Poisson for intensity of adoption

Coefficient ( �) OR Coefficient ( �) IRR

Agricultural advisor − 2.3892 0.0917 0.5082 * 1.6623
Machinery supplier − 0.7607 0.4674 0.1374 1.1472
Sugarcane mill − 1.6769 * 0.1869 0.0076 1.0076
Agricultural event − 0.0197 0.9805 0.0307 ** 1.0311
Schooling − 0.6084 0.5442 0.2487 1.2823
Experience − 0.7087 0.4923 0.7077 ** 2.0292
Log sugarcane area − 1.6539 ** 0.1913 − 0.1235 0.8838
Credit − 2.4228 0.0887 0.4620 * 1.5872
Sugarcane dependence − 0.1867 0.8297 0.9271 2.5271
Yield perception − 5.0890 ** 0.0062 0.5640 ** 1.7576
Cost perception 0.9551 2.5990 − 0.1332 0.8753
Constant − 3.0017 0.0497 − 0.8955 0.4084
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The logit model for non‑adoption

The coefficients of the logit model show the effects of predictors on the observations at 
zero (non-adopters). Therefore, it should be noted that the expected effect of predictors on 
“adoption” has the opposite effect to that shown in Table 4. The odds ratio (OR) was esti-
mated for each coefficient of this model to provide easy interpretation. The OR is calculated 
as eβ. An OR greater than one indicates that the predictor has a positive effect on the prob-
ability of non-adoption. The OR can be also interpreted using the formula [(eβ−1)*100], 
which shows the change in percentage points in the probability that the farmer will not 
adopt PAT, in response to the change in one unit in the predictor variable.

Agricultural advisors, suppliers of agricultural machinery and equipment, technical 
lectures, field days and agricultural fairs are some of the sources of information identi-
fied in studies on the adoption of PATs (Larson et al., 2008; Walton et al., 2008; Watch-
araanantapong et al., 2014; Barnes et al., 2019; Kanal et al., 2019). Walton et al. (2008) 
and Barnes et  al. (2019) found a positive effect of agricultural advisors on the adop-
tion of VRA technologies. Khanal et al. (2019) found a positive effect of the number of 
events and courses that farmers attended on the probability of adopting PATs.

SUGA​RCA​NE MILL was one of four predictor variables used to test the hypoth-
esis that access to agricultural information positively affects adoption. It was assumed 
that more information increases knowledge and reduces uncertainties about the benefits 
and impacts of adoption (Feder et al., 1985). The variable indicates farmer’s access to 
technical information provided by sugarcane mills. The estimated negative coefficient 
shows a negative effect on non-adoption. The OR, 0.1869, is less than one, indicating 
that the predictor has a negative effect on the probability of non-adoption. Using OR, 
one can also say that the chance of a farmer being a non-adopter decreases by 81.31% 
[(0.1869−1)*100] if he/she has access to agricultural information provided by the sug-
arcane mill. Conversely, the likely of being an adopter increases. This result confirms 
that access to agricultural information increases the chances of a farmer becoming an 
adopter of PAT, which corroborates other empirical findings (Barnes et al., 2019; Lar-
son et al., 2008; Walton et al., 2008; Watcharaanantapong et al., 2014).

It can be said that the mills had a special role in adoption decision. The sample data 
showed that the mills were an important channel for the adoption of two of the most 
adopted PATs: GNSS and images for planting row orientation (satellite/drone) and tractor/
harvester with automatic guidance system. In many cases, adopting these PATs is the first 
step towards adopting a larger set of PATs. As shown in Table 1, 52 out of 53 (98%) adop-
ters have adopted GNSS and images for planting row orientation, and 32 out of 53 have 
adopted a tractor/harvester with an automatic guidance system. In fact, the mills provide 
services to farmers, such as planting, harvesting, loading and transporting sugarcane. Anal-
ysis of the survey data showed that many adopters of GNSS and image for planting row 
orientation (satellite/drone) reported the mill as the main provider of data analysis (58%) 
and data collection (52%). In addition, 56% of these adopters reported that the mill was 
their provider of planting operations, in which the mill was the owner of equipment used in 
these operations. The value and technical conditions of these services are defined in formal 
contracts, which are negotiated with the technical staff of the mills. The latter has the accu-
mulated learning by doing knowledge, as some mills have already adopted planting row 
orientation for mechanized operations with autopilot in their own fields. This knowledge is 
diffused among farmers, mainly among those who buy mills’ services. Therefore, the mills 
have become an important entry channel for the adoption.
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The other variables for information sources, AGRICULTURAL ADVISOR, 
MACHINERY SUPPLIER and AGRICULTURAL EVENT, were not statistically sig-
nificant in the logit model. However, AGRICULTURAL ADVISOR and AGRICUL-
TURAL EVENT were significant in the Poisson model for adoption intensity, as will be 
shown in the next section.

