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Abstract
Spikelet diseases pose severe threats to crop production and crop protection requires 
timely evaluation of disease severity (DS). However, most studies have only investigated 
the spikelet diseases within a short period of crop growth. Few have examined the con-
sistency in DS monitoring accuracy across growth stages. This study aimed to investigate 
the differences in spectral responses among growth stages and to develop a spectral index 
(SI), rice spikelet rot index (RSRI), for multi-stage monitoring of the rice spikelet rot dis-
ease. Proximal hyperspectral images were collected over spikelets with various levels of 
DS at heading, anthesis, and grain filling stages. The reflectance was related to the DS 
extracted from concurrent high-resolution RGB images. The proposed RSRI was evaluated 
for the DS estimation and lesion mapping across growth stages in comparison with existing 
SIs. The results demonstrated that the spectral responses to DS in the green and near-infra-
red regions for filling were weaker than those for anthesis, and blue bands were necessary 
in DS quantification for early infection. The RSRI-based models exhibited the best valida-
tion accuracy for heading and the most consistent performance across growth stages as 
comparison to other SIs (Heading:  R2 = 0.65; anthesis:  R2 = 0.84; filling:  R2 = 0.78). More-
over, RSRI-based DS maps exhibited the best lesion identification for slightly, mildly, and 
severely infected spikelets. This study suggests that RSRI could be promising in breeding 
and crop protection as a novel index for DS estimation regardless of the spikelet ripening 
effect.
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DD  Double difference
SI  Spectral index
RSRI  Rice spikelet rotindex

Introduction

The stable and sustainable production of the rice industry has been hampered by various 
stressors from diseases and pests to environmental issues, among which the fungal dis-
eases are considered as major threats to rice yield and quality (Jagadish et al., 2015; Liu 
et al., 2014). Rice spikelet rot disease (RSRD), a fungal disease caused mainly by Fusar-
ium proliferatum, is an emerging disease in rice planting areas of eastern Asia prompted 
by a combination of changes in rice variety, crop management, and environment factors 
(Huang et al., 2011a). RSRD is highly contagious, and it degrades the rice yield and qual-
ity significantly due to the harmful and toxigenic pathogens. However, RSRD could only 
be effectively prevented in a brief period with fungicides (Huang et al., 2011b; Lei et al., 
2019). Thus, an efficient and accurate estimation of the disease severity (DS) at the early 
infection stage is crucial for restraining the disease spread and minimizing the potential 
damage to rice production. However, the conventional approaches based on visual inspec-
tion of disease occurrence are subjective, labor-intensive, and inefficient. In addition, the 
infected spikelets with moderate lesions can hardly be identified visually under field condi-
tions (Oerke, 2020; Zhang et al., 2019). In contrast, remote sensing can be used as an effi-
cient and non-destructive approach to monitoring crop diseases.

A number of studies have used hyperspectral remote sensing to detect crop diseases 
across various scales (Mahlein et al., 2019a; Meng et al., 2022; Poblete et al., 2020; Ren 
et  al., 2021). They determined the spectral features sensitive to different diseases and 
developed approaches to identifying the diseased samples or classifying DS levels. Moreo-
ver, several studies have unveiled the feasibility of disease detection at pre-visual and early 
stages (Gold et al., 2020; Tian et al., 2021; Zarco-Tejada et al., 2018), which could facili-
tate crop protection implementations to prevent the spread of pathogens. For example, Tian 
et al. (2021) identified leaves infected by rice blast for asymptomatic and early infection 
stages using a few spectral features. However, little attention has been paid to the detection 
of spikelet diseases in crops. Compared with foliar organs, spikelets are more difficult to be 
observed in contact probes with non-imaging spectrometers due to the three-dimensional 
morphology. Non-imaging spectral measurements are also limited in fine-scale monitor-
ing with the lack of spatial details. Given its capacity of capturing spectral and spatial 
details, close-range imaging spectroscopy is well suited for monitoring individual organs 
and identifying lesion locations. Recently, several studies have reported on the application 
of imaging techniques to gather the integrated optical properties of reproductive organs for 
disease detection or pathology investigation (Gao et al., 2019; Huang et al., 2015; Mahlein 
et al., 2019a; Zhang et al., 2020b). However, relevant studies using imaging spectroscopy 
still focused on disease identification or multi-level DS classification. For example, Huang 
et al., (2015) classified the hyperspectral images of individual spikelets into six classes of 
DS using bag-of-words features and a support vector machine. Few studies have investi-
gated the spectral responses to diseases explicitly or examined the spatial information to 
track the disease development. More research is in urgent need to uncover the spectral sig-
natures and map the lesion distribution to enable an improved reference for pathology and 
crop protection.
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Recently, the demand for accurate disease evaluation has been rising in crop breeding, 
crop phenomics, and precision agriculture (Mahlein et al., 2019b; Singh et al., 2021). Phys-
ically-based approaches are advantageous in disease monitoring with model inverted crop 
functional traits including pigment and water contents (Hornero et al., 2020; Morel et al., 
2018), but the high computational cost and model complexity has hindered the operational 
efficiency and simplicity. In terms of practical efficiency, feature engineering is favorable 
in extracting simplified spectral indicators sensitive to the disease condition. A number 
of studies have used feature extraction methods including spectral indices (SIs), deriva-
tive analysis, and continuous wavelet analysis in the spectral monitoring for crop diseases 
(Mahlein et al., 2013; Huang et al., 2015; Kochubey & Kazantsev, 2012; Tian et al., 2021). 
Among those methods, the use of SIs constructed with a small number of bands represents 
the most common way of disease monitoring (Huo et al., 2021; Ren et al., 2021; Zhang 
et al., 2020b). Yet, different pathogen–host interactions result in specific spectral responses 
across wavelengths covering visible, near-infrared, and shortwave infrared ranges (Zhang 
et al., 2019). This implies that specific SIs should be developed for various crop diseases 
for optimal monitoring performance. For instance, Ren et al. (2021) proposed a SI for the 
quantification of disease severity in wheat yellow rust and achieved higher accuracy than 
existing ones for both leaf and canopy scales. To date, no SIs have been constructed spe-
cifically for capturing the spectral responses to RSRD and quantifying the DS levels of this 
disease.

