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Abstract
Thematic maps are essential tools in precision agriculture to demonstrate the information 
of spatially distributed phenomena. A thematic map can be created from sampling data, a 
standard procedure for soil attributes. Interpolation methods are used to estimate data in 
unknown locations, such as inverse distance weighting (IDW) and ordinary Kriging (OK). 
For both interpolators, it is essential to use the appropriate parameters to estimate values in 
non-sampled locations, either the exponent value and the number of neighbors for IDW, or 
the theoretical model adjusted to the experimental semivariogram for OK. Thus, this trial 
aims at adopting additional criteria in selecting interpolators and evaluating their perfor-
mance. AgDataBox platform’s data interpolation module was improved, where the process 
of selecting the interpolator and determining its parameters considers the criteria (i) effec-
tive spatial dependence index, (ii) the first semivariance significance index, and (iii) slope 
of the model ends index. The experimental data come from an experiment in two agricul-
tural areas in Brazil, using grids with good sampling density (2.7, 2.6, and 3.5 points per 
ha). It was observed that, usually, the application method of the three new criteria selected 
different models for a dataset and this must be considered in the interpolator selection pro-
cess. Thematic maps varied from 0.1 to 64%, according to the coefficient of relative devia-
tion, when comparing the three methods of applying the selection criteria.
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Introduction

Maps representing a field and a topic associated with it are called thematic maps (TMs) and 
aim to inform, by graphical symbols, where a specific geographical phenomenon occurs. 
TMs have become an essential tool in geospatial science to understand spatial information 
(Fraser & Congalton, 2019), e.g., digital elevation model, slope map, soil map, aspect map, 
land use/land cover map, and contour map (Gojiya et al., 2018).

In precision agriculture, TM is an essential tool to assist analysts in decision-making, 
as it allows them to identify spatial variability within the field and manage the area in a 
localized way. TMs development is associated with data collection, analysis, interpreta-
tion, and information representation on a map, facilitating identifying similarities and ena-
bling spatial correlations visualization. One specific case of TMs is contour maps built 
by connecting points of the same value and applying them to geographical phenomena 
that show continuity in geographic space. Another is choropleth maps, which use color 
to show ranges of values of a specific variable within a defined geographic area. Contour 
and choropleth maps can be built from categorical data (yield, elevation, temperature, pre-
cipitation, humidity, and atmospheric pressure) or relative data (density, percentages, and 
indexes) (Aikes Junior et al., 2021). Usually, both maps are called contour maps.

The advancement of computational technologies allows the creation and analysis of 
TMs using different techniques, methodologies, and software. For example, geographical 
information systems (GISs) can store, exhibit, recover, and dissect spatial data in a friendly 
approach. GIS has been widely used in many studies for spatial and temporal data creation 
(Gojiya et al., 2018).

Usually, the sampled data are interpolated in a dense and regular grid to generate con-
tinuous and smooth TMs. This task is carried out with the aid of interpolation methods. 
The most used methods in precision agriculture are inverse distance weighted interpolation 
(IDW—Shepard, 1968) and ordinary Kriging (OK—Cressie, 1993), which are differenti-
ated by how weights are attributed to different samples, and may influence the estimated 
values (Reza et al., 2010). IDW procedure has been used because it is quick and straight-
forward; Kriging has been used because it provides the best linear unbiased estimates. 
However, it is more complex and time-consuming (Mueller et al., 2004). IDW interpolator 
considers weights at the sample points, which are evaluated during the interpolation pro-
cess. Each sampled point’s influence is inversely proportional to the distance increased to a 
power from the point to be estimated (Isaaks & Srivastava, 1989). The value of the chosen 
power predetermines the weight factor; that is, the higher this value, the lower the most 
distant points’ influence.

Kriging has been identified as a Best Linear Unbiased Estimator (BLUE) interpolator 
(Diggle & Ribeiro, 2007; Isaaks and Srivastava, 1989). However, it must meet the spatial 
dependence (SD) modeling requests (Oliver & Webster, 2015; Cambardella et al., 1994) to 
have the correct performance and adequate use in creating a TM. The procedure’s perfor-
mance can be influenced by variability and spatial structure of data, semivariogram model, 
search radius, and the used number of the closest neighboring points (Reza et al., 2010; 
Isaaks & Srivastava, 1989). Therefore, the interpolations’ quality depends on the varia-
ble’s spatial structure under study (Amaral & Justina, 2019). The deterministic interpolator 
IDW does not consider SD and the specific behavior of data, leading to less efficiency in 
mapping the spatial distribution of a given variable than Kriging (stochastic interpolator) 
(Betzek et al., 2019). However, when there is no SD (Rodrigues et al., 2018; Cambardella 
et al., 1994), the use of a deterministic interpolator can be more appropriate.
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In geostatistics, semivariograms are not only used as an exploratory tool but allow esti-
mating parameters (Diggle & Ribeiro, 2007). After the experimental semivariogram con-
struction, it is necessary to adjust a theoretical model representing data variability. The 
curve-fitting can be done “by eye” by trying different values for the model parameters and 
visually inspecting the fit to the sample variogram (Diggle & Ribeiro, 2007). However, 
parametric covariance functions can be used to estimate semivariogram parameters. As a 
result, the variogram parameter estimates minimize the theoretical model’s squared differ-
ences and experimental variogram (Li et al., 2018).

Betzek et al. (2019) developed computational routines to determine the best interpola-
tor and its parameters for a data set. The routines determine the best semivariogram model 
(and its parameters) for OK and the best power and number of neighbors used in the IDW 
interpolator. The interpolation selection index (Bier & Souza, 2017) enables the selection 
of the best among several existing mathematical and geostatistical models in a simplified 
and less subjective manner. It was observed that, in some data sets, the routine imple-
mented to select an interpolator, may mistakenly select a geostatistical model that does not 
have spatial dependence or consider a model with a lack of adjustment to the experimental 
semivariogram.

Therefore, this work aims to adopt criteria to guarantee a minimum spatial dependence 
in the semivariograms applied to the interpolators’ selection process. For that, the indices 
were proposed (i) the effective spatial dependence index (%ESDI), (ii) the first semivari-
ance significance index ( %�(1) ), and (iii) the slope of the model ends index (%SMEI).

Materials and methods

AgDataBox (ADB, http:// adb. md. utfpr. edu. br; Michelon et al., 2019, Borges et al., 2020, 
Dall’agnol et  al., 2020) web platform provides tools to create, store, recover, manage, 
exhibit, and analyze geographic and spatial data of TMs focused on precision agriculture. 
ADB offers farmers, researchers, and service providers focused on precision agriculture 
the ability to integrate data, software, procedures, and methodologies to contribute to 
agriculture development in the country using free technologies. This web platform has a 
microservices architecture (MSA), called ADB-MSA, which consists of a set of resources 
accessible remotely, through the hypertext transfer protocol (HTTP), to process and store 
data from an agricultural environment. ADB-MSA allows interoperability of several appli-
cations in which data and processing routines are centralized. The following applications, 
under development, consume ADB-MSA resources: (1) ADB-Mobile; (2) ADB-Map; (3) 
ADB-Admin; (4) ADB-IoT; (5) ADB-Remote Sensing.

ADB-Map application is included in ADB web platform and was employed for: (i) 
descriptive and exploratory analyses, (ii) data interpolation, (iii) selection of the best inter-
polation method, and (iv) TMs creation. This application aims at mitigating the problem 
of using different software to create TMs and delineate management zones. In addition, 
ADB-Map application provides user-friendly interfaces and procedures. This proposal con-
verges to digitize agriculture. The functionalities of ADB-Map application are divided into 
conceptual modules (Fig. 1).

ADB’s data interpolation module interpolates data by IDW, OK, moving average, 
and nearest neighbor. Furthermore, it is possible to select the best interpolation method 
between OK and IDW, in addition to determining its interpolation parameters (Fig. 2). We 
improved and implemented new features in the module studied and implemented by Betzek 

http://adb.md.utfpr.edu.br
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et al. (2019). We developed algorithms that make interpolations with R software, using the 
packages geoR (Ribeiro & Diggle, 2001) and gstat.