The variable LOG SUGA​RCA​NE AREA was used to test the effect of production 
scale. Several studies on the adoption of PATs used the farm size variable as a proxy for 
production scale (Daberkow and McBride, 2003; Walton et  al., 2010; D’Antoni et  al., 
2012; Tamirat et al., 2018; Barnes et al., 2019). In all cases, farm size showed a positive 
effect on the adoption of PATs. LOG SUGA​RCA​NE AREA had a positive and statisti-
cally significant effect on the adoption in the logit model (Table 4), corroborating the 
findings. The OR shows that farmers who own large areas of sugarcane are more likely 
to be in the adopter group. The mean area of sugarcane in the group of non-adopters 
was 278.7 hectares, while in the group of adopters it was 1125.5 hectares. The survey 
also showed that 32% of non-adopters reported farm size as a barrier to adoption. These 
figures clearly indicate a threshold for the adoption of even the most diffused PATs, 
such as the GNSS and images for planting row orientation. This result also supports the 
proposition that there is a critical minimum size below which adoption cannot occur, 
mainly due to technological indivisibilities (Feder et al., 1985). Large farms enable the 
adoption of high-cost technologies and services associated with them. This result cor-
roborates the findings of Groher et  al. (2020), Kendall et  al. (2022) and Kolady et  al. 
(2021).

The benefits perceived by farmers when adopting PA are centered on increased produc-
tivity and the economic benefits of reducing the use of inputs (Barnes et al., 2019; Ken-
dall et  al., 2022; Kolady et  al., 2021; and Tey & Brindal, 2021). Empirical studies have 
identified a positive effect on adoption when farmers perceive that the adoption of PATs 
would increase productivity (Paxton et  al., 2011; D’Antoni et  al., 2012; Allahyari et  al., 
2016; Watcharaanantapong et al., 2014). However, a negative effect on adoption was found 
when farmers had the perception that PATs would increase production costs (Khanal et al., 
2019). Two variables were used in the model of to test the effect of farmers’ perception 
of PATs: YIELD PERCEPTION and COST PERCEPTION. YIELD PERCEPTION meas-
ured farmers’ perception that the adoption of PATs would increase yields, while COST 
PERCEPTION measured farmers’ perception that the adoption of PATs would increase 
cost. Non-adopters reported perceptions which they had at the time of the interview, while 
adopters reported the perceptions they had before adopting a PAT. A positive and statisti-
cally significant effect of YIELD PERCEPTION was found in the logit model. This result 
corroborates the findings of other empirical studies. However, the statistically non-signifi-
cant parameter of COST PERCEPTION did not show an effect on adoption, therefore the 
hypothesis of a negative effect was not confirmed.

SCHOOLING and EXPERIENCE were used to test the positive effect of the human 
capital hypothesis. They have been used to measure farmer’s ability to perceive and inter-
pret new information (Mizumoto, 2009). Studies have shown that the higher the level of 
education of the farmer, the greater the chance of PATs being adopted (Paxton et al., 2011; 
Walton et al., 2008). These studies showed that farmers with a higher level of education 
have greater ability to interpret information and data generated by PATs and, therefore, 
have a higher probability of adoption when compared to farmers with lower level of educa-
tion. However, the statistically non-significant parameters of SCHOOLING and EXPERI-
ENCE showed no effect on adoption. Nevertheless, EXPERIENCE had an effect on adop-
tion intensity, as will be shown in the next section.
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Some PATs are high-cost and capital-intensive technologies that require availability of 
sufficient financial resources. (Daberkow and McBride, 2003). Consequently, access to 
credit can promote the adoption of PATs. The variable CREDIT was used as proxy for the 
availability of financial resource. Kendall et al. (2022) showed that access to credit posi-
tively affects the adoption of certain PATs. This predictor was not significant in the logit 
model, although it was significant in the Poisson regression for adoption intensity, as will 
be discussed in the next section.