Since rice grain ripening also occurs during the period of RSRD development, the spec-
tral response to physiological ripening would be mixed up with that to the biotic disease. 
However, previous studies only measured the stressed spikelets from a specific growth 
stage (Zhang et al., 2020b) or a short period after inoculation and did not cover the rip-
ening process. Considering the spectral variation across all wavelengths with spikelet 
ripening (Feng et  al., 2022; Zhou et  al., 2017), it becomes imperative to investigate the 
consistency of disease-sensitive SIs across multiple stages from heading to grain filling. 
Although the spectral response to mild infection may be more susceptible to spikelet rip-
ening, few studies have been devoted to spikelet disease monitoring at the early infection 
stage (e.g., heading). Several studies suggested that the spectral variation in diseased crops 
with phenological changes could be characterized by using multiple spectral features (Ruan 
et al., 2021; Zheng et al., 2021). Nevertheless, this operation would include extra burdens 
of feature engineering and model parameterization. Therefore, it is important to evaluate 
the feasibility of constructing a SI sensitive to RSRD from the early infection stage and to 
multiple later stages.

The overall goal of this research was to construct a new index suitable for RSRD quanti-
fication across growth stages, especially for the early infection stage. The specific research 
objectives were to determine the spectral responses of rice spikelets to RSRD over multiple 
growth stages with close-range imaging spectroscopy, to construct a new spectral index for 
universal quantification of RSRD severity across multiple growth stages, and to evaluate 
the new index in DS quantification and mapping in comparison with existing SIs.
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Materials and methods

Experiment setup

The plot trial experiments for RSRD monitoring were conducted at the Pailou Experimen-
tal Station of Nanjing Agricultural University, Jiangsu province of China (31° 57′ N, 118° 
51′ E). For the convenience of instruments setting, cement pools filled with field soil on 
the ground were used as experimental plots. There were 24 plots in the same size of 2 m 
× 3 m (Fig. 1). The experiments were implemented under the same setting except for rice 
variety in the rice seasons of 2019 and 2020. To keep consistency with the management 
of field practices, the basal nutrition fertilizers (Nitrogen, 150 kg  ha−2;  P2O5, 135 kg  ha−2; 
and  K2O, 18.3 kg  ha−2) were applied ahead of transplanting. Then a topdressing of ferti-
lizer (Nitrogen, 150 kg  ha−2) was carried out during the tillering stage. The rice crops were 
transplanted in a high density (0.1 and 0.15 m spacing in rows and columns, respectively) 
to create the high humidity environment required by RSRD infection and development.

Since Japonica varieties with plump and compact spikelets are more susceptible to 
RSRD (Huang et al., 2011a; Lei et al., 2019), eight Japonica varieties commonly cultivated 
in Jiangsu were selected (2019: Wuyungen 23, Wuyungeng 24, Wuyungeng 7, and Nan-
geng 44; 2020: Yangnong 1, Nangeng 9108, Nangeng 5055, and Huaidao 5). The RSRD 
occurred naturally in the plots in both 2019 and 2020.

Data collection and pre‑processing

To avoid the severe obstruction from spikelets and leaves in plots and to increase the meas-
urement efficiency, infected spikelets were removed from rice plants for in-situ imaging 
spectroscopy data collection around noon on cloudless days at the heading, anthesis, and 
filling stages. Part of the stalk was removed along with the spikelet to ensure the integrity 
of each sample. After removing, the fresh samples were moved to a gantry platform landed 
near the plots. During each measurement under the gantry, a total of five to eight spikelets 
were placed on a stool with a black panel underneath and a spectralon beside (Analyti-
cal Spectral Devices, Boulder, CO, USA). The reflectance for the black and white panels 
are 3% and 99.9%, respectively, in the visible and near-infrared (VNIR) regions. A digital 
single-lens reflex camera (EOS 80D, Canon, Tokyo, Japan) and a push-broom hyperspec-
tral imager (GaiaField-V10E, Jiangsu Dualix Spectral Image Technology Co. Ltd, Nanjing, 
China) were mounted on the automatic linear-scanning system (HSIA-MScope-X, Jiangsu 