Location of the field, data collection, and selection of the coordinate system

Physical and chemical soil attributes were collected based on irregular sampling grids in 
two agricultural fields located in the municipality of Serranópolis do Iguaçu, western Par-
aná state, southern Brazil (Fig. 3). The fields have been cultivated under a no-tillage system 
with a crop succession of soybean and corn. The coordinate systems were the geographic 

Fig. 1  Overview of modules that make up AgDataBox-Map application

Fig. 2  Architecture of the ADB data interpolation module, representing the components and workflow
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coordinate system (GCS) with WGS 1984 datum. The sampling points’ locations were 
obtained by a GNSS receiver (Juno SB Trimble Navigation Limited, Westminster, CO, 
USA).

Soil samples were taken from 0 to 0.20 m depth and analyzed in a commercial labo-
ratory. Around each sampling point (using a GNSS Juno SB Trimble Navigation Lim-
ited, Westminster, CO, USA) and using a 3-m radius, eight subsamples were randomly 
collected, two per quadrant, within a symmetrical circle divided into four quadrants. 
Field A (Fig. 3a, b) was sampled with 100 sampling points in 2018 (36.6 ha) and 52 in 
2019 (20.0 ha) and field B (Fig. 3c) was sampled with 73 sampling points (20.9 ha). 
The minimum and maximum distances among the sampling points are 41 and 1027 m 
in field A-2018, 45 and 706  m in field A-2019, and 31 and 838  m in field B-2015. 
Thus, the sampled density corresponds, respectively, to 2.7, 2.6, and 3.5 points  ha−1 
(Table 1), which were considered enough to identify spatial variabilities of the vari-
ables of these fields given that they exceed the recommended minimum density of 1 
sample  ha−1 (Ferguson & Hergert, 2009) to 2.5 samples  ha−1 (Doerge, 2000; Journel & 
Huijbregts, 1978). However, Oliver and Webster (2015) observed that at least between 

Fig. 3  Location of experimental fields and sampling grids of a 100 points in field A-2018; 36.6 ha, b 52 
points in field A-2019; 20.0 ha, and c 73 points in field B-2015; 20.9 ha in the municipality of Serranóp-
olis do Iguaçu, Paraná state, Southern Brazil. Black contour delineates the fields used. Coordinates are 
in degrees (WGS 1984). The minimum and maximum distances among the sampling points are 41 and 
1027 m in field A-2018, 45 and 706 m in field A-2019, and 31 and 838 m in field B-2015
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100 and 150 samples are required for a reliable variogram, but Clark (1979) recom-
mended at least 30–50 data points to use Kriging. Nevertheless, the threshold for a suf-
ficient density in one case may not enough in another. We used different sample densi-
ties meeting at least each of the recommendations, 100–150 samples in field A-2018 
and 30–50 samples in fields A-2019 and B-2015, to confirm the robustness of ADB’s 
automated procedure and determine whether it can help be employed to determine 
when to use IDW and when to use OK (i.e., to determine whether the sample density is 
enough and/or if SD is detected; the pure nugget effect characterizes this case).

Each point sample was composed of eight individual samples (Wollenhaupt et al., 
1994). The sampling points were located along an imaginary line among intermedi-
ate contour lines with alternated distances and provided a better fit at the smallest lag 
distances, which is essential in Kriging (Bier & Souza, 2017). The variables obtained 
from soil analysis were chemical attributes (organic matter (OM; g  dm−3), zinc (Zn; 
mg  dm−3), iron (Fe; mg  dm−3), manganese (Mn; mg  dm−3), phosphorus (P; mg  dm−3), 
potassium (K;  cmolc  dm−3), copper (Cu; mg  dm−3), the potential of hydrogen (pH), 
calcium (Ca;  cmolc  dm−3), magnesium (Mg;  cmolc  dm−3), aluminum (Al;  cmolc  dm−3), 
pH of buffer solution Shoemaker–McLean–Pratt (SMP) method, potential acidity 
(H + Al;  cmolc  dm−3), the sum of bases (SB;  cmolc  dm−3), base saturation (V%), alu-
minum saturation (m%), and physical attributes (clay (%), sand (%), and silt (%)).

Exploratory data analysis

Data were analyzed using descriptive and exploratory statistics and geostatistics. Dur-
ing the descriptive analysis of data, measures of central tendency (mean and median), 
dispersion [standard deviation (SD) and coefficient of variation (CV)], and normal-
ity tests (Kolmogorov–Smirnov and Anderson–Darling tests at 0.05 significance level) 
were calculated. Data were considered normal when, in at least one of the tests, they 
presented normality. The coefficient of variation (CV) was classified as low when 
CV ≤ 10%, medium when 10% < CV ≤ 20%, high when 20% < CV ≤ 30%, and very 
high when CV > 30% (Pimentel-Gomes, 2009). The exploratory data analysis (EDA) 
was used to detect and remove outliers and inliers. Using the module ADB-Map-Clean 
of platform ADB, duplicate, negative or null points, outliers, and inliers were removed. 
The outliers were identified as values outside the mean ± 3 SD (Córdoba et al., 2016). 
The inliers were obtained by Moran’s local spatial autocorrelation index (II) (Anselin, 
1995).

Table 1  Details of the study fields

Fields Areas (ha) Geographical center coordi-
nates (WGS84)

Elevation (m) Sample points Points  (ha−1)

A-2018 36.6 25° 23′ 48″ S 54° 0′ 46″ W 345 100 2.7
A-2019 20.0 25° 23′ 43″ S 54° 0′ 44″ W 334 52 2.6
B 20.9 25° 24′ 28″ S 54° 00′ 17″ W 355 73 3.5
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Analysis of spatial dependence

The semivariogram chart is determined from a set of observed values according to Oli-
ver and Webster (2015) in two stages: (i) the calculation of the empirical semivario-
gram that summarizes spatial relations in data, and (ii) the adjustment of a mathematical 
model that best represents semivariances’ distribution in each lag distance. Each calcu-
lated semivariance for a particular lag (h) is only an estimate of a mean semivariance 
�̂(h) for that lag. The four main elements are (i) the nugget effect  (C0), (ii) the partial sill 
 (C1), (iii) the sill  (C0 +  C1), and (iv) the range of spatial autocorrelation (Ra).

The Matheron (1963) classic estimator was used to calculate semivariances with at 
least 30 pairs of points (Journel & Huijbregts, 1978), and the range Ra was limited to 
half of the maximum distance (MD) among points (cutoff = 0.5*MD). The semivari-
ances’ calculation should not exceed distances among points greater than half of the 
maximum distance (Clark, 1979). Points located beyond the cutoff are considered non-
influential (Isaaks & Srivastava, 1989). Lag size (h) was defined by calculating the num-
ber of lags, the relationship between the cutoff, and the shortest distance among the 
pairs of points. Therefore, the lag h sizes were 43 m (field A-2018), 44 m (field A-2019), 
and 30 m (field B-2015), while semivariances 102 and 438 in area A-2018, 53 and 180 
in area A-2019, and 55 and 182 in area B-2015. A significant limitation to address in 
this ADB-Map version is that anisotropy’s eventual presence is not considered.

The mathematical model adjustment should describe the spatial variation to estimate 
or predict values at unsampled places optimally by Kriging (Oliver & Webster, 2015). 
Only certain mathematical functions are suitable for this purpose, so, choosing and fit-
ting a model must be done with care (Lark, 2000). We selected the most commonly used 
theoretical models: spherical, exponential, gaussian, and Matérn’s family (Uribe-Opazo 
et al., 2012; Isaaks & Srivastava, 1989).

To evaluate the degree of the SD variable, we used the spatial dependence index 
(%SDI—Biondi et  al., 1994). The %SDI classification (Konopatzki et  al., 2012) was 
adopted: very low for %SDI < 20%; low for 20 ≤ %SDI < 40%; medium for 40 ≤ 
%SDI < 60%; high for 60 ≤ %SDI < 80%; and very high for %SDI > 80%. This classifi-
cation has the advantage of having five interpretation levels instead of three as proposed 
by Cambardela et al. (1994). The classification proposed by Konopatzki et al. (2012) is 
proportional to the spatial variability (the higher %SDI, the higher SD).

Figure  4 shows hypothetical sample points for which the spherical model was 
adjusted by routine in R. Considering that  C0 is 1 and  C1 is 9, the associated %SDI is 
90%, corresponding to a strong SD. However, all semivariances are in the interval from 
7 to 10. In this context, this works presents a new index, the effective spatial depend-
ence index (%ESDI—Eq. 1), a new measure of SD degree. This index considers semi-
variance ( �(1) ) in the first lag distance (h(1)).

where C is the sill (nugget effect + partial sill) and �(1) is the first semivariance of the semi-
variogram. The %ESDI was classified as %SDI.

