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Abstract
Hyperspectral remote sensing can quickly, nondestructively and accurately monitor crop 
water concentration and provide technical support for winter wheat growth monitoring, 
drought assessment, and variable irrigation. In this study, canopy spectral reflectance, leaf 
water concentration (LWC), leaf nitrogen concentration (LNC), leaf area index (LAI), and 
leaf dry matter (LDM) of four wheat cultivars were measured under different irrigation 
and nitrogen treatments, and the effects of nitrogen treatment and growth period on spec-
tral reflectance and LWC were analyzed. Canopy spectral reflectance for different growth 
periods, irrigation, and nitrogen treatments showed significant changes, leading to the 
phenomena of “nitrogen treatment differentiation” and “growth period differentiation” for 
the normalized difference spectral index [NDSI (762, 1458, 2301)] and normalized differ-
ence infrared index (NDII) monitoring models. To reduce the influence of nitrogen treat-
ment and growth period on the LWC estimation model, a modified normalized difference 
water index (mNDWI) was constructed by introducing the nitrogen factor (ratio of left 
and right peak area, RIDA) into the optimized combination of water-sensitive bands [ND 
(815, 1080), ND (1585, 1740), and ND (2030, 2260)]. Compared with NDSI (762, 1458, 
2301), the  R2 of mNDWI was improved by 36.2%–41.1% under different nitrogen levels 
and 18.6%–22.4% in different growth periods; this effectively reduced the impact of nitro-
gen status on LWC monitoring and realized the unified modeling and accurate inversion 
of LWC for the entire growth period. The new index mNDWI, especially mNDWI (815, 
1080) and mNDWI (2030, 2260), can effectively monitor the LWC status of wheat under 
different cultivation conditions, which is important for the real-time diagnosis of plant 
moisture to guide precision field irrigation applications.
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Introduction

Water is an indispensable and important condition in the process of crop growth. Leaf 
water concentration (LWC) is a diagnostic variable used to measure crop seedling health 
and drought. With global warming, droughts tend to occur frequently and seriously (Wang 
et  al., 2015), which aggravates the contradiction between “water decreasing” and “grain 
increasing” in the Huang Huai Hai Plain. Therefore, real-time accurate monitoring and 
diagnosis of crop water status is conducive to timely water management and efficient use 
of water resources to obtain higher yield and better quality in agricultural production. This 
has important theoretical and practical significance for guiding water-saving agricultural 
production, and is also one of the most important research topics in modern precision 
agriculture.

Vegetation color, water content, morphological structure, and physiological composi-
tion often change with the amount of irrigation, which in turn causes changes in spectral 
reflectance characteristics (Gizaw et al., 2016). Leaf reflectance in the 1450–1930 nm band 
is significantly correlated with LWC in cotton (Thomas et al., 1971). The first derivative of 
the water absorption band (1360–1470 nm and 1830–2080 nm) is highly correlated with 
LWC and was not affected by the leaf structure (Danson et al., 1992). The absorption peak 
in the range of 950–970 nm can be used to monitor plant water content in gerbera, pepper, 
and bean (Peñuelas et  al., 1993). The characteristic wavelength of 522–2450  nm reflec-
tance and its spectral reflectance ratios at 1430, 1650, 1850, 1920 and 1950 nm can be used 
to estimate multiple water variables of herbaceous and woody plants (Yu et al., 2000). The 
sensitive band of leaf equivalent water thickness (EWT) is concentrated in the short-wave 
infrared (SWIR) range, 1400–2500 nm. Since the SWIR reflectance is also affected by the 
leaf internal structure and biomass, it is not possible to monitor the leaf EWT only by using 
the SWIR (Ceccato et al., 2001). The sensitive bands of leaf water potential, relative water 
content, and leaf EWT for spring wheat are concentrated in the visible band (351, 518 
and 687 nm), near infrared (NIR; 762, 974, 1100 and 1240 nm), and SWIR (1392, 1515, 
1930 and 2273 nm) (Hendawy et al., 2019). Interestingly, similar bands, such as 910, 1020, 
1510, and 2300 nm, are related to the absorption of protein and nitrogen, especially for the 
strong O–H bond at 1940 nm, which is not only associated with N, but also related to water 
absorption, lignin, and cellulose (Berger et al., 2020).