Fig. 1   A map of the experimental area with the setup of trial plots for four varieties in 2019 (V1: Wuyun-
gen 23, V2: Wuyungeng 24, V3: Wuyungeng 7, V4: Nangeng 44) and another four in 2020 (V1: Yangnong 
1, V2: Nanggeng 9108, V3: Nangeng 5055, V4: Huaidao 5)
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Dualix Spectral Image Technology Co. Ltd, Nanjing, China). The lifting height range is 
250 ~ 1800 mm and the scanning distance is 1800 mm (Fig. 2). Furthermore, RGB photos 
and hyperspectral images (HSIs) were captured synchronously in the orthographic direc-
tion for consistent light conditions.

The RGB photos were collected via the remote control of the camera shutter. The cam-
era was toggled to  A+ mode for automatic modification of the exposure time and the image 
quality was set to the maximum resolution of 6000 × 4000 pixels. The HSIs were acquired 
by the laptop software controlling the platform system. The distance between the hyper-
spectral lens and rice spikelets was kept at 0.4 m. Equipped with a lens of 42.8°, the HSI 
camera achieved a spatial resolution of 0.45 mm at this distance with 256 bands in a sam-
pling interval of 2.5 nm over a range of 361–1011 nm. Since the optical aperture was fixed 
in the camera, the incident light was not consistent during the glit pushing. To strengthen 
the light consistency, image scanning was completed with the horizontal motor of the gan-
try instead of the internal push-broom module. In addition, a piece of grid paper was used 
for the manual adjustment on the motor speed and focal length to ensure non-distorted and 
clear hyperspectral frames. The exposure time of the HSI camera was set to 0.4 s manually 
to prevent overexposure for the spectralon at noon. These measurements covered a total of 
401 spikelets for the 2 years (Table 1).

The reflectance of HSIs was derived from the original digital number values and then 
denoised using the Minimum Noise Fraction transformation (Zhou et al., 2018). The spec-
tral interval of HSIs was resampled to 1 nm for the convenience of spectral processing. 
Only bands from 450 to 800 nm were used for spectral analysis due to the low signal-to-
noise ratio outside this range. The overall region of each spikelet was cropped out manually 
in ENSI 5.3 (Exelis Visual Information Solutions, Boulder, CO, USA). The reflectance at 
band 760 nm was applied to mask out the background by setting a threshold of 0.2. Then 

Fig. 2  Experimental setup for acquiring RGB and hyperspectral images of the rice spikelets under sunlight 
conditions

Table 1   A summary on the 
number of spikelet samples with 
RSRD infections for various 
stages in 2019 and 2020

Year Heading Anthesis Filling

2019 0 123 29
2020 57 38 155
2019 and 2020 57 161 184
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the spikelet regions were refined by removing the noise pixels with morphology methods. 
At last, the average reflectance of each spikelet was derived for the subsequent analysis. 
Spectral resampling and connected domain removal were conducted with the scipy pack-
age (https:// scipy. org/) and the skimage package (https:// scikit- image. org) in python 3.

Methodology

This research proposed a method for constructing a SI specifically for RSRD severity quan-
tification by spectral analysis and band selection with DS reference extracted from RGB 
images. This method adopted multi-growth-stage spectra in band selection to ensure the 
stable performance and it included four steps: (1) determination of the SI form to character-
ize the main spectral responses; (2) selection of sensitive bands for multiple growth stages 
based on correlation analysis and correlation domain separation; (3) evaluation of the pro-
posed SI in comparison with existing SIs in the DS quantification and lesion mapping.

Extraction of disease severity reference

Previous studies mainly applied qualitative DS standards to label the infected samples by 
visual inspection (Huang et al., 2015; Kobayashi et al., 2016). Such qualitative investiga-
tions might be inadequate for disease monitoring in precision agriculture (Mahlein et al., 
2019b). To make up for the low efficiency and accuracy of human vision in DS quantifica-
tion, a method was developed to automatically extract the DS reference data from the RGB 
images using color space conversion and dynamic threshold segmentation (Fig. 3B).

First, each sample was cropped from the RGB images and grouped with the cor-
responding spikelet HSI according to the sequence of measurement and visual match-
ing. Then, the color space conversion was used to strengthen the contrast of each RGB 

Fig. 3  Technical flowchart of the procedures for RSRI development, DS quantification and DS mapping (A 
Data pre-processing, B DS reference extraction, C Index construction, D Modeling and mapping)

https://scipy.org/
https://scikit-image.org
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image given the close brightness between the background and RSRD lesions. The 
Lab color space, which is barely influenced by light conditions or sensors (Gonzalez 
& Woods, 2002), was chosen for background removal and RSRD lesion identification. 
This space was a color-opponent space with the dimension ‘L’ for lightness and ‘a’ and 
‘b’ for color-opponent dimensions. The ‘b’ values represented the true neutral gray val-
ues of yellow/blue opponent colors, which means ‘b’ was suitable for separating spike-
lets from the background. The ‘a’ values represented the true neutral gray values of red/
green opponent colors, which means ‘a’ was suitable for separating infected pixels from 
healthy ones. Traditional thresholding methods often separate all pixels in the whole 
image with a single value (Gonzalez & Woods, 2002). However, the colors of severely 
and early infected pixels were close to the background and the healthy regions, respec-
tively. Spikelets with advanced maturity were also in deep color close to lesions and 
backgrounds. This meant the global thresholding method would not be applicable for 
accurate extraction of spikelet lesions. In contrast, the local thresholding, also known 
as adaptive or dynamic thresholding, segments subregions with different thresholds to 
resist noise or color unevenness (Gonzalez & Woods, 2002). Dynamic methods could 
perform better than global ones regardless of growth stages or disease severity.