The second proposed index was the first semivariance significance index ( %�(1)—
Eq. 2), SD fraction due only to ( %�(1)).

(1)%ESDI =
C − �(1)

C
*100,
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where C0 is the nugget effect, C1 is the partial sill, and �(1) is the first semivariance of the 
semivariogram.

Furthermore, we also propose a slope of the model ends index (%SMEI—Eq. 3), which 
aims to assess the inclination degree between the nugget effect and the last adjusted semi-
variance. When %SMEI is null, it is a pure nugget effect, characterizing a lack of SD.

where �Z is the adjusted theoric semivariance, �Z(0) = C0 is the nugget effect, and �Z(n) is 
the last adjusted theoretic semivariance, correspondent to the cutoff. The arbitrary constant 
 10−10 was included to avoid division by zero.

Data interpolation

The variables used to generate TM were interpolated using OK and IDW in a 9 × 9 m grid 
with pixels. ADB-Map application automatically sets the pixel size based on the area’s 
size, with the value of 1 hundredth of the longest distance (horizontal or vertical). Compu-
tational routines were implemented in R language in ADB-Map application (Betzek et al., 
2019).

Inverse distance weighting

IDW (Shepard, 1968) deterministic estimator considers the closest points to the location to 
be estimated more representative than the most distant one according to the samples’ linear 

(2)%�(1) =
�(1) − C0

C1

∗ 100,

(3)%SMEI =

(

1 −
�Z(0)

10−10 + �Z(n)

)

∗ 100 =

(

1 −
C0

10−10 + �Z(n)

)

∗ 100,

Fig. 4  Example of semivariogram chart adjusted with spherical semivariogram model, where �(1) is the 
first semivariance, �

Z
 is the adjusted theoric semivariance, �

Z
(0) = C0 is the nugget effect, and �

Z
(n) is the 

last adjusted theoretic semivariance
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distances. Twelve different values were used as IDW exponents (p) (0.5, 1.0, 1.5, 2.0, 2.5, 
3.0, 3.5, 4.0, 4.5, 5.0, 5.5, and 6.0).

Ordinary Kriging

Variables’ semivariograms were adjusted using theoretical models (spherical, gaussian, 
exponential, Matérn 0.5, Matérn 1.0, Matérn 1.5, and Matérn 2.0) by OLS and WLS meth-
ods. WLS weights were considered using the same number of pairs in each bin. Twenty-
five different parameter sets (five initial values for the partial sill parameter and five for 
range) were used for each model, totalizing 350 adjustments.

Determination of the best semivariogram model and its parameters

Bier and Souza (2017) proposed the interpolation selection index (ISI) to automatize the 
selection of the best interpolation method, which assumes a lower value as better the inter-
polator is. By cross-validation (Faraco et al., 2008; Isaaks & Srivastava, 1989), mean error 
(ME) and standard deviation of mean error (SDME) are calculated. ME and SDME values 
calculated for each parameter set are stored and used to determine ISI that compares the 
deterministic and stochastic interpolation methods, thus, identifying the best adjustment for 
each model analyzed.

Statistic called error comparison index (ECI—Souza et  al., 2016) was used to deter-
mine the best semivariogram fit in each j model analyzed, which assumes a lower value for 
the model is better stochastic methods of interpolation. The best semivariogram of each j 
model was used in ISI analysis. The reduced mean error (RME) and the standard deviation 
of the reduced mean error (SDRME) was determined by ordinary kriging cross-validation.

Computational routines by Betzek et al. (2019) were developed in statistical software R, 
using the geoR library and functions implemented directly in the PostgreSQL database, to 
determine the best interpolator (and its parameters) based on ECI and ISI. These computa-
tional routines were reimplemented, optimized, and made available on the ADB platform. 
In the geostatistics module, seven semivariogram models are tested (spherical, gaussian, 
exponential, Matérn 0.5, Matérn 1.0, Matérn 1.5, and Matérn 2.0), as well as two statisti-
cal methods to optimize the semivariogram adjustment, ordinary least squares (OLS) and 
weighted least squares (WLS—Cressie, 1985), thus totalizing 14 different models. For 
each model, 25 different parameter sets (five initial values for the partial sill parameter 
and five for range) are used, totalizing 350 different adjustments being analyzed to find the 
best one. In the IDW module, is analyzed a range of values for the exponent (0.5, 1.0, …, 
n) and a range of values for the number of neighbors (4, 5, …, n). For selecting the best 
semivariogram model, ISI is used to identify the best value for the exponent and number of 
neighbors.

Improving models’ selection using effective spatial dependence (%ESD)

Three problems should be addressed when selecting the best semivariogram:

1. A minimum of %ESD should be observed. We proposed that %ESDI must be greater 
than 25%.

2. The selected semivariogram model should contemplate a fraction of SD due only to 
(%γ(1)) lower than 50%.
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3. The inclination degree of between the nugget effect and the last adjusted semivariance, 
estimated by %SMEI, should be greater than 20%. Otherwise, there is an indication of 
a pure nugget effect.

We proposed that the selection of the best interpolator model should not depend only 
on ISI but on the criteria presented on Table 2.

The variable selection process was tested using three methods (Table 3): (i) method 
1: best ISI, (ii) method 2 (Fig. 5): the three criteria (Table 2) are applied after geostatis-
tics analysis, (iii) method 3 (Fig. 6): The three criteria are applied during geostatistics 
analysis.

The main difference between methods 2 and 3 is observed when the three criteria are 
applied. In method 2, the three criteria are applied to analyze geostatistical models after 
the ISI determination step and the best interpolator’s indication (Fig. 5). For each semivari-
ogram model and estimation method (Spherical OLS, Spherical WLS, Exponential OLS, 
Exponential WLS, etc.), all analyses to estimate semivariogram parameters are considered 
(5 partial sill intervals * 5 range intervals = 25 analysis). In method 3 (Fig. 6), a modifica-
tion was proposed to filter out unsatisfactory geostatistical models before ECI has deter-
mined a semivariogram model’s best fit. Therefore, when selecting the analyses by ECI, 
only the cleaned models (not discarded) by the new selection criteria are considered.

Selection Methods 2 and 3 can lead to different results. The central aspect of method 3 is to 
allow another ‘fitted model’ to be selected in an interpolator selection analysis. In geostatisti-
cal analysis, for each combination of ‘geostatistical model’ (Spherical, Exponential, etc.) vs. 
‘estimation method’ (OLS and WLS), 25 ‘fitted models’ (5 partial sill interval * 5 range inter-
vals) are generated. When applying the selection criteria by Method 2, and eliminating the ‘fit-
ted model’ that was considered the best, it is impossible to use another ‘fitted model’ from the 
same combination of ‘geostatistical model’ vs. ‘estimation method.’ In this case, the twenty 
five analyses were eliminated. On the other hand, selection by Method 3 makes it possible to 

Table 2  Criteria to select the best interpolation method

%ESDI  effective spatial dependence index, %�(1)  first semivariance significance index, IDW inverse dis-
tance weighting, OK ordinary Kriging, ISI interpolator selection index

Criterion 1
Minimum of effec-
tive spatial depend-
ence

Criterion 2
Spatial dependence 
due only to the first 
semivariance

Criterion 3
The model needs 
to express spatial 
dependence

The best interpolation 
method

If %ESDI > 25% and If %�(1) < 50% and If %SMEI > 20% IDW or OK with the 
lowest ISI

If %ESDI ≤ 25% or If %�(1) ≥ 50% or If %SMEI ≤ 20% IDW with the lowest 
ISI

Table 3  Methods used to select 
the best interpolation model

Methods Selection of the best interpolation model

Method 1 Best ISI
Method 2 The three criteria are applied after geo-

statistics analysis + the best ISI
Method 3 The three criteria are applied during 

geostatistics analysis + the best ISI
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use other ‘adjusted models’ within the combined analysis of ‘geostatistical model’ vs. ‘estima-
tion method’.

Map’s evaluation

The interpolated maps were compared using the coefficient of relative deviation (CRD) pro-
posed by Coelho et al. (2009). The coefficient expresses the average absolute percent differ-
ence between both maps. The choice of a reference map used for comparison is arbitrary. For 
this study, the map generated by the best interpolator selected by Method 3 was considered the 
reference for each variable.