The vegetation index and derivative spectra constructed by using water-sensitive bands 
can effectively overcome the shortcomings of low single-band spectrum prediction accu-
racy. The normalized difference water index (NDWI) was constructed to monitor the veg-
etation canopy water status (Gao, 1996). The water index, WI (R900/R970), can be used 
to monitor the water status of forests and shrubs (Peñuelas et al., 1997). The ratio index 
WI/NDVI can effectively reduce the influence of leaf shape on the estimation of LWC 
(Peñuelas & Inoue, 1999). Many researchers have further revised and explored new indices 
on the basis of WI. Strachan et al. (2002) found that the water spectrum absorption peak 
was shifted, and proposed that the fWBI is defined by the ratio of R900 and the minimum 
value between R930 and R980, which further revised the WI and improved the monitoring 
accuracy of water status. Ratio-type vegetation indices (VIs) were constructed to estimate 
vegetation water status. The simple ratio water index (SRWI) can effectively indicate the 
leaf EWT for high LAI values (Zarco-Tejada et al., 2003). DR1647/DR1133 and DR1653/
DR1687 were the best estimation indices for leaf EWT and fuel moisture content in cot-
ton, respectively (Yi et al., 2013). Das et al. (2017) analyzed the correlation between the 
spectral data of 10 different wheat varieties and the relative water content, and found that 



988 Precision Agriculture (2023) 24:986–1013

1 3

the best spectral indices are RSI (1391, 1830) and NDSI (1391, 1830). In addition, normal-
ized-type VIs are also suitable for monitoring plant water concentration. MODIS NIR and 
SWIR bands were used to construct normalized difference water indices  (NDWI858, 2130) 
for monitoring the vegetation water content of corn and soybeans (Chen et al., 2005). The 
normalized multi-band drought index (NMDI) was constructed to monitor canopy mois-
ture (Wang & Qu, 2007). The normalized difference infrared index (NDII) can effectively 
monitor leaf EWT, which indirectly indicates the water content of corn and soybeans 
(Yilmaz et al., 2008). The normalized water index  (NWI970, 900 and  NWI970, 920) had a bet-
ter prediction effect on wheat water content (Bandyopadhyay et al., 2014). Yao et al. (2014) 
introduced the third band in NDSI (1429, 416), which weakened the influence of LNC on 
monitoring the leaf EWT of wheat. These classic vegetation index modeling methods have 
the characteristics of fewer input variables and large-scale mapping, which can then guide 
water irrigation management on a large scale to further improve the water utilization rate.

Previous studies have also made good progress in different methods and different crops 
for water monitoring (Das et al., 2017; Zhao et al., 2013b). With the development of artifi-
cial intelligence, more advanced and adaptive machine learning methods are gaining trac-
tion and recognition. The combination of PLSR and vegetation index can further improve 
the water content estimation in wheat (Elsayed et al., 2017). PLSR followed by multiple 
linear regression (MLR), artificial neural networks (ANN), support vector machine (SVM), 
and random forest (RF) models could be used calculate relative water content (RWC) in 
rice (Krishna et al., 2019). Machine learning relies heavily on the selection of training data, 
and requires massive data sets to train on. This approach is highly susceptible to errors 
when a training set is not representative of diverse field experimental conditions or envi-
ronmental states. Physical-based model inversion methods are considered to be a prom-
ising alternative to accurately retrieve biochemical and biophysical vegetation variables. 
Based on the Beer–Lambert law, the  EWTleaf and  EWTear of wheat can be successfully 
determined (Wocher et al., 2018). The wavelet features derived from PROSPECT simula-
tions can be used to assess predictive models of gravimetric water content (GWC) (Cheng 
et al., 2012). Although radiative transfer model (RTM)-based inversion methods are con-
sidered physically sound, it is challenging to apply them to remote sensing observations 
because plant biophysical and biochemical properties greatly affect light penetration and 
scattering. This leads to significant bias for simulating directional reflectance, and different 
parameter sets may simulate the same reflectance spectrum.