The dependence of farmers on farm income has been investigated in studies which ana-
lyze the adoption of PATs (Walton et  al., 2008; Watcharaanantapong et  al., 2014; Paus-
tian and Theuvsen, 2016). According to Watcharaanantapong et al. (2014), farmers whose 
income comes mainly from agriculture are more likely to adopt PATs to reduce production 
risks. The variable SUGA​RCA​NE DEPENDENCE was used as a proxy for this type of 
dependence, but the parameter was not significant in the logit model, and the hypothesis of 
a positive effect on adoption was not confirmed.

As seen, the parameters of AGRICULTURAL ADVISOR, AGRICULTURAL EVENT 
and EXPERIENCE were not significant in the logit model, but were significant in the Pois-
son model. This stems from the binary dependent variable in the logit model, which takes 
the value 1 for all adopters, regardless of the number of PATs adopted. Therefore, the adop-
tion intensity is not considered, as is the case with the Poisson model.

The poisson count model for intensity of adoption

Table 4 shows the coefficients (β) and the Incidence Rate Ratios (IRR) of the Poisson count 
model for intensity of adoption. The IRR is eβ, and does the exact same thing as the OR 
used in the logit model. However, the IRR indicates how changes in a predictor variable 
affect the mean of the number of PATs adopted by a farmer, keeping the other variables 
constant. An IRR greater than one shows that the mean of the expected number of PATs 
adopted by a farmer increases when the predictor variable increases by one; the expected 
number of adopted PATs decreases if IRR is less than one. Farmers who had access to 
private technical advisor (AGRICULTURAL ADVISOR, for which the IRR is 1.66), for 
example, adopt, on average, 66% more PATs than those who did not.

The results showed that agricultural information plays a role in the intensity of adop-
tion. Two predictors were statistically significant, AGRICULTURAL ADVISOR and 
AGRICULTURAL EVENT. Both have a positive effect on the number of PATs adopted. 
The Poisson model shows that access to private agricultural advisors increases the num-
ber of PATs adopted by 66%, which is a substantial impact. The survey data showed that 
technical advisors were hired by only 14.5% of all farmers in the sample (adopters and 
non-adopters). This proportion rises to 26.4% of all adopters and 60% of the adopters of 
four or more PATs. Furthermore, Table 1 showed that both the georeferenced grids for soil 
sampling and the images for mapping pests and yields were mainly adopted by farmers 
who adopted three or more PATs. These PATs require site-specific knowledge to interpret 
the data and make recommendations. Unlike them, GNSS and Images for planting row 
orientation, which was adopted individually, do not require as much new knowledge and 
effort, thus hiring private advisors may not be necessary. Therefore, access to agricultural 



1827Precision Agriculture (2023) 24:1813–1835	

1 3

information provided by private technical advisors has played an important role in the pro-
cess of scaling up the use of PATs. This result corroborates the findings of Paustian and 
Theuvsen (2016); Barnes et al. (2019); and Tey and Brindal (2021).

The information obtained in agricultural events (lectures, field days and agricultural 
fairs) played a minor role in the intensification, even though the estimate for AGRICUL-
TURAL EVENT was statistically significant. The IRR in the Poisson model shows that 
farmers who participated in a agricultural events adopt 3% more PATs on average than 
those who do not. Nevertheless, the positive effect supports the findings of Watcharaanan-
tapong et al. (2014); Tamirat et al. (2018); and Khanal et al. (2019). Many of these agricul-
tural events are sponsored by farmer organizations such as cooperatives and associations, 
research organizations and government extension services. These events are an opportunity 
to share information and experience about the new technology with technicians and peers. 
Most of the knowledge brought by farmers to these events was acquired in a learning-by-
doing process, and are generally seen by their peers as a more reliable source of informa-
tion (Buck & Alwang, 2011). This kind of information helps to improve farmers’ evalua-
tion of risks, which may favor intensification.

The parameter of the variable SUGA​RCA​NE MILL was significant in the logit model 
of Sect. 3.1, but not in the Poisson model. It can thus be said that the mills are entry chan-
nels for the adoption of PATs, however they do not play a role in intensification. Farm-
ers would depend on information provided by private advisors and agricultural events to 
increase the number of PATs, as shown in the Poisson model.

The parameter of MACHINERY SUPPLIER did not show statistical significance in 
the Poisson model, replicating the result of the logit model. Therefore, the hypothesis that 
information provided by machinery suppliers would have a positive effect on adoption and 
adoption intensity was rejected. In addition, the survey data showed that 19% of adopters 
reported the lack of assistance from suppliers as a problem they faced when deciding to 
adopt. It can be suggested that suppliers improve strategies to be considered a relevant 
source of information.