Fig. 5  Selection process of the best interpolator between inverse distance weighting and ordinary Kriging 
by method 2: the filters using %ESDI, %�(1) , and %SMEI were applied after geostatistics analysis
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Results and discussion

Descriptive statistics

The descriptive analysis of variables (Tables 4, 5, 6) showed that CV varied from 5% (low, 
pH SMP) to 118% (very high, Al in field A-2018), 5% (low, pH SMP, and clay) to 123% (very 
high, aluminum saturation-m% in field A-2019), and from 4% (low, pH SMP, field B-2015) 
to 146% (very high, Al in field B-2015). Variables Al, C, Ca, Cu, Fe, K, Mg, OM, P, pH 
(CaCl2), pH SMP, V, m%, clay, sand, and silt had points that were eliminated after eliminating 
outliers during EDA. Few outliers were found and eliminated in ten, nine, and twelve variables 
in fields A-2018, A-2019, and B. In several cases, variables did not present normality at 5% 
significance level: (i) field A-2018: Al, Cu, H + Al, K, and P; (ii) field A-2019: Al, m%, P, pH 
(CaCl2), Zn, and sand; and (iii) field B-2015: Al, C, H + Al, and P.

Fig. 6  Selection process of the best interpolator between inverse distance weighting and ordinary Kriging 
by method 3: the filters using %ESDI, %�(1) , and %SMEI were applied during geostatistics analysis
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Selection of the best interpolator model

Method 1

The results of selecting the best interpolator model for IDW and OK using ISI for variables 
of fields A-2018 (Table 9—Appendix), A-2019 (Table 10—Appendix), and B (Table 11—
Appendix) showed that the OK one is the best interpolator for 35 variables (9 in field 
A-2018, 16 in field A-2019, and 10 in field B-2015) and IDW for 15 variables (7 in field 
A-2018, 3 in field A-2019, and 5 in field B-2015).

During SD analysis, the 50%-cutoff limited range to 513 m (field A-2018), 353 m (field 
A-2019), and 419  m (field B-2015). Therefore, the correspondent number of lags was 
twelve (field A-2018), eight (field A-2019), and fourteen (field B-2015), always with a min-
imum of 30 pairs of points. The first semivariance corresponded to 41 m (field A-2018), 
45 m (field A-2019), and 31 m (field B-2015). ISI selected IDW as the best interpolator for 
(i) field A-2018: H + Al, K, Mn, pH CaCl2, pH SMP, V%, and Zn, (ii) field A-2019: Ca, 
Cu, K, m%, and SB, and (iii) field B-2015: Ca, Fe, Mg, Mn, and Zn. For the remained vari-
ables, OK was indicated as the best interpolator.

Some variables had their semivariogram models considered unsatisfactory, highlighted 
in Light Salmon (Tables 9, 10, 11). They did not agree with the criteria defined in Table 2 
(%ESDI > 25%, %γ(1) < 50%, and %SMEI > 20).

Table 4  Descriptive statistics of soil attributes in field A-2018 (100 samples)

CV coefficient of variation: low (L) when CV ≤ 10%, medium (M) when 10% < CV ≤ 20%, high (H) when 
20% < CV ≤ 30%, and very high (VH) when CV > 30%
Al aluminum, C carbon, Ca calcium, Cu copper, Fe  iron, H + Al potential acidity, K potassium, Mg mag-
nesium, Mn manganese, OM organic matter, P phosphorus, pH  the potential of hydrogen, pH SMP pH of 
buffer solution Shoemaker–McLean–Pratt, SB the sum of basis, V% base saturation, Zn zinc
*No normality at 5% significance level

Variables Samples 
remained

Minimum Means Medians Maximum Standard 
deviations

CV%

Al*  (cmolc/dm−3) 99 0.00 0.538 0.280 2.450 0.635 118 (VH)
C (g/kg) 98 15.5 21.30 21.43 26.45 2.15 10 (M)
Ca  (cmolc/dm−3) 99 2.07 3.52 3.56 5.47 0.722 21 (H)
Cu* (mg/dm−3) 98 1.86 4.02 3.65 8.66 1.37 34 (VH)
Fe (mg/dm−3) 99 4.88 15.60 15.26 29.04 4.38 28 (H)
H + Al*  (cmolc/dm−3) 100 3.97 8.09 7.76 13.06 1.74 21 (H)
K*  (cmolc/dm−3) 100 0.160 0.439 0.405 0.700 0.130 30 (H)
Mg  (cmolc/dm−3) 100 0.690 1.245 1.270 1.840 0.247 20 (M)
Mn (mg/dm−3) 100 42.67 75.12 76.16 110.41 13.79 18 (M)
OM (g/dm−3) 98 26.72 36.73 36.95 45.60 3.70 10 (M)
P* (mg/dm−3) 98 2.60 9.65 8.40 23.50 4.48 46 (VH)
pH  (CaCl2) 100 3.58 4.42 4.42 5.21 0.371 8 (L)
pH SMP 99 4.70 5.37 5.40 5.90 0.275 5 (L)
SB  (cmolc/dm−3) 100 3.29 5.23 5.35 7.98 0.990 19 (M)
V% 99 20.85 39.47 39.73 57.23 8.62 22 (H)
Zn (mg/dm−3) 100 4.93 8.12 7.88 12.06 1.85 23 (H)
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The variables’ spatial dependences (SD, Fig. 7), measured by the traditional %SDI, were 
classified, on average, as medium (24%), as high (20%), and very high (30%). However, 
using %ESDI (Eq. 1), SD was classified, on average, as medium (22%), as high (16%), and 
very high (12%). That means that the high and very high sum lowered from 50 to 28% and 
that %SDI masks the actual SD.

According to the visual inspection of each variable semivariogram (Tables 9, 10, 11), 
there seems to be a lack of adjustment of the model pointed out as the best for some vari-
ables in the fields A-2018 (K), A-2019 (Al, H + Al, K, m%, pH SMP, and V%) and B (V%). 
In other cases, there is an indication of pure nugget effect in field A-2019 (OM and pH 
CaCl2) and field B-2015 (Al, Ca, H + Al, P, pH CaCl2, pH SMP, and SB). Clay and silt can 
also be included in this list (field A-2019). Among the variables with “doubtful” or “pure 
nugget effect” adjustment, IDW interpolator was considered the best only for K, fields 
A-2018, and A-2019, and Ca in field B-2015.

Another aspect observed was the fact that %SDI (Fig. 7) indicated wrongly the presence 
of strong spatial dependence (high or very high) in some variables in the following areas: 
(i) field A-2018: K; (ii) field A-2019: Al, H + Al, K, m%, pH SMP, and V%; and (iii) field 
B-2015: V%. The first semivariance plotted in the semivariograms of these variables shows 

Table 5  Descriptive statistics of soil attributes in field A-2019 (52 samples)

CV coefficient of variation: low (L) when CV ≤ 10%, medium (M) when 10% < CV ≤ 20%, high (H) when 
20% < CV ≤ 30%, and very high (VH) when CV > 30%
Al aluminum, Ca calcium, Cu copper, Fe  iron, H + Al potential acidity, K potassium, m% aluminum satu-
ration, Mg magnesium, Mn manganese, OM organic matter, P phosphorus, pH  the potential of hydrogen, 
SB the sum of basis, SMP pH of buffer solution Shoemaker–McLean–Pratt, V% base saturation, Zn zinc
*No normality at 5% significance level

Variables Samples 
remained

Minimum Means Medians Maximum Standard 
deviations

CV%

Al*  (cmolc/dm-3) 51 0.00 0.27 0.15 1.15 0.30 112 (VH)
Ca  (cmolc/dm-3) 52 1.50 4.08 4.20 6.90 1.21 30 (H)
Cu (mg/dm-3) 52 4.3 9.2 8.5 14.1 2.2 24 (H)
Fe (mg/dm-3) 52 36 77 75 121 21 28 (H)
H + Al  (cmolc/dm-3) 52 2.74 5.24 4.96 8.36 1.08 21 (H)
K  (cmolc/dm-3) 51 0.090 0.356 0.330 0.800 0.171 48 (VH)
m%* 51 0.00 5.1 2.3 24.0 6.3 123 (VH)
Mg  (cmolc/dm-3) 52 0.40 1.71 1.70 3.00 0.54 32 (VH)
Mn (mg/dm-3) 52 88 162 159 220 31 19 (M)
OM (g/dm-3) 52 14.7 25.8 26.8 41.6 5.3 21 (H)
P* (mg/dm-3) 51 4.4 18.1 15.8 53.0 11.0 59 (VH)
pH*  (CaCl2) 51 3.80 4.50 4.50 5.30 0.35 8 (L)
pH SMP 52 5.30 5.96 6.00 6.80 0.29 5 (L)
SB  (cmolc/dm-3) 52 2.2 6.2 6.3 10.6 1.6 27 (H)
V% 52 20.7 53.4 57.1 79.4 11.4 21 (H)
Zn* (mg/dm-3) 50 1.44 3.97 3.77 9.41 1.44 36 (VH)
Clay (%) 51 68.0 74.0 74.0 84.0 3.50 5 (L)
Sand* (%) 50 0.70 2.51 2.60 5.10 0.84 33 (VH)
Silt (%) 51 14.3 23.3 23.2 30.8 3.4 15 (M)
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a high variance of data at the closest distances and that the model was adjusted incorrectly. 
In these cases, %SDI gives some false feeling of having an adequate model, which presents 
a strong spatial dependence.