Water and nitrogen are the most important nutrient elements for crops, and they have 
mutual influences on crop growth, which directly affects crop morphological development 
and growth status. Studies have shown that under normal irrigation conditions, there is a 
positive interaction between the nitrogen concentration and the amount of water provided 
(Klem et al., 2018). Proper application of fertilizer can promote root growth that ensures 
water uptake from the soil (Cooper et  al., 1987). In contrast, nitrogen stress generally 
reduces crop water conductivity, leading to a decreased LWC (Quintero et al., 1999). Water 
increases the availability of nutrients, and nutrients also increase water use efficiency, 
thereby promoting the full utilization of water and fertilizer resources by crops (Wang 
et al., 2014). Actual field production often involves different levels of nitrogen nutrition, 
and these will also affect the crop water concentration and other biochemical components 
(such as LNC) and morphological structures [i.e., LAI and leaf dry matter (LDM)], thus 
affecting the leaf or canopy spectral reflectance (Berger et al., 2020). Therefore, crop water 
monitoring must comprehensively consider the leaf and canopy spectral reflectance effects 
of different nitrogen levels on crop water status. Growth stage is an important influencing 
factor on the estimation of LWC; crop canopy structure and the background information 
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of winter wheat will change with plant growth period. Wang et al. (2011) showed that λmin 
was a good indicator for monitoring LWC at the booting and milking stages when the soil 
exposure was relatively large. The monitoring model performed differently before and 
after anthesis, because nutrients are transported from the leaves to the grains, which affects 
the physiological and biochemical changes in the organizational structures of leaves (Yao 
et  al., 2014). Kong et  al. (2021) analyzed the relationships between spectral indices and 
LWC of wheat based on the heading and milk-filling periods. The sensitivity differences of 
the vegetation index to LWC for the different growth period conditions made it difficult to 
construct a unified LWC monitoring model covering the entire growth period.

The above studies have shown that it is feasible to use spectral monitoring technology 
to perform non-destructive estimation of LWC; however, these studies seldom consider the 
coupling of water and nitrogen in the field, and the uncoupling effect of sensitive bands 
around water and nitrogen. What is needed are not only rapid and easily implemented 
methods, but also the ability to map large-scale farmland irrigation conditions in agri-
cultural production. In view of this, the quantitative relationships between the LWC and 
canopy spectra of winter wheat at four nitrogen application levels under different growth 
periods were analyzed, a new spectral index that weakens the influence of nitrogen and 
growth periods was explored, and a high-precision winter wheat LWC hyperspectral moni-
toring model was established. The results of this study will help further understanding of 
the spectral mechanisms of water and nitrogen interactions, and provide technical support 
for the rapid monitoring of winter wheat water status under different irrigation treatments 
and field precision irrigation using unmanned aerial vehicles (UAVs) in the future.