After the background removal with channel ‘b’ and local thresholding, a morphological 
refinement was conducted to remove the small components of isolated noise (the minimum 
connected component was set to five thousand pixels). Next, spikelet pixels were separated 
into infected and healthy ones using channel ‘a’ and the local thresholding. The subregion 
size for local thresholding was adjusted by visual comparisons between the identification 
results and raw RGB images. DS was calculated according to the pixel count in the follow-
ing formula:

where DS represents the RSRD lesion proportion of each spikelet, nd and N are the num-
bers of diseased pixels and all pixels of each sample, respectively. It should be noted that 
the spatial correspondence of RGB images to HSIs was not considered in this study. The 
DS value was applied as observed disease severity for each sample at organ scale rather 
than pixel scale. This workflow was implemented using the aforementioned skimage 
package.

Proposed and existing spectral indices

The spectral indices for various diseases should be theoretically specific for certain plant-
host interactions since different hosts with various infections could exhibit distinguishable 
spectral responses (Mahlein, 2016; Zarco-Tejada et  al., 2021). Given this specificity, the 
rice spikelet rot index (RSRI) was constructed to express the unique spectral signatures 
for RSRD. The spectral profile over the VNIR region gradually flattened with the disease 
development. To increase the sensitivity of the proposed feature, multiple bands were com-
bined to represent the flattened trend in the reflectance curves (Fig. 3C). The form of the 
double-difference (DD) index was then selected to describe the variation intensity. In addi-
tion, DD-form indices were found insensitive to noises of constant and linear trends includ-
ing the sunlit intensity variation according to Li et al. (2019). Hence, the DD form should 
be suitable for the construction of disease indices with in-situ reflectance spectra:

(1)DS =
nd

N
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where  Rλ1,  Rλ2, and  Rλ3 are the reflectance of sensitive bands for the absorption valleys or 
reflectance peaks in incremental order of wavelength. The severer the DS, the more flat-
tened the spectral curve and the closer the DD value to one.

To determine the sensitive bands for SI construction, a feature selection pipeline was 
applied including three steps as follows. First, the Spearman correlation per band was built 
between the reflectance and DS values over calibration samples (details about the sample divi-
sion can be found in accuracy assessment). Spearman analysis was selected because the DS 
values in this study did not fit a normal distribution. To locate the different response regions, 
the correlation domains were constructed at the second step by separating the wavelength into 
positive and negative domains. Small domains covering less than five bands were discarded 
to ensure the robustness of band selection. Third, the bands with the strongest correlation of 
each domain were selected to form a number of alternative features on the correlation domains 
(Fig. 4). The aforementioned selection was conducted with the samples for heading, anthesis, 
and filling, respectively. For ensuring consistent sensitivity of the RSRD index, the common 
bands sensitive to RSRD severity for all stages were primarily selected in the red and NIR 
regions. To strengthen the sensitivity for the early stage of disease, three representative bands 
retained for the heading stage (the earliest infection stage) were used to construct three can-
didate indices. Determination coefficient  (R2) values were then derived with the calibration 
set to assess the DS quantification of each candidate. The feature with the maximum  R2 was 
determined to finalize the RSRI equation as below:

(2)DD =

(

R
�2 − R

�1

)

(R
�3 − R

�2)

(3)RSRI =

(

R675 − R454

)

(

R740 − R675

)

Fig. 4  Spearman correlation coefficients between disease severity (DS) and reflectance at wavelengths from 
450 to 800 nm for various growth stages (green: heading, blue: anthesis, red: filling). Grey and white back-
grounds represent negative and positive correlations, respectively. A vertical line in black corresponds to 
the maximum coefficient in each of the grey or white correlation domains (top row: heading, middle row: 
anthesis, bottom row: filling)
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where  R454,  R675, and  R740 are the reflectance values at wavelengths of 454 nm, 675 nm, 
and 740 nm, respectively.

After sorting the  R2 of linear regressions for the commonly used SIs for vegetation stress 
monitoring as summarized in Tian et al. (2021), the five top-ranking SIs (NPCI, CCI, PRI670, 
PSRI, and NDVI) were adopted for comparison with RSRI (Table 2). Slightly, mildly, and 
severely diseased samples in a total of three spikelets were selected for the mapping compari-
son from the heading, anthesis, and filling stages, respectively. Next, the DS-SI relationships 
were applied to the HSIs of demonstration samples to map the disease distribution. A post-
processing was used to mask the estimated DS values beyond the range from 0 to 1 by a piece-
wise function as follows:

where x is the estimated DS from SI-based models and x’ is the post-processed DS for DS 
mapping. Given the unavailability of pixel-level reference DS for HSIs, the DS maps were 
compared with the RGB images, whose color shades could provide a general reference for 
RSRD severity.