This kind of problem with semivariogram adjustments is due to the model’s automatic 
adjustment to the semivariogram made by geoR package’s routines. The automatic adjust-
ment of models to semivariograms is pointed out in literature as a notoriously tricky task 
(Webster & Oliver, 1990; Goovaerts, 1997). As with any method for adjusting the vari-
ogram model, they all assume the model’s basic structure in advance and then obtained 
the predefined model structure’s optimal coefficients. Selecting the variogram model 
and its parameters is the most controversial aspect of geostatistics; shapes of valid vari-
ogram models are finite; sometimes, the model’s optimal shape cannot be fitted, leading 
to reduced estimation accuracy (Han et al., 2016). In this sense, it is proposed in this work 
criteria (using %ESDI, %γ(1), and %SMEI) to improve the semivariogram adjustment pro-
cess, which is presented by Methods 2 and 3.

Method 2

This method was applied to variables with unsatisfactory semivariogram models 
(Tables  9,  10,  11). As a result, other semivariogram models were selected for variables 
in field A-2019 (Al, H + Al, m%, pH CaCl2, m%, and clay). In another case, the IDW 

Table 6  Descriptive statistics of soil attributes in field B-2015 (73 samples)

CV coefficient of variation: low (L) when CV ≤ 10%, medium (M) when 10% < CV ≤ 20%, high (H) when 
20% < CV ≤ 30%, and very high (VH) when CV > 30%
Al aluminum, C carbon, Ca calcium, Cu copper, Fe  iron, H + Al potential acidity, K potassium, Mg mag-
nesium, Mn manganese, P phosphorus, pH the potential of hydrogen, pH SMP pH of buffer solution Shoe-
maker–McLean–Pratt, SB the sum of basis, V% base saturation, Zn zinc
*No normality at 5% significance level

Variables Samples 
remained

Minimum Means Medians Maximum Standard 
deviations

CV%

Al*  (cmolc/dm−3) 72 0.000 0.065 0.020 0.390 0.095 146 (VH)
C* (g/kg) 72 16.9 21.7 21.4 27.7 2.4 11 (M)
Ca  (cmolc/dm−3) 73 3.11 5.35 5.38 8.36 1.03 19 (M)
Cu (mg/dm−3) 72 11.6 14.8 14.8 20.3 1.6 11 (M)
Fe (mg/dm−3) 73 32.3 55.6 53.6 85.0 11.4 20 (H)
H + Al*  (cmolc/dm−3) 73 3.18 5.87 5.76 9.00 1.05 18 (M)
K  (cmolc/dm−3) 72 0.19 0.446 0.430 0.960 0.156 35 (VH)
Mg  (cmolc/dm−3) 72 1.17 2.08 2.06 3.15 0.41 20 (M)
Mn (mg/dm−3) 73 224 316 313 400 49 15 (M)
P* (mg/dm−3) 72 4.8 12.4 11.1 29.9 5.4 43 (VH)
pH  (CaCl2) 72 4.40 5.04 5.05 5.70 0.29 6 (L)
pH SMP 72 5.20 5.78 5.80 6.20 0.22 4 (L)
SB  (cmolc/dm−3) 73 4.7 7.9 8.0 12.0 1.4 18 (M)
V% 73 34.3 57.2 58.2 79.1 8.4 15 (M)
Zn (mg/dm−3) 73 2.25 4.76 4.59 8.41 1.42 30 (H)
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interpolator was considered the best for variable SB (field B-2015) (Table 10). It is note-
worthy that variables OM and silt, from field A-2019, and C, H + Al, P, pH SMP, and V%, 
from field B-2015, had all semivariogram models eliminated. In these cases, the IDW 
interpolator was considered the best one.

IDW interpolator was considered using Method 1 as the best interpolator for vari-
able K, in fields A-2018 (Table  9) and A-2019 (Table  10), and for variable Ca, in field 
B-2015 (Table 11). However, other semivariogram models’ selection behavior was evalu-
ated regardless of whether IDW was identified as the best. As a result, this allowed us to 
verify that the variable K, from fields A-2018 and A-2019, and the variable Ca, from field 
B-2015, could choose another semivariogram model (Table 12—Appendix).

It is essential to highlight that the three criteria must be considered together in the semi-
variogram models’ selection process. According to the semivariogram structure, a wrong 
model can be selected when it is not applied in association (see results in Table 7). This 
issue was the most important in field A-2019 and the least important in field A-2018.

Method 3

This method, like Method 2, was applied to the variables with unsatisfactory semivari-
ogram models (Tables  9, 10, 11). As a result, some models were eliminated in favor of 
others. In OM and silt variables, from field A-2019, and in C, H + Al, P, and V% variables, 
from field B-2015, all geostatistical models were eliminated during the geostatistical analy-
sis (Table 13—Appendix). All other variables had changes in semivariogram parameters in 
comparison to Method 1.

Other semivariogram models were selected for variables in field A-2019 (Al, m%, pH 
CaCl2, and clay) and field B-2015 (pH CaCl2, pH SMP, and SB) (Table  12). In other 
cases, the IDW interpolator was considered the best one: field A-2019 (OM and silt) and 
field B-2015 (C, H + Al, P, pH SMP, SB, and V%).

Variable V% (field A-2019) kept the model selected by Method 1 (Spherical – OLS or 
WLS) but with other semivariogram adjusting parameters. In variables H + Al, K, and pH 
SMP (field A-2019) and Ca, the model selected by Method 1 (Spherical) remained; how-
ever, the method of adjusting the semivariogram changed between OLS and WLS. Varia-
bles Al, m%, and clay (field A-2019) and Ca and SB (field B-2015) kept the model selected 
in Method 2. Despite maintaining the models, variables K (field A-2018) and pH SMP 
(field A-2019) changed the semivariogram adjustment parameters.

Fig. 7  Number of variables of each class for %SDI and %ESDI (very low, low, medium, high, and very 
high) for each field (A-2018, A-2019, and B-2015)
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As it was expected, Methods 2 and 3 conducted different results. Method 3 allows 
another ‘fitted model’ to be selected in the geostatistical analysis, and as it was explained in 
section M&M, it is expected to lead to the best interpolator model (IDW or OK).