Materials and methods

Experimental design

Experiment 1 was conducted at the experimental station of Henan Agricultural Univer-
sity in Yuanyang County (35º6′N, 114º37′E), Xinxiang City from 2016 to 2017. The tested 
wheat cultivar was ‘Zhoumai 27’, the previous crop was corn, and the corn straw was 
crushed and returned to the field after harvest. The pH of the soil layer at 0–200 mm before 
planting was 7.8, and it contained 13.2 g  kg−1 of organic matter, 0.81 g  kg−1 of total nitro-
gen, 13.6 mg  kg−1 of available phosphorus, and 156.2 mg  kg−1 of available potassium. The 
total precipitation was 194 mm from sowing to harvest. The experiment was a random split 
zone design. The main zone had three irrigation frequencies; W0 (no added water), W1 
(watered once at the jointing stage), and W2 (watered once at the jointing stage and once 
at anthesis). The irrigation volume was 750  m3  ha−1 both times, and soil water concentra-
tion was kept at 75%–80% by the traditional gravimetric method. The subplot stratum was 
randomly assigned five nitrogen levels: 0 (N0), 90 (N1), 180 (N2), 270 (N3), and 360 (N4) 
kg  ha−1 pure nitrogen (as urea), 50% of which was base fertilizer applied before sowing and 
50% was top dressing applied at jointing. 150 kg   ha−1  P2O5 (as monocalcium phosphate 
[Ca(H2PO4)2]) and 90 kg   ha−1  K2O (as KCl) were applied prior to seeding for all treat-
ments. The experimental plot was 39  m2, the row spacing was 200 mm, the basic seedling 
density was 360 ×  104 plants  ha−1, and there were three replicates. Spectroscopic meas-
urements and sampling were performed from the regreening stage to the late grain filling 
stage, and the yield was measured at maturity.
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Experiment 2 was conducted at Luoyang Academy of Agricultural Sciences in Henan 
Province (34°38′N, 112°29′E) from 2017 to 2018. Wheat cultivars ‘Luohan 22’, ‘Zhong-
mai 175’, ‘Zhoumai 27’, and ‘Jinmai 47’, which have different levels of drought tolerance, 
were selected as the test cultivars. The first crop was corn, and the straw was returned to 
the field after harvest. The pH of the soil layer at 0–200 mm before planting was 8.0, and 
it contained 26.1 g  kg−1 of organic matter, 0.15 g  kg−1 of total nitrogen, 52.7 mg  kg−1 of 
available phosphorus, and 56.7  mg   kg−1 of available potassium. The precipitation was 
339.4 mm from sowing to harvest. The experiment was a random block design, and the 
main area had four irrigation frequencies; W0 (dry shed treatment, no irrigation during the 
whole growth period), W1 (natural precipitation), W2 (watering once at the jointing stage), 
and W3 (watering once at the jointing stage and again in the early grain filling stage). The 
irrigation volume was 750  m3   ha−1 for the jointing stage and 600  m3   ha−1 for the early 
grain filling stage because the precipitation was 103.6 mm in May. The subplot was the 
variety treatment, and the experiment was repeated three times. The level of nitrogen (as 
urea) applied to all test plots was the same (270 kg  ha−1), of which 50% was base fertilizer 
applied before sowing and 50% was top dressing applied at jointing. 150 kg  ha−1  P2O5 (as 
monocalcium phosphate [Ca(H2PO4)2]) and 90 kg   ha−1  K2O (as KCl) were applied prior 
to seeding for all treatments. The experimental plots were 2  m2 and the row spacing was 
250 mm. Spectroscopic measurements and sampling were performed from the regreening 
stage to the late grain filling stage, and the yield was measured at maturity.

Experiment 3 was conducted at the experimental station of Henan Agricultural Univer-
sity in Yuanyang County (35º6′N, 114º37′E), Xinxiang City from 2018 to 2019. The tested 
wheat cultivars were ‘Yumai 49–198’, ‘Fengdechunmai 5’, and ‘Zhengmai 103’. The previ-
ous crop was corn, and the corn straw was crushed and returned to the field after harvest. 
The pH of the soil layer at 0–200 mm before planting was 7.9, and it contained 14.3 g  kg−1 
of organic matter, 0.82  g   kg−1 of total nitrogen, 12.8  mg   kg−1 of available phosphorus, 
and 144.2 mg  kg−1 of available potassium. The total precipitation was 64.3 mm from sow-
ing to harvest. The experiment was a random split zone design, the main zone had two 
irrigation frequencies; W0 (no added water), and W1 (watered once at the jointing stage, 
irrigation volume was 750  m3  ha−1), and the subplot stratum was randomly assigned five 
nitrogen levels: 0 (N0), 90 (N1), 180 (N2), 270 (N3), and 360 (N4) kg  ha−1 pure nitrogen 
(as urea), 50% of which was base fertilizer applied before sowing and 50% was applied as 
topdressing at jointing. 150 kg  ha−1  P2O5 (as monocalcium phosphate [Ca(H2PO4)2]) and 
90 kg  ha−1  K2O (as KCl) were applied prior to seeding for all treatments. The experimental 
plot was 39   m2, the row spacing was 200 mm, the basic seedling density was 360 ×  104 
plants  ha−1, and there were three replicates. Spectroscopic measurements and sampling 
were performed from the jointing stage to the late grain filling stage, and the yield was 
measured at maturity (Table 1).