The parameter of EXPERIENCE was statistically significant at 10% level in the Pois-
son model, which shows that previous experience with PATs positively affects intensifica-
tion. This result indicates that the accumulated knowledge in a learning-by-doing process 
increases the ability to evaluate an innovation and ultimately affects the decision to adopt 
(Bell & Pavitt, 1993). The learning performance is higher and its marginal cost is lower 
when the learning object is related to what is already known (Zahra and George, 2002). 
Kendall et al. (2022) found that adopting unknown PATs requires additional learning time 
to obtain the necessary skills for using information systems and interpreting data outputs. 
Thus, previous experience reduces the time spent on learning and increases the likelihood 
of adoption. This result corroborates the findings of Paxton et al. (2011), D’Antoni et al. 
(2012), Allahyari et al. (2016) and Paustian and Theuvsen (2016).

Access to rural credit, measured by the variable CREDIT, had a positive and statisti-
cally significant effect on the intensity of adoption. The survey data showed that 80% of 
adopters of three PATs had access to rural credit. This percentage rises to 100% of adopters 
of four or more PATs. Brazilian credit programs provide subsidies to promote the diffusion 
of agricultural technologies. For example, farmers can apply for the program INOVAGRO 
(acronyms for rural credit for precision agriculture technologies), which provides credit 
for the adoption PATs. The amount committed to INOVAGRO was 3.25% of the total 
amount of subsidized rural credit in Brazil in the 2022/23 season (BNDES, 2023). This 
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result corroborates the findings of Daberkow and McBride (2003) and Isgin et al. (2008). 
It should be noted that 67% of non-adopters in the sample reported the high cost of PATs 
as a barrier to adoption, highlighting the importance of rural credit in overcoming financial 
restrictions.

The parameters of YIELD PERCEPTION were statistically significant in the Logit and 
Poisson models. The variable measures farmers’ perception that PATs could increase sug-
arcane yield. This predictor had a positive effect on both adoption and adoption intensity. 
The IRR in the Poisson model shows that farmers who have this perception adopt 75% 
more PATs on average than those who do not. Therefore, the Poisson model reveals the 
important role of this type of perception in intensification. However, the COST PERCEP-
TION parameter was not statistically significant in both models. Therefore, the hypoth-
esis of a negative effect caused by the perception that PATs increase the cost was not con-
firmed. These results suggest that farmers see PATs as productivity-enhancing innovations, 
and cost is not seen as a barrier to adoption. The benefits perceived by farmers are centered 
on increasing productivity and reducing the use of inputs.

The variable LOG SUGA​RCA​NE AREA was used to test the effect of production scale. 
In the logit model, the parameter of this variable was significant and indicates that size can 
be a barrier to the adoption of even the most diffused PATs, such as GNSS and images for 
planting row orientation. However, it was not significant, indicating that, once a critical 
size is reached, the scale does not affect the intensity of adoption. This finding corroborates 
the proposition by Giua et al. (2022) on the adoption of smart agricultural technologies in 
Italy, where large scale is a necessary condition for adopting, but it was not determinant for 
the intensity of adoption.

The parameters of the variables MACHINERY SUPPLIER, SCHOOLING, and SUGA​
RCA​NE DEPENDENCE were not statistically significant in the Poisson and logit models.

Conclusion and implications

The production of sugarcane has economic, social and environmental relevance in several 
countries. It is assumed that PATs can increase resource use efficiency and environmental 
sustainability in sugarcane production (Carrer et al., 2022). Therefore, understanding the 
factors that affect farmers’ adoption decisions is useful for designing policies aimed at their 
diffusion.

The results showed that GNSS and images for planting row guidance (satellite/drone) 
is the most diffused PAT, followed by tractor/harvester with automatic guidance system, 
and georeferenced grids for soil sampling. Few farmers adopted images (satellite/drone) for 
mapping pests and yields, and VRA of fertilizers and pesticides. However, many farmers in 
the sample did not adopt any of these PATs, while some adopted one, and others adopted a 
combination of two or more, suggesting complementarity among them.

A ZIP model was used to test hypotheses on determinants of this heterogeneity. The 
logit model of this approach showed that the information provided by sugarcane mills, the 
scale of production and the farmer’s perception that PATs increase productivity affect the 
adoption of at least one of these PATs. The Poisson model showed that information from 
agricultural advisors, information from agricultural events, farmer’s previous experience 
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with PATs, access to credit, and farmer’s perception that PATs increase productivity affect 
the number of PATs adopted, that is, the intensity of adoption.