Table 7  Result of selecting the best interpolator model for ordinary Kriging (OK) with Method 2 using 
each criterion separately and all together for variables of fields A-2018, A-2019, and B-2015

Variables/
Fields

Criterion 1 only
%ESDI > 25%

Criterion 2 only
% < 50%

Criterion 3 only
%SMEI > 20% All criteria

K 
Field A-2018

Spherical – OLS* Exponential – OLS* Spherical – OLS* Exponential – OLS*

Al
Field A-2019

Spherical – WLS Matérn 2 – WLS Spherical – WLS Matérn 2 – WLS 

H+Al
Field A-2019

Spherical – OLS Exponential – WLS Spherical – OLS Exponential – WLS 

K 
Field A-2019

Spherical – OLS* Gaussian – WLS* Spherical – OLS* Gaussian – WLS*

m%
Field A-2019

Spherical - WLS Gaussian - OLS Spherical - WLS Gaussian - OLS

OM
Field A-2019

All geostatistical models 
were eliminated

All geostatistical models 
were eliminated

All geostatistical models 
were eliminated

All geostatistical models 
were eliminated

pH CaCl2
Field A-2019

Matérn 1 – OLS Gaussian – OLS Gaussian – OLS Matérn 1 – OLS 

pH SMP
Field A-2019

Spherical - WLS Spherical - OLS Spherical - WLS Spherical - OLS

V%
Field A-2019

Spherical - WLS Spherical - WLS Spherical - WLS Spherical - WLS

Clay
Field A-2019

Matérn 2 – OLS Gaussian – OLS Gaussian – OLS Matérn 2 – OLS 
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Table 7  (continued)

Silt
Field A-2019

All geostatistical models 
were eliminated

Gaussian – OLS Matérn 1 – OLS 

All geostatistical models 
were eliminated

C 
Field B-2015

All geostatistical models 
were eliminated

Gaussian – WLS Gaussian – WLS

All geostatistical models 
were eliminated

Ca 
Field B-2015

Exponential – OLS Exponential – OLS Spherical - OLS Spherical - OLS

H+Al
Field B-2015

Matérn 1.5 – WLS Matérn 1.5 – WLS Exponential – WLS

All geostatistical models 
were eliminated

P 
Field B-2015

All geostatistical models 
were eliminated

All geostatistical models 
were eliminated

Exponential – WLS

All geostatistical models 
were eliminated

pH CaCl2
Field B-2015

Gaussian – WLS Gaussian – WLS Gaussian – OLS Gaussian – OLS

pH SMP
Field B-2015

Matérn 2 – WLS Matérn 2 – WLS

All geostatistical models 
were eliminated

All geostatistical models 
were eliminated

SB
Field B-2015

Gaussian - OLS Gaussian - OLS Spherical – WLS* Spherical – WLS*

V%
Field B-2015

Exponential – WLS

All geostatistical models 
were eliminated

Exponential – WLS

All geostatistical models 
were eliminated

OLS ordinary least squares, WLS  weighted least squares, %ESDI  effective spatial dependence index, 
%�(1) first semivariance significance index, %SMEI slope of the model ends index, Al aluminum, C carbon, 
Ca calcium, H + Al potential acidity, K potassium, m% aluminum saturation, OM organic matter, P phos-
phorus, pH the potential of hydrogen, pH SMP pH of buffer solution Shoemaker–McLean–Pratt, SB sum of 
basis, V% base saturation
*The IDW interpolator was considered better than the model adjusted to the semivariogram
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Comparison of the three methods

When comparing the interpolator selection result for the variables considered with inad-
equate geostatistical models, it can be noticed that the selected interpolator might change 
according to the selection method (Table 8).

The variables OM and silt, from field A-2019, and C, H + Al, P, pH SMP, SB, and V%, 
from field B-2015 registered that Method 1 had considered OK as the best interpolator, 
and, after applying the selection criteria by Methods 2 and 3, it started to consider IDW as 
the best interpolator. Most of these variables had all geostatistical models eliminated after 
applying the selection criteria, except for variables SB and pH SMP (by Method 3) from 
field B-2015.

Even with eliminating inappropriate geostatistical models, K, from fields A-2018 and 
A-2019, and Ca, from field B-2015, kept IDW as the best interpolator. The other variables, 
Al, H + Al, m%, pH CaCl2, pH SMP, V%, and clay, from field A-2019, and pH CaCl2, 
from field B-2015, kept OK as the best interpolator, as selected by method 1. However, 
there was the selection of other geostatistical models after selection by Methods 2 and 3.

Thematic maps

Thematic maps (TMs, Table  14—Appendix) were generated by OK using the semivari-
ogram selected by each of three methods and IDW with its best interpolator. The variables 
are the same as in Table  8. The best interpolator was considered the one selected with 
Method 3.

Using CRD to compare the maps generated by the interpolator selected by Method 3 
(IDW or OK) versus the best semivariogram model indicated by Method 1 (Fig. 8), it can 
be seen that:

• the selection of other interpolator parameters can result in large differences among 
the maps. In variable Al, from area A-2019, the best interpolator model, selected by 
Method 3 (Matérn 2—OLS), deviated by 64% from the map selected by Method 1 
(Spherical—WLS);

• the difference was below 5% in eight variables;
• the difference was from 5 to 10% in seven variables;
• over 10% in four variables.

When comparing the maps generated by the interpolator selected by method 3 (IDW or 
OK) versus the best semivariogram model indicated by method 2 (Fig. 9), it can be seen 
that:

• The most significant difference was observed in variable K (field A-2018; 18%);
• The difference was below 5% in ten variables;
• The difference between 5% and 10% in one variable.

Our study analyzed 50 cases, and in 23 of them, IDW outperformed OK. Consequently, 
in 27 cases, OK was better than IDW. These results confirm the ones presented by Mueller 
et al. (2004), i.e., for sample datasets with semivariograms, which did not indicate spatial 
structure, IDW was a better choice than OK with a nugget model.
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Table 8  The best interpolation models selected with each of the three methods

Variables/
Fields Method 1 Method 2 Method 3

K 

Field
A-2018

Best
Semivariogram 

Spherical – OLS Gaussian – OLS Exponential – OLS

Best Interpolator IDWe3.5n7 IDWe3.5n7 IDWe3.5n7

Al

Field
A-2019

Best
Semivariogram 

Spherical – WLS Matérn 2 - WLS Matérn 2 - WLS

Best Interpolator Spherical – WLS Matérn 2 - WLS Matérn 2 - WLS

H+Al

Field
A-2019

Best
Semivariogram 

Spherical – OLS Exponential – WLS Spherical - WLS

Best Interpolator Spherical – OLS Exponential – WLS Spherical – OLS

K 

Field
A-2019

Best
Semivariogram 

Spherical – OLS Gaussian – WLS Spherical – WLS

Best Interpolator IDWe1n10 IDWe1n10 IDWe1n10

m%

Field
A-2019

Best
Semivariogram 

Spherical – WLS Gaussian – OLS Gaussian – OLS

Best Interpolator Spherical – WLS Gaussian – OLS Gaussian – OLS

OM

Field
A-2019

Best
Semivariogram 

Matérn 2 – WLS

All geostatistical models 
were eliminated

All geostatistical models 
were eliminated

Best Interpolator Matérn 2 – WLS IDWe1n4 IDWe1n4

pH CaCl2
Field

A-2019

Best
Semivariogram 

Gaussian – OLS Matérn 1 – OLS Spherical – OLS

Best Interpolator Gaussian – OLS Matérn 1 – OLS Spherical – OLS

pH SMP

Field
A-2019

Best
Semivariogram 

Spherical – WLS Spherical – OLS Spherical – OLS

Best Interpolator Spherical – WLS Spherical – OLS Spherical – OLS

V%

Field
A-2019

Best
Semivariogram 

Spherical – WLS Spherical – OLS Spherical – WLS

Best Interpolator Spherical – WLS Spherical – OLS Spherical – WLS

Clay

Field
A-2019

Best
Semivariogram 

Gaussian – OLS Matérn 2 – OLS Matérn 2 – OLS

Best Interpolator Gaussian – OLS Matérn 2 – OLS Matérn 2 – OLS
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Table 8  (continued)

Silt

Field
A-2019

Best
Semivariogram 

Gaussian – OLS

All geostatistical models 
were eliminated

All geostatistical models 
were eliminated

Best Interpolator Gaussian – OLS IDWe1n10 IDWe1n10

C 

Field B-2015

Best
Semivariogram 

Gaussian – WLS

All geostatistical models 
were eliminated

All geostatistical models 
were eliminated

BestInterpolator Gaussian – WLS IDWe1n7 IDWe1n7

Ca

Field B-2015

Best
Semivariogram 

Exponential – OLS Spherical – OLS Spherical – OLS

Best Interpolator IDWe1.5n7 IDWe1.5n7 IDWe1.5n7

H+Al

Field B-2015

Best
Semivariogram 

Matérn 1.5 – WLS

All geostatistical models 
were eliminated

All geostatistical models 
were eliminated

Best Interpolator Matérn 1.5 – WLS IDWe1.5n7 IDWe1.5n7

P 

Field B-2015

Best
Semivariogram 

Exponential – WLS

All geostatistical models 
were eliminated

All geostatistical models 
were eliminated

Best Interpolator Exponential – WLS IDWe2n7 IDWe2n7

pH
CaCl2

Field B-2015

Best
Semivariogram 

Gaussian – WLS Gaussian – OLS Spherical – WLS

Best Interpolator Gaussian – WLS Gaussian – OLS Spherical – WLS

pH
SMP

Field B-2015

Best
Semivariogram 

Matérn 2 – WLS

All geostatistical models 
were eliminated

Exponential – OLS

Best Interpolator Matérn 2 – WLS IDWe1.5n7 IDWe1.5n7

SB

Field B-2015

Best
Semivariogram 

Gaussian – OLS Spherical – WLS Spherical – WLS

Best Interpolator Gaussian – OLS IDWe1n7 IDWe1n7

V%

Field B-2015

Best
Semivariogram 

Exponential – WLS

All geostatistical models 
were eliminated

All geostatistical models 
were eliminated

Best Interpolator Exponential – WLS IDWe1n7 IDWe1n7

Variables/
Fields Method 1 Method 2 Method 3

Method 1  Only the best ISI, Method 2  the three criteria are applied after geostatistics analysis, Method 
3  the three criteria are applied during geostatistics analysis, IDWe3.5n7 means  inverse distance weighting 
with exponent 3.5 and 7 neighbors, OLS ordinary least squares, WLS weighted least squares, Al aluminum, 
C carbon, Ca calcium, H + Al potential acidity, K potassium, m% aluminum saturation, OM organic matter, 
P  phosphorus, pH  the potential of hydrogen, pH SMP  pH of buffer solution Shoemaker–McLean–Pratt, 
SB sum of basis, V% base saturation
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Work contribution

Thematic maps in precision agriculture allow identifying the spatial distribution of geo-
graphical attributes, soil, and plant productivity (Bazzi et al., 2015). Estimating values for 
unsampled regions is important to reduce costs with laboratory analysis. More accurate 
estimates of the interpolated positions contribute to the correct interpretation of the ana-
lyzed phenomena, helping the producer in decision-making.

Several precision agriculture applications are available for farmers. However, existing 
software for creating TMs are not developed specifically for precision agriculture, but for 
generic data handling (Whelan & Taylor, 2013). Choosing a tool not dedicated to precision 
agriculture can be challenging (Borges et al., 2020).

As the ADB platform is biased towards precision agriculture, it provides the neces-
sary tools to create TMs without dependence on various software. It allows users with no 
specific skills to obtain the analysis result, without getting involved in too many process 
details. On the other hand, it also allows experienced users to choose the analysis settings. 
The automated routine for interpolator selection calculates, in its default configuration, 398 
deterministic and stochastic models, and by ISI selects the best among them. Therefore, 
this work contributed to the improvement of data interpolation, eliminating the possibil-
ity of selecting the wrong model by the automatic selection process, and resulting in more 
accurate estimates of the data set.

Fig. 8  The coefficient of relative deviation (CRD) between the interpolator selected by method 3 (IDW or 
OK) versus the best semivariogram model indicated by method 1

Fig. 9  The coefficient of relative deviation (CRD) between the interpolator selected by method 3 (IDW or 
OK) versus the best semivariogram model indicated by method 2
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Spatial variability characterization of soil’s chemical and physical attributes with 
greater precision allows, for example, prescription maps creation of fertilizer in variable 
rates and correctives for the soil and plant. Hence, this may optimize the use of fertiliz-
ers and other inputs.

Conclusion

The inclusion of the three criteria (i) effective spatial dependence index (%ESDI) > 25%, 
(ii) the first semivariance significance index ( %�(1)) < 50% and (iii) the slope of the 
model ends index (%SMEI) > 20% improved the selection of the best interpolator using 
only the interpolator selection index (ISI—Bier and Souza, 2017).

The comparison carried out the methodology influence on selecting the best inter-
polator among the studied thematic maps using three Methods: (i) Method 1—best 
ISI; (ii) Method 2—the three criteria were applied after geostatistics analysis; Method 
3—the three criteria are applied during geostatistics analysis. Method 3 showed as the 
best approach. The coefficient of relative deviation (CRD) varied from 0.1 to 64% when 
comparing the maps generated by the three methods.

The newly proposed measurement of the effective spatial dependence index (ESDI) 
of a semivariogram showed better performance than the usual spatial dependence index 
(%SDI) widely adopted in the literature.

With the implementation of the methods shown in the ADB platform, it appears 
that farmers and researchers who work with precision agriculture will have a free tool 
to carry out analyses in situations where it is difficult to create adequate geostatistical 
models for the thematic map’s creation.

Appendix

See Tables 9, 10, 11, 12, 13 and 14.
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Table 9  Result of selecting the best interpolator model for inverse distance weighted interpolation (IDW) 
and ordinary Kriging (OK) using the interpolator selection index (ISI) for variables of field A-2018, using 
Method 1: Selection using only ISI

Variables
Geostatistics IDW Best

Inter-
polatorModels C0 C1 Ra %SDI %ESDI % ( ) %SMEI ISI ME*102 SDME Semivariogram Exp Neig ISI ME*102 SDME

Al Gaussian
WLS 0.158 0.382 176 71

(H)
65
(H) 8 71 0.00223 -0.00650 0.428 5 5 0.0679 0.013 0.458 OK

C Gaussian
OLS 3.44 1.75 234 34

(L) 
32
(L) 5 33 0.0935 -0.817 2.031 1 7 0.419 -3.522 2.067 OK

Ca Matérn 1
OLS 0.256 0.495 225 66

(H)
68
(H) -4 60 0.0238 -0.037 0.529 4.5 5 0.0251 0.00876 0.536 OK

Cu Gaussian
OLS 0.605 2.03 336 77

(H)
83

(VH) -8 75 0.123 0.591 0.736 6 7 0.540 4.505 0.702 OK

Fe Exponential 
WLS 11.3 10.2 244 47

(M)
46

(M) 3 40 0.0243 0.129 4.024 2 11 0.0308 -0.292 3.989 OK

H+Al Spherical 
OLS 1.01 2.70 313 73

(H)
54

(M) 26 73 0.131 0.672 1.281 5.5 10 0.0032 -0.00144 1.276 IDW

K Spherical 
WLS 0.00361 0.0123 128 77

(H)
27
(L) 65 77 0.1156 -0.0292 0.107 3.5 7 0.00901 -0.000650 0.106 IDW

Mg Matérn 2
OLS 0.0348 0.0565 128 62

(H)
68
(H) -10 58 0.0575 -0.0268 0.184 5.5 5 0.108 -0.000691 0.203 OK

Mn Matérn 2
OLS 42.06 284 138 87

(VH)
82

(VH) 6 85 0.0695 -1.401 7.579 1.5 10 0.0313 -0.161 7.665 IDW

OM Gaussian
OLS 10.22 5.19 234 34

(L) 
32
(L) 5 33 0.0934 -1.408 3.501 1 7 0.419 -6.070 3.564 OK

P Exponential 
WLS 7.62 19.4 200 72

(H)
55

(M) 23 70 0.0255 -0.175 3.735 3 9 0.0609 0.154 3.895 OK

pH CaCl2 Matérn 2
OLS 0.106 0.0744 128 41

(M)
51

(M) -23 38 0.0598 -0.0177 0.308 1 8 0.0234 0.000577 0.303 IDW

pH SMP Matérn 2
WLS 0.052 0.0618 128 54

(M)
67
(H) -24 51 0.0745 -0.0323 0.205 4.5 9 0.00942 -0.00171 0.199 IDW

SB Exponencial 
OLS 0.524 1.125 513 68

(H)
66
(H) 3 58 0.0159 -0.039 0.754 3.5 5 0.0172 -0.0226 0.759 OK

V% Exponential 
OLS 1.94 92.9 120 98

(VH)
64
(H) 35 98 0.168 -4.941 6.104 2.5 8 0.0104 -0.0771 6.141 IDW

Zn Gaussian
OLS 1.29 3.12 250 71

(H)
67
(H) 5 71 0.140 -0.514 1.209 2.5 11 0.0159 0.0107 1.226 IDW

C0 nugget effect, C1 partial sill, Ra range, %SDI spatial dependence index, %ESDI effective spatial depend-
ence index, %�(1)  first semivariance significance index, ISI interpolator selection index, ME  mean error, 
SDME standard deviation of mean error, IDW inverse distance weighting, OK ordinary Kriging, Exp expo-
nent, Neig neighbors, OLS ordinary least squares, WLS weighted least squares
Classification of %SDI and ESDI: very low for %SDI < 20%, low for 20 ≤ %SDI < 40%, medium for 40 
≤ %SDI < 60%, high for 60 ≤ %SDI < 80%, and very high for %SDI > 80%. Values highlighted in Light 
Salmon do not agree with the criteria defined in Table 2 (%ESDI > 25%, %γ(1) < 50%, and %SMEI > 20)
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Table 10  Result of selecting the best interpolator model for inverse distance weighted interpolation (IDW) 
and ordinary Kriging (OK) using the interpolator selection index (ISI) for variables of field A-2019, using 
Method 1: Selection using only ISI