Measurement of canopy spectral reflectance

A back-mounted field spectroradiometer (Field Spec FR Pro2500, Analytical Spectral 
Devices, Boulder, CO, USA) with a 25° field-of-view fiber optic adaptor was used to meas-
ure the canopy spectral reflectance of the winter wheat. Reflectance was calculated as the 
ratio between the energy reflected by the canopy and the energy incident upon the canopy 
(i.e., canopy reflectance is a relative measure, with values that range from 0 to 1). The 
instrument’s waveband range was 350–2500 nm, sampling interval was 1.4 nm, spectral 
resolution was 3 nm in the 350–1000 nm spectral range, sampling interval was 1.1 nm, and 
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the spectral resolution was 10 nm in the 1001–2500 nm spectral range. Spectrum acquisi-
tion was synchronized with the agronomic sampling times, at the regreening stage, joint-
ing stage, booting stage, anthesis, early filling stage, middle filling stage, and late filling 
stage of the winter wheat. The winter wheat canopy spectral reflectance was measured at 
10:00–14:00 during sunny and windless weather. The spectrometer probe was oriented ver-
tically downward, 1 m above the canopy’s top by skilled manual fixation. In order to obtain 
a more representative canopy reflectance, three sampling points were selected in each plot, 
five spectra were collected at each location, and these 15 spectra were averaged as the 
spectrum samples for the entire plot. The noise from the 1350–1500 nm, 1800–1950 nm, 
and 2475–2500 nm water vapor absorption bands were eliminated. In addition, a standard 
0.40 m × 0.40 m whiteboard made of  BaSO4 was used during the measurement process to 
correct the observation of each group of targets in time.

Determination of agricultural variables

Leaf water concentration and leaf dry matter

Following the spectral measurements, 10 representative plants were selected in each plot 
and all leaves were quickly removed from the stalks. The leaves were weighed to deter-
mine the fresh weight (WF), and then placed in an oven at 105 °C and dried at 80 °C to a 
constant weight. The dry weight (WD) was then recorded and converted to leaf dry matter 
(LDM)weight per unit area (t  ha−1). The formula for calculating LWC is as follows:

Leaf nitrogen concentration

Plant samples used for the determination of LNC were dried and crushed separately by tis-
sue/organ type, and their LNC (%) was determined using an automatic Kjeldahl nitrogen 
analyzer (Kjeltec 2300, FOSS, Sweden) based on the Kjeldahl method.

where ω (N) is the mass fraction of leaf total nitrogen (%); c is the acid standard solu-
tion (mol.  l−1);  V1 is the volume of acid standard liquid used for titrating the sample (ml); 
 V0 is the acid standard solution (ml) for the titrating blank; 14 was the molar mass of N (g. 
 mol−1); V is the constant volume of dissolving solution (ml);V2 is the volume measured by 
suction; M is the leaf sample mass (g).

Leaf area index

The ground-based effective LAI of each experimental plot was measured using a Licor 
LAI-2000 plant canopy analyzer (LI-COR, Inc., Lincoln, NE, USA).

Selection of vegetation index: For this study, nine vegetation indices related to water for 
monitoring the wheat LWC were selected. The calculation formulas and sources are shown 
in Table 2.

(1)LWC(%) = (WF −WD)∕WF × 100

(2)�(N) = c
(

V
1
− V

0

)

× 14 × V∕V
2
M
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Construction of a new vegetation index

NDVI, the normalized difference vegetation index, is the most widely used vegeta-
tion index in remote sensing monitoring research. The sensitive bands of vegetation 
moisture are mostly located in the bands above the NIR, such as 950  nm, 1240  nm, 
1450 nm, 1650 nm, and 2200 nm. On the basis of the water sensitive bands, previous 
studies have successively established the water vegetation indices NDWI1, NDII, and 
NDWI2 through the NDVI form of the two-band combination (Chen et al., 2005; Gao, 
1996; Yilmaz et al., 2008). Some studies have subsequently improved and optimized it 
to solve the modeling saturation problem by adding a constant coefficient or new band 
into the NDVI (Huete et al., 2002; Peng & Gitelson, 2011). Therefore, most vegetation 
indices can be summarized by a simple framework which corresponds to the modified 
normalized difference vegetation index (mNDVI).

where λ1 and λ2 of the spectral range are located in the wavelength range of 
350–2500 nm, λ1 is the reference band, and λ2 is the sensitive band to the target. “a” 
is a constant coefficient or a new band, “1 + a” increases the role of the reference band, 
and “1 − a” reduces the role of the sensitive band.