Accuracy assessment

Due to the constraint by the infection and development of RSRD, the number of diseased 
spikelets was remarkably unbalanced for different growth stages over the experiment periods 
in 2019 and 2020 (Table 1). Thus, all samples from the 2 years were pooled up to conduct 
the RSRI construction, model calibration, and model validation. The pooled dataset was ran-
domly divided into calibration (60%) and validation (40%) sets. Linear models were used to fit 
the relationships between DS and SIs. The quantification performance was evaluated in terms 
of the coefficient of determination (calibration  R2 and validation  R2), root mean square root 
(RMSE), and bias (Bias). The average  R2, RMSE, and bias values over 100 evaluation itera-
tions were derived as below to assess the performance of SIs in DS estimation:

(4)x� =

{

0, x < 0

min(x, 1), x ≥ 0

(5)R2 = 1 −

∑

i

�

yi − y�
i

�2

∑

i

�

yi−
−
y
�2

Table 2  Spectral indices used in this study

Rλ represents the reflectance at band λ

Index Acronym Formulation References

Normalized difference vegetation index NDVI (RNIR−RR)/(RNIR+RR) Rouse et al. (1974)
Photochemical reflectance index PRI670 (R670−R531)/(R670 +  R531) Gamon et al. (1992)
Normalized pigments index NPCI (R680−R430)/(R680 +  R430) Peñuelas et al. (1993)
Plant senescence reflectance index PSRI (R678−R500)/R750 Merzlyak et al. (1999)
Chlorophyll/carotenoid Index CCI (R531−R645)/(R531 +  R645) Gamon et al. (2016)
Rice Spikelet rot index RSRI (R675−R454)/(R740−R675) This study
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where yi and yi′ are the reference and estimated DS for spikelet sample i, respectively. 
−
y is 

the arithmetic mean of the DS value and n is the number of samples for each stage.

Results

Spectral responses of rice spikelets to RSRD

The reflectance spectra of RSRD infected rice spikelets changed with DS levels across all 
the VNIR spectral regions for the heading, anthesis and filling stages (Fig. 5). Overall, the 
reflectance variations of infected spikelets were similar over these stages, which included 
a weakening of the green peak, a strong increase in the red region, and a collapse in the 
near-infrared (NIR) region. There was also an increase in the blue regions and a shifting of 
the red edge towards short wavelengths with RSRD development. Additionally, the slope 
across the NIR region became more inclined with higher levels of DS.

While the spectral changes for heading were modest with the limited DS range 
(Fig.  5A), the anthesis stage exhibited the strongest spectral responses among all three 
stages (Fig. 5B). Specifically, responses in the blue and red regions were the strongest for 
filling compared with the rest stages. The reflectance of the green and NIR regions pre-
sented striking increases rather than decreases within the mild DS ranges from 0.0 to 0.2 
for anthesis, which did not exhibit a unidirectional weakening as that for the filling stage 
(Fig. 5B, C).

Determination of optimal bands for constructing the RSRI

Overall, the Spearman correlation between the reflectance of individual bands and DS 
exhibited consistent trends across the three growth stages (Fig. 4). There were positive cor-
relation domains in the blue and red regions and negative correlation domains in the green 
and NIR regions. In addition, there was an extra negative correlation domain in the blue 
region for the heading stage. The correlations were the weakest for the heading stage with 
the limited DS range. The correlation between the DS and reflectance in the blue region 
was stronger than that in the green region for heading and filing, whereas this contrast per-
formed reversely for the anthesis stage.

The spearman correlation curves revealed that RSRD severity was most quantifiable 
in the red region. In addition, consistent correlations occurred in the NIR region for all 
growth stages. Based on these features, two bands were selected from the red and NIR 
regions as parts of the equation for RSRI construction, respectively. The optimal bands in 
the red region were 680 nm for heading and 675 nm for anthesis and filling (Fig. 4). The 
most sensitive bands in the NIR region were 751 nm, 743 nm, and 734 nm. Therefore, the 
common band 675 nm in the red region and the NIR band with the median wavelength of 
740 nm were determined to fill the RSRI equation. The third band for RSRI was selected 

(6)RMSE =

�

∑

i

�

yi − y�
i

�2

n

(7)Bias =

∑

i

�

yi − y�
i

�

n
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Fig. 5  Reflectance spectra of rice spikelets with various ranges of rice spikelet rot disease (RSRD) severity 
for a range of growth stages (A Heading, B Anthesis, C Filling). The DS range in (A) was narrower due to 
the low level of inspection allowed at the early infection stage
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from the remaining representative bands including 454 nm, 489 nm, and 553 nm for the 
earliest stage (heading). Three candidate indices with the designations RSRI-1, RSRI-2 
and RSRI-3 were built for further comparison.