The ZIP regression provided results that would not be obtained by estimates of a binary 
logit/probit model alone. In the analysis on the role of information, the logit model showed 
that information from mills positively affects adoption, and suggested they are an impor-
tant entry channel. The logit model also showed that agricultural advisors and agricultural 
events did not affect adoption. However, the Poisson model showed that information from 
agricultural advisors and agricultural events are important determinants of intensity of 
adoption, while mills had no role in this. Therefore, the ZIP regression expanded the scope 
of the analysis, bringing additional results.

The Poisson model showed that the intensity of adoption is also affected by access to 
credit, farmers’ previous experience with PATs, and their perception that PATs would 
increase yield. These results contribute to the scarce empirical literature on these types 
of determinants.

It can be said that the mills had a prominent role in the adoption. The information 
provided by them is transmitted through their transactions with farmers. They are not 
only buyers of sugarcane, but also providers of services to farmers, such as planting, 
harvesting, and loading and transporting sugarcane. They provide, for example, planting 
operations, which can be carried out with machinery equipped with PATs. Data collec-
tion and analysis can also be performed by the mills’ personnel.

Despite the relevance of some sources of information, such as mills and private advi-
sors, they were not sufficient to intensify use of PATs, notably in the case of small farm-
ers. There is room for rural organizations, research institutes and public rural extension 
to act on this matter. The results of the logit model showed that small farmers face bar-
riers to becoming adopters, mainly adopters of several PATs. Their small scale does not 
cope with the indivisibility of some PATs. A possible strategy to overcome the problem 
could be, for example, collective actions carried out by farmers’ organizations, such as 
cooperatives and pools. These organizations could create their own extension service 
and provide other services at a lower cost. Some cooperatives in the region provide paid 
services related to the PATs, such as renting autopilot for tractors, renting equipment for 
georeferenced soil sampling, and data analysis. However, their business approach has 
not reached the small farmers, as the diffusion among them is still low.

The estimates also showed that the suppliers of machinery are also failing to become 
an important source of information. Therefore, they should improve their strategies, 
which can be done jointly with farmers’ organizations, and public extension services. 
The main objective is to reduce the cost of information and the cost of using PATs.

Access to rural credit was determinant for the intensity of adoption (Poisson model), 
which involves large areas of sugarcane. Although the Brazilian government has a low-
cost rural credit policy for small and medium-sized farmers, it has not been sufficient to 
increase the number of PATs adopted by these farmers. Farmer organizations and PAT 
suppliers can take advantage of the availability of this policy to enhance PAT diffusion. 
It may be necessary to adapt terms and interest rates to the needs of small farmers.

Appendix

See Tables 5, 6, 7, 8.
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Table 5   Sample counties