Plant water concentration and nitrogen concentration are important variables that can 
be used to characterize crop growth. There is a close relationship between plant water 
concentration and nitrogen concentration, which is synchronized and synergistic with 
the plant growth period (Fig.  1). Therefore, it is necessary to reduce the influence of 
nitrogen concentration when monitoring crop water concentration. The canopy reflec-
tance of green vegetation often exhibits a red-edge bimodal phenomenon due to vegeta-
tion type and environment, which is closely related to nitrogen status (Gong et al., 2002; 
Zarco-Tejada et al., 2001). Some studies used red edge indices as indicators of nitrogen 
nutrition and plant water content (Cho & Skidmore, 2006; Fitzgerald et al., 2006; Liu 
et  al., 2004). Feng et  al. (2014) segmented the red-edge bimodal area and found that 
the red-edge bimodal parameter was very sensitive to changes in LNC, and the value of 
the left–right peak area ratio (RIDA) ranged from 0 to 1. This parameter can effectively 
indicate the nitrogen status of wheat leaves (Fig. 2A), while the sensitivity to LWC was 
significantly reduced (Fig. 2B). 

(3)mNDVI =
(1 + a)R

�1
− (1 − a)R

�2

R
�1

+ R
�2

Fig. 1  Changes in LWC and 
LNC in wheat across seven dif-
ferent growth stages
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RSDR is the sum of the first derivative spectra within the right-side peak of the 

718–755 nm region, and LSDR is the sum of the first derivative spectra within the left-
side peak of the 680–718 nm region.

For this reason, the left–right peak area ratio (RIDA) was regarded as the influence 
coefficient (Ne) of the nitrogen factor in the study, and introduced it into the mNDVI. 
Thus, the formula for the modified water index (mNDWI) is:

Rλ1 and  Rλ2 are the canopy spectral reflectances at two different wavebands, λ1 is 
the reference band, and λ2 is the sensitive band to water. Ne is the nitrogen factor coef-
ficient; the value is equal to the RIDA, and the range was 0 to 1. “1 + Ne” increases the 
role of the reference band, and “1 − Ne” attenuates the nitrogen effect of the water sen-
sitive band.

Statistical analysis

The data from Experiments 1 and 2 were used as the calibration set, and the data from 
Experiment 3 was used as the validation set (Table 3). The spectral data collected in the 
field was output as spectral reflectance through the software ViewSpec Pro (Analyti-
cal Spectral Devices Inc., Colorado, USA), and then the original spectral reflectance was 
denoised by OriginPro 8.0 (Origin Lab, Inc., USA) using the Savitzky–Golay filter smooth-
ing method. EXCEL2007 and MATLAB 9.0 (MathWorks, Inc., USA) software were used 
to statistically analyze the LWC and the corresponding spectral reflectance. Ratios, nor-
malized difference and difference vegetation index (RSI, NDSI, DSI) were constructed by 
the random combination of two bands in the 350–2500  nm range. The accuracy of the 
model was evaluated by the coefficient of determination  (R2) and the root mean square 

(4)RIDA =
RSDR

LSDR
= ∫

755

718

dR�

d�
d�∕∫

718

680

dR�

d�
d�

(5)mNDWI =
(1 + Ne)R

�1
− (1 − Ne)R

�2

R
�1

+ R
�2

Fig. 2  The relationships of RIDA to LNC (A) and LWC (B) in wheat at seven different growth stages 
(Color figure online)
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error (RMSE). A lower RMSE value indicates that the index has better accuracy in estimat-
ing LWC.

In the formula,  Pi is the simulated value of LWC;  Oi is the measured value of LWC; 
n is the number of samples.