Obviously, RSRI-1 exhibited a substantially higher correlation with DS than RSRI-2 
and RSRI-3 for heading (Fig.  6). For either anthesis or filling, the  R2 values were only 
slightly different among the three RSRI candidates. Therefore,  RSRI454,675,740 was deter-
mined as the optimal index for the quantification and mapping of DS.

Quantification and mapping of disease severity with RSRI and existing indices

The relationships between DS and SIs varied across stages (Fig. 7). For the heading stage, 
RSRI yield higher  R2 than other SIs (RSRI:  R2 = 0.75; others:  R2 < 0.66). For anthesis and 
filling stages, RSRI exhibited the strongest relationships for both mildly and severely dis-
eased samples. The  R2 for RSRI was close to that for PRI670 and PSRI but higher than that 
for the remaining SIs. Moreover, the weights of calibrated regression models are different 
across growth stages for one SI, especially the heading stage. All SIs compared in Fig. 7 
exhibited similar phenomenon except for PRI670.

In general, accuracies in DS estimation for each SI varied significantly across the 
involved growth stages (Figs.  8, 9). The quantification performance was the best for the 
anthesis stage and the weakest for the heading stage. Besides, RSRI and existing SIs 
showed contrasting accuracies in DS quantification. For the heading stage, RSRI yielded 
the best accuracy in DS quantification  (R2 = 0.65) (Fig. 8A) and exhibited the most con-
centrated confidence intervals (CIs) of RMSE and validation  R2 among all five indices 
(Fig. 9). All existing SIs failed to quantify the DS effectively with significantly wider CIs 
of the accuracy metrics than RSRI for heading. The results illustrated that the validation  R2 
with RSRI for DS quantification were 0.84 and 0.78 (Fig. 8B, C) with compact CIs metrics 
for anthesis and filling (Fig. 9), respectively. Additionally, underestimation of RSRD sever-
ity for the mild range for anthesis occurred to the existing SIs but did not occur to RSRI 
(Fig. 8). RSRI showed the best performance in DS quantification across growth stages.

Figure  10 displays the spatial variation in DS within spikelets mapped by combin-
ing the SI-based linear models and hyperspectral cubes for three representative samples. 
With the RGB images as references, RSRD infected regions were successfully delineated 
by the mapping method. However, existing SIs did not generate an authentic mapping of 

Fig. 6  Relationships between DS and SIs with regression lines and  R2 values. The green, blue, and red 
squares represent the samples from the heading, anthesis, and filling stages, respectively. All regressions are 
statistically significant (p value < 0.001) except for the relationship between RSRI-3(553,675,740) and DS for 
heading (p value = 0.133) (Color figure online)
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DS distribution as the proposed SI did. In contrast, the RSRI-based maps exhibited fewer 
yellow regions overestimated from the healthy pixels than the selected SIs, whereas these 
areas were wrongly tagged with mild disease severity (Fig.  10A, B). RSRI-based maps 
also unveiled the severely diseased areas properly, unlike the weak display of the counter-
part lesions based on selected SIs (Fig. 10C). The lesion distribution with RSRI showed 
the strongest similarity with the reference images, especially for the slightly and severely 
infected areas.

Discussion

Impact of spikelet ripening on the spectral responses to RSRD infection

The spectral differences across growth stages indicate that the spectral responses of RSRD 
infected spikes were co-influenced by pathogen–host interactions and spikelet ripening. 
From a pathology perspective, spectral responses were mainly affected by impairments 
in biochemical compositions and tissue structures. The reflectance in the visible and NIR 
regions was linked to the pigment concentration and the leaf internal structure, respectively 
(Feret et  al., 2008). Therefore, the degradation of chlorophyll and carotenoid caused by 
chlorotic damages from RSRD was responsible for the reflectance increase in the blue and 
red regions. The reflectance decrease in the green peak (Fig. 11A) could be attributed to 
the increase in the content of anthocyanin, a defensive pigment sensitive to stresses (Xia 
et al., 2021). Furthermore, necrotic damages in the form of RSRD penetration into glume 
tissues (Lei et al., 2019) would be the main reason for the reflectance collapse in the NIR 

Fig. 7  Relationships between DS and SIs with regression lines and  R2 values. The green, blue, and red 
squares represent the samples from the heading, anthesis, and filling stages, respectively. All regressions are 
statistically significant (p value < 0.001)  (Color figure online)
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plateau. These findings were consistent with those in relevant studies (Mahlein, 2016; Ren 
et al., 2021; Tian et al., 2021). From a ripening perspective, the spectral change trends were 
influenced by biochemical variations with the spikelet development. The chlorophyll con-
tent and the carotenoid-to-chlorophyll ratio decrease with growth stages in spikelets (Chen 
et  al., 2006), which should be the physiological basis of the reflectance increase in the 
red region with the spikelet ripening (Fig. 11B). Although the magnitude of NIR plateau 
responded significantly to nitrogen content in spikelets (Cheng et al., 2018), the spectral 
shape remained unchanged (Fig. 11).