Sampled municipalities Area with cane Sugarcane produced

Municipality* Sample Municipality* Sample

(ha) %1 (ha) %2 (tn) %1 (tn) %2

Aguaí 11.417 0,2 5.107 6,3 772.504 0,2 513.585 7,2
Americana 4.648 0,1 575 0,7 93.960 0,0 50.775 0,7
Anhembi 4.541 0,1 31 0,0 288.939 0,1 1.432 0,0
Araraquara 28.819 0,6 2.173 2,7 2.260.290 0,7 192.724 2,7
Araras 32.647 0,7 8.647 10,6 2.751.237 0,8 813.941 11,3
Artur Nogueira 3.043 0,1 2.720 3,3 240.629 0,1 226.371 3,2
Boa Esp. do Sul 30.143 0,6 401 0,5 1.953.107 0,6 34.460 0,5
Cardoso 4.816 0,1 300 0,4 277.630 0,1 29.440 0,4
Charqueada 6.495 0,1 37 0,0 397.755 0,1 2.783 0,0
Colina 24.174 0,5 1.111 1,4 1.739.822 0,5 93.652 1,3
Cordeirópolis 4.888 0,1 600 0,7 421.219 0,1 60.651 0,8
Cosmópolis 5.657 0,1 326 0,4 453.357 0,1 25.738 0,4
Descalvado 27.125 0,6 2.809 3,5 2.012.669 0,6 213.799 3,0
Gavião Peixoto 12.271 0,3 824 1,0 863.705 0,3 73.256 1,0
Holambra 71 0,0 23 0,0 3.398 0,0 2.101 0,0
Jaboticabal 43.252 0,9 702 0,9 3.719.451 1,1 71.331 1,0
Jaguariúna 2.740 0,1 27 0,0 177.495 0,1 3.053 0,0
Laranjal Paulista 3.003 0,1 494 0,6 175.030 0,1 48.686 0,7
Leme 17.044 0,4 1.020 1,3 1.401.390 0,4 84.145 1,2
Luís Antônio 25.295 0,5 38 0,0 1.870.606 0,6 3.696 0,1
Matão 16.555 0,4 1.414 1,7 1.368.468 0,4 147.327 2,1
Mogi Mirim 5.201 0,1 700 0,9 362.955 0,1 62.982 0,9
Mombuca 6.404 0,1 154 0,2 359.562 0,1 13.339 0,2
Monte Aprazível 22.503 0,5 5.746 7,1 1.372.135 0,4 501.913 7,0
Monte A. Paulista 14.551 0,3 2.809 3,5 1.142.215 0,3 296.738 4,1
Motuca 7.195 0,2 587 0,7 611.419 0,2 55.483 0,8
Nova Europa 11.592 0,2 638 0,8 879.150 0,3 64.847 0,9
Paraíso 9.355 0,2 1.277 1,6 702.767 0,2 142.663 2,0
Piracicaba 40.975 0,9 8.190 10,1 2.933.390 0,9 584.471 8,1
Pirassununga 29.568 0,6 779 1,0 2.271.499 0,7 83.082 1,2
Poloni 4.173 0,1 1.915 2,4 305.830 0,1 184.813 2,6
Ribeirão Bonito 14.078 0,3 2.767 3,4 859.476 0,3 240.951 3,4
Riodas Pedras 8.259 0,2 3.718 4,6 588.517 0,2 343.417 4,8
Saltinho 2.193 0,0 319 0,4 128.640 0,0 22.696 0,3
Snta Adélia 23.329 0,5 536 0,7 1.769.926 0,5 40.853 0,6
Snta C. Conceição 3.956 0,1 153 0,2 303.350 0,1 15.563 0,2
Snta C.Palmeiras 16.346 0,4 4.872 6,0 1.455.953 0,4 468.181 6,5
Snta Lúcia 8.167 0,2 56 0,1 635.965 0,2 5.193 0,1
Snta R. P. Quatro 14.901 0,3 3.562 4,4 1.044.489 0,3 256.209 3,6
Snta R.Viterbo 8.371 0,2 170 0,2 574.393 0,2 10.350 0,1
São Carlos 27.848 0,6 192 0,2 2.001.903 0,6 15.563 0,2
São Simão 15.119 0,3 447 0,5 1.068.372 0,3 32.229 0,4
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Table 5   (continued)

Sampled municipalities Area with cane Sugarcane produced

Municipality* Sample Municipality* Sample

(ha) %1 (ha) %2 (tn) %1 (tn) %2

Tabatinga 17.631 0,4 843 1,0 1.263.331 0,4 78.335 1,1
Tambaú 20.329 0,4 4.239 5,2 1.501.553 0,4 410.861 5,7
Tietê 7.386 0,2 5.107 6,3 499.515 0,1 363.141 5,1
União Paulista 3.574 0,1 1.081 1,3 259.919 0,1 82.388 1,1
Votuporanga 7.322 0,2 1.149 1,4 495.561 0,1 103.884 1,4
Total 658.970 14,1 81.390 12,4 48.634.446 14,5 7.173.090 14,7
Total do estado 4.660.068 100 1,7 336.055.867 100 2,1

*Data on the area and production of sugarcane from the Municipality were extracted from IBGE (2017). 
1Percentage of the area with sugarcane or production in the Municipality in relation to the total area or 
production of the state; 2Percentage of the area with sugarcane or sample production in the Municipality in 
relation to the total sample area

Table 6   Poisson Model Variable IRR Coefficient p >|Z|

Agricultural consulting 1;974 0;680 0;007
Machinery supplier 1;018 0;018 0;934
Sugarcane mill 1;411 0;344 0;078
Agricultural event 1;033 0;033 0;005
Schooling 1;208 0;189 0;388
Experience 1;635 0;492 0;049
Log sugarcane area 1;230 0;207 0;019
Credit 1;275 0;243 0;300
Sugarcane dependence 2;339 0;850 0;092
Yield perception 1;070 0;068 0;781
Cost perception 0;684 -0;380 0;078
Constant 0;051 -2;978 0;000
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