Results

Variation in spectral reflectance characteristics of the winter wheat canopy 
under different water and nitrogen conditions

Different nitrogen and irrigation treatments significantly affected the spectral reflec-
tance of the winter wheat canopy. Figure  3 shows that the change in spectral reflec-
tance at different wavelengths varies with the irrigation treatments (Fig. 3A) and nitro-
gen levels (Fig. 3B). These results show that the overall trend of changes in the winter 
wheat canopy spectral characteristics under different water and nitrogen treatments 
was consistent. With the increase in irrigation frequency and nitrogen level, reflec-
tance of the wheat canopy gradually decreased in the visible waveband (400–700 nm), 
and increased in the NIR band (780–1350 nm), and there were two obvious absorption 
valleys in the 970 nm and 1200 nm water characteristic bands; the canopy reflectance 

(6)RSI =
R
�1

R
�2

(7)NDSI =
R
�1

− R
�2

R
�1

+ R
�2

(8)DSI = R
�1

− R
�2

(9)RMSE =

√

1

n
×
∑n

i=1

(

P
i
− O

i

)2

Table 3  The dataset range of LWC, LNC, LAI, and LDM used in this study

Max Min Mean SD CV (%) Correlation 
coefficient (r)

Calibration-LWC 82.47 23.88 60.71 15.28 0.25
Validate-LWC 83.79 52.71 74.49 6.48 0.09
Calibration-LAI 8.92 0.40 2.74 1.99 0.73
Calibration-LDM 3.94 0.10 1.38 0.89 0.64
LAI vs. LDM 0.89
LAI vs. LNC 0.79
LDM vs. LNC 0.83
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gradually decreased in the SWIR band (1350–2500 nm) with the increases in irriga-
tion times and nitrogen levels, and there were obvious absorption valleys and reflection 
peaks at 1400 nm and 2200 nm.

The relationship between LWC and vegetation index

The relationships between LWC and nine conventionally-used vegetation indices were 
tested in different growth periods (Table 4). The monitoring accuracy of the same water 
vegetation index in different growth periods was different, and the monitoring precision of 
different water vegetation indices in the same growth period was also different. The cor-
relation between water vegetation index and LWC first increased and then decreased as 
the growing period advanced. Most of the vegetation indices had the highest correlation 
with LWC during anthesis and the early grain filling stages (|R|≥ 0.662, RMSE ≤ 8.68%), 
and the lowest correlations occurred during the regreening period (0.453 ≤|R|≤ 0.682, 
8.30% ≤ RMSE ≤ 14.57%). Overall, the correlation between WI and LWC was the worst 
(R = 0.597, RMSE = 12.14%); NDSI (762, 1458, 2301) and NDII performed better, and 
the correlations with LWC were 0.827 and 0.795, respectively. However, the phenome-
non of “growth period differentiation” appeared when the NDSI (762, 1458, 2301) and 
NDII were relied upon to monitor LWC during different growth periods, and the monitor-
ing accuracy in the different periods was 0.465–0.724 and 0.394–0.729, and the RMSE 
was 5.13%–8.30% and 5.95%–8.99% for NDSI and NDII, respectively. Based on the 
performance under different nitrogen treatments, the overall monitoring effects of NDSI 
(762, 1458, 2301) and NDII were poor  (R2 = 0.516 and 0.454, RMSE = 7.57% and 7.99% 
for NDSI and NDII, respectively). The monitoring accuracy under each nitrogen treat-
ment showed the phenomenon of “nitrogen treatment differentiation,” and was ≤ 0.681 
under high nitrogen (N4) and low nitrogen (N0 and N1) conditions, and was the highest 
 (R2 = 0.708 and 0.760) in the N3 treatment (Fig. 4).

Fig. 3  Spectral reflectance of the wheat canopy for four different water treatments at the N3 level 
(270 kg  ha−1) (A) and for five nitrogen treatments at the W1 level (watered once at the jointing stage) (B) at 
anthesis
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Quantitative relationships between two‑band vegetation indices and LWC

In order to find the vegetation index that was best related to LWC, the ability of the 
RSI, NDSI, and DSI of the two-band combinations in the 350–2500 nm range to moni-
tor the LWC were systematically analyzed. The sensitive band regions of RSI and DSI 
were very small, so the contour maps were not analyzed further. From the two-band 
normalized contour maps, five sensitive monitoring