Similarities of spectral variation between the disease development and spikelet ripen-
ing could weaken the universality in feature construction and DS estimation for multiple 
growth stages. This influence was proved by the differences in the spectral responses to 
RSRD and the unbalanced DS quantification accuracy across growth stages. In this regard, 
earlier research also found different optimal features for multi-growth-stage disease moni-
toring (Zhang et al., 2020b; Zheng et al., 2018). Moreover, the subtle spectral responses 
might not outweigh the variation from ripening, which could cause significant estimation 
errors for samples from the slightly to mildly infection stages as existing SIs did in model 
validations (Fig. 8). The coexistent influence of stresses and phenological changes is more 
common for disease detection at the canopy scale (Lassalle, 2021). Hence, it is crucial to 
ensure the derived spectral features for spikelet disease monitoring were effective across 
growth stages.

Previous research mitigated the phenological influence in the form of senescence in 
pathogen examination by extracting features from full-band spectral information with prin-
cipal component analysis or simple volume maximization (Kuska et al., 2015; Lucas et al., 
2021). However, spectral features from transformations might not be suitable for mild 
infection, since the spectral responses in the red region to RSRD could be similar to that 
to spikelet ripening for both magnitude and shape. The wavelength regions insensitive to 
the spikelet growth could be considered to suppress the ripening effect over the full-band 
transformation. Given the stability of anthocyanin content and the internal structure in 
healthy spikelets across growth stages for common rice cultivars (Mackon et al., 2021), the 
spectral variation from ripening could be excluded in the decrease of green reflectance and 
the unique slope of the NIR region. These disease-specific bands could be used to avoid the 
influence of spikelet ripening on the performance of disease detection by SIs. Moreover, 
this issue may be further resolved by using more bands beyond the VNIR region, such as 
the water content and dry matter sensitive bands in the shortwave infrared region (Tian 
et al., 2021; Yan et al., 2021). However, such ripening-insensitive bands are not qualified 
in DS estimation for the early infection stage according to the SI comparison. The bands 
sensitive to early infection should also be determined to increase the accuracy consistency 
in DS estimation for both the early stage of infection and multiple growth stages.

Contribution of blue bands to disease monitoring

The importance of blue bands could be supported by the fact that only RSRI and NPCI 
achieved acceptable accuracy in DS quantification for the heading stage (the early 

Fig. 8  Scatter plots of measured and estimated disease severity (DS) with SI-based models for the heading 
(left column), anthesis (middle column), and filling (right column) stages. The top through the bottom rows 
represent RSRI (A–C), NPCI (D–F), CCI (G–I), PRI670 (J–L), PSRI (M–O) and NDVI (P–R), respec-
tively

▸
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stage of infection) among involved SIs. The reflectance in the blue region is charac-
terized by the overlapping absorption of major pigments (Feret et  al., 2008). There-
fore, the blue reflectance should be sensitive to subtle biochemical changes caused by 
pathogen infections. For instance, the blue spectral features could record the decreases 
in chlorophyll content that are often observed in the senescent and unhealthy plants 
at the early stressed stage (Peñuelas et al., 1995). The merits of blue bands in disease 
monitoring at the early infection were also highlighted in previous studies (Brugger 
et al., 2019; Poblete et al., 2020; Zarco-Tejada et al., 2018). Moreover, the insensitivity 
of blue bands to the spikelet ripening could partially explain the consistent sensitivity 
of RSRI to DS across growth stages (Figs. 7, 8).

To understand the effect of bandwidth in disease monitoring, new RSRIs were derived 
from the broad spectral bands simulated according to the Airphen (Hi-phen, France) and 
RedEdge-MX multispectral cameras (Micasense, USA), which are commonly mounted on 
unmanned aerial vehicles in vegetation remote sensing. Following Soudani et al., (2006), 
the broad-band reflectance was calculated based on the integration of the spectral response 
functions of the sensors and the hyperspectral reflectance. Compared to the narrow-band 
RSRI, the broad-band ones displayed similar relationships between DS and SI, and per-
formance in RSRD severity quantification for multiple growth stages (Figs. 12, 13). Such 
performance suggests broad blue bands are also efficient in DS estimation and they are 
promising in disease monitoring with cameras mounted on UAVs. Yet blue features might 

Fig. 9  Comparison of calibration accuracies  (R2), validation accuracies  (R2), RMSE, and bias for RSRI and 
existing SIs in DS (disease severity) quantification over various stages (left column: heading, middle col-
umn: anthesis, right column: filling). The average value (horizontal bars) of one hundred rounds of evalua-
tions is accompanied by confidence intervals (vertical bars)
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not be suitable for aerial or spaceborne platforms due to the atmospheric effect (Li et al., 
2020).