C0 nugget effect, C1 partial sill, Ra range, %SDI spatial dependence index, %ESDI effective spatial depend-
ence index, %�(1)  first semivariance significance index, ISI interpolator selection index, ME  mean error, 
SDME standard deviation of mean error, IDW inverse distance weighting, OK ordinary Kriging, Exp expo-
nent, Neig neighbors, OLS ordinary least squares, WLS weighted least squares
Classification of %SDI and ESDI: very low for %SDI < 20%, low for 20 ≤ %SDI < 40%, medium for 40 
≤ %SDI < 60%, high for 60 ≤ %SDI < 80%, and very high for %SDI > 80%. Values highlighted in Light 
Salmon do not agree with the criteria defined in Table 2 (%ESDI > 25%, %γ(1) < 50%, and %SMEI > 20)
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Table 11  Result of selecting the best interpolator model for inverse distance weighted interpolation (IDW) 
and ordinary Kriging (OK) using the interpolator selection index (ISI) for variables of field B-2015, using 
Method 1: Selection using only ISI

C0 nugget effect, C1 partial sill, Ra range, %SDI spatial dependence index, %ESDI effective spatial depend-
ence index, %�(1)  first semivariance significance index, ISI interpolator selection index, ME  mean error, 
SDME standard deviation of mean error, IDW inverse distance weighting, OK ordinary Kriging, Exp expo-
nent, Neig neighbors, OLS ordinary least squares, WLS weighted least squares
Classification of %SDI and ESDI: very low for %SDI < 20%, low for 20 ≤ %SDI < 40%, medium for 40 
≤ %SDI < 60%, high for 60 ≤ %SDI < 80%, and very high for %SDI > 80%. Values highlighted in Light 
Salmon do not agree with the criteria defined in Table 2 (%ESDI > 25%, %γ(1) < 50%, and %SMEI > 20)
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Table 12  Result of selecting the best interpolator model for ordinary Kriging (OK) using the interpolator 
selection index (ISI) for variables of fields A-2018, A-2019, and B-2015 using Method 2: The three criteria 
(%ESDI > 25%, %γ(1) < 50%, and %SMEI > 20) are applied after geostatistics analysis

Variables/ 
Fields Models C0 C1 Ra %SDI %ESDI % %SMEI ISI ME*102 SDME Semivariogram

Best
Inter- 

polator

K 
Field A-

2018

Gaussian
OLS 0.0130 0.00808 513 38

(L) 
45

(M) -17 28 0.122 -0.015 0.113 IDW

Al
Field A-

2019

Matérn 2
WLS 0.0640 0.372 353 85

(VH)
84

(VH) 1 52 0.1919 0.279 0.272 OK

H+Al
Field A-

2019

Exponential
WLS 0.456 1.54 353 77

(H)
59

(M) 24 68 0.2251 1.357 0.916 OK

K 
Field A-

2019

Gaussian
WLS 0.0116 0.0131 88 53

(M)
36
(L) 33 53 0.1474 -0.126 0.136 IDW

m%
Field A-

2019

Gaussian
OLS 25.73 49.89 353 66

(H)
62
(H) 6 55 0.2179 6.602 5.508 OK

OM
Field A-

2019
All geostatistical models were eliminated IDW

pH CaCl2
Field A-

2019

Matérn 1
OLS 0.0672 0.0773 88 53

(M)
31
(L) 43 52 0.1255 -0.205 0.313 OK

pH SMP
Field A-

2019

Spherical
OLS 0.0230 0.0650 221 74

(H)
39
(L) 47 74 0.1827 -0.249 0.236 OK

V%
Field A-

2019

Spherical
OLS 47.4 116.4 353 71

(H)
45

(M) 36 71 0.2247 -10.551 9.474 OK

Clay
Field A-

2019

Matérn 2
OLS 10.8 5.84 96 35

(L) 
29
(L) 17 31 0.0452 -0.719 3.290 OK

Silt
Field A-

2019
All geostatistical models were removed IDW

C 
Field B-

2015
All geostatistical models were eliminated IDW

Ca 
Field B-

2015

Spherical
OLS 0.725 0.425 183 37

(L) 
28
(L) 25 37 0.0445 -2.865 0.987 IDW

H+Al
Field B-

2015
All geostatistical models were eliminated IDW

P 
Field B-

2015
All geostatistical models were eliminated IDW
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Table 12  (continued)

pH CaCl2
Field B-

2015

Gaussian
OLS 0.0624 0.0174 105 22

(L) 
35
(L) -59 22 0.0693 -0.891 0.271 OK

pH SMP
Field B-

2015
All geostatistical models were eliminated IDW

SB
Field B-

2015

Spherical
WLS 1.360 0.861 167 39

(L) 
32
(L) 18 39 0.0527 -5.516 1.398 IDW

V%
Field B-

2015
All geostatistical models were removed IDW

Variables/ 
Fields Models C0 C1 Ra %SDI %ESDI % %SMEI ISI ME*102 SDME Semivariogram

Best
Inter- 

polator

C0 nugget effect, C1 partial sill, Ra range, %SDI spatial dependence index, %ESDI effective spatial depend-
ence index, %�(1) first semivariance significance index, %SMEI  slope of the model ends index, ISI inter-
polator selection index, ME  mean error, SDME standard deviation of mean error, IDW  inverse distance 
weighting, OK ordinary Kriging, OLS ordinary least squares, WLS weighted least squares
Classification of %SDI and ESDI: very low for %SDI/ESDI < 20%, low for 20 ≤ %SDI/ESDI < 40%, 
medium for 40 ≤ %SDI/ESDI < 60%, high for 60 ≤ %SDI/ESDI < 80%, and very high for %SDI/
ESDI > 80%
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Table 13  Result of selecting the best interpolator model for ordinary Kriging (OK) using interpolator selec-
tion index (ISI) for variables of fields A-2018, A-2019, and B-2015 using Method 3: The three criteria 
(%ESDI > 25%, %γ(1) < 50%, and %SMEI > 20) are applied during geostatistics analysis
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Table 13  (continued)

C0 nugget effect, C1 partial sill, Ra range, %SDI spatial dependence index, %ESDI effective spatial depend-
ence index, ( %�(1) ) first semivariance significance index, %SMEI slope of the model ends index, ISI inter-
polator selection index, ME  mean error, SDME standard deviation of mean error, IDW  inverse distance 
weighting, OK ordinary Kriging, OLS ordinary least squares, WLS weighted least squares
Classification of %SDI and ESDI: very low for %SDI/ESDI < 20%, low for 20 ≤ %SDI/ESDI < 40%, 
medium for 40 ≤ %SDI/ESDI < 60%, high for 60 ≤ %SDI/ESDI < 80%, and very high for %SDI/
ESDI > 80%
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Table 14  Comparison of thematic maps created by OK using the semivariogram selected by each of three 
methods and IDW with its best interpolator
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Table 14  (continued)
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Table 14  (continued)
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Table 14  (continued)

Var.  variable, OK Sem. Methods (1, 2 or 3) means  Ordinary Kriging using the semivariogram selected 
by method 1 (Only the best ISI), 2 (The three criteria are applied after geostatistics analysis), or 3 (The 
three criteria are applied during geostatistics analysis), Sph  spherical, Exp  exponential, Gau  gaussian, 
Mat Matérn, IDW e3.5n7 means inverse distance weighting with exponent 3.5 and 7 neighbors, OLS ordi-
nary least squares, WLS weighted least squares, CRD coefficient of relative deviation,  Al aluminum, C car-
bon, Ca calcium, Cu copper, Fe iron, H + Al potential acidity, K potassium, Mg magnesium, Mn manganese, 
OM  organic matter, P phosphorus, pH  the potential of hydrogen, pH SMP  pH of buffer solution Shoe-
maker–McLean–Pratt, SB the sum of basis, V% base saturation, Zn zinc
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