However, the blue reflectance variation is hard to understand by linking the biochemical 
variation since it is affected by the complex degradation of pigments (Feret et al., 2008). 
Although blue bands might not be competent for disease monitoring individually because 
of the weak sensitivity to DS in contrast with red bands (Fig.  4), feature engineering 

Fig. 10  RGB images, lesion distribution reference, and DS maps derived from RSRI and existing SIs for 
three independent spikelet samples (A  a slightly infected spikelet, B  a mildly infected spikelet, and C  a 
severely infected spikelet). Note that the small gaps between grains can be identified on the RGB images 
but cannot be separated on the hyperspectral images due to their low spatial resolution

Fig. 11  A Reflectance spectra of three spikelets with various RSRD severities for the anthesis stage. B rep-
resents the reflectance spectra of three healthy rice spikelets independent of this study for the heading, 
anthesis, and filling stages, respectively
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approaches could be used to magnify the sensitivity of blue bands such as SIs, feature 
combinations, and spectral transformations applied in previous studies (Tian et al., 2021; 
Zarco-Tejada et  al., 2018). Moreover, the subtle biochemical changes hidden behind the 

Fig. 12  The DS–RSRI relationships for three growth stages with the simulated A Airphen and B RedEdge-
MX data. Green, blue, and the red squares represent the samples from heading, anthesis, and filling stages, 
respectively. RSRI was calculated from multispectral reflectance simulated with hyperspectral cubes by 
referring to the bandwidth and center wavelength of Airphen or RedEdge-MX. The bands 454 nm, 675 nm, 
and 740 nm were replaced by the blue, red, and near-infrared bands for each sensor. All regressions are sta-
tistically significant (p value < 0.001)  (Color figure online)

Fig. 13  Scatter plots of measured and estimated quantified DS (disease severity) with RSRI-based models 
derived from multispectral data (A–C Airphen camera, D–F RedEdge-MX camera) for the heading (A, D), 
anthesis (B, E), and filling (C, F) stages
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blue band response could be different according to the pathogen categories (Poblete et al., 
2020). Determination of specific band regions sensitive to a certain stress is crucial for the 
feature construction in DS estimation and disease identification.

Implications and prospects

A few studies have constructed SIs or feature sets for spikelet disease monitoring with 
remote sensing (Huang et al., 2015; Mahlein et al., 2019a; Zhang et al., 2020b). However, 
these studies may have neglected the consistence in sensitivity over multiple growth stages 
or a wide range of disease severities due to the limited measurements within a short period 
of growth. For example, significant underestimation for mildly diseased samples was 
observed in the detection of wheat Fusarium Head Blight by Zhang et al. (2020b). Results 
in this study indicated that the SIs insensitive to the slight-to-mild DS for anthesis were 
poorly related to DS for heading (Figs. 7, 8). In contrast, RSRI-based models showed the 
most stable performance for all involved growth stages in DS estimation, as well as the 
models with broadband-based RSRIs. Therefore, it is encouraging to monitor the DS from 
RSRI with affordable sensors.

Moreover, the mapping results demonstrated that pathogen colonies could be revealed 
properly in the RSRI-based severity maps, which were more distinct than the RGB refer-
ence. These non-invasive observations could facilitate the investigation of the spatial and 
temporal patterns of pathogen–host interactions. Such ability of HSI has been proven supe-
rior to various validation approaches including genetic tests, microscope tests, and tem-
poral comparisons for living hosts (Brugger et al., 2021; Tian et al., 2021; Zarco-Tejada 
et al., 2018). Further work would include time-series validation to solidify the mechanistic 
understanding of pathology and spectroscopy.

As for spikelet disease monitoring, more challenges need to be faced due to the com-
plexity of the reproductive organs in morphology and geometry except for the ripening 
influence. Although a study found no significant difference between the front and rear 
sides of spikelets in DS estimation (Zhang et al., 2020a, 2020b), infected crop spikelets are 
three-dimensional organs with different lesion distributions on the sides, which requires 
full observations to evaluate the disease condition. Secondly, it is hard to obtain a clear 
view of reproductive organs during the spectral imaging phase at the canopy scale due to 
the variable poses and severe overlaps of spikelets. Previous studies found larger viewing 
angles resulted in higher accuracies in DS estimation with more target information (Gu 
et al., 2021; He et al., 2021; Oberti et al., 2014) In phenotyping and breeding activities, 
however, one-side or single-angle imaging with partial optical information may be inade-
quate to make reliable decisions. Multi-angular measurements could enhance the signal for 
disease monitoring at the canopy scale, although, the pre-processing procedures including 
multi-angular image matching may still be at a high cost.

Conclusion

This study determined the differences in spectral responses to RSRD among multi-
ple growth stages and constructed a new index, RSRI, sensitive to RSRD across multi-
ple phenological stages. The results indicated that the sensitivities of reflectance in the 
green and near-infrared regions to DS for filling were significantly lower than those for 
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anthesis. RSRI optimization showed that the addition of blue bands increased the SI sen-
sitivity to DS for heading, enhancing the early disease detection. Compared with NPCI, 
CCI, PRI670, PSRI, and NDVI, RSRI exhibited the highest sensitivity to DS at the early 
infection stage and the most stable performance from heading to grain filling in DS esti-
mation (Heading:  R2 = 0.65, RMSE = 0.02; anthesis:  R2 = 0.84, RMSE = 0.08 for; filling: 
 R2 = 0.78, RMSE = 0.08). Moreover, the RSRI-based model mapped the lesion distribution 
more properly than the previous studied SIs for slightly, mildly, and severely diseased sam-
ples. The DS estimation and the lesion mapping of the RSRD at the early infection stage 
could provide an effective reference in crop protection and pathology research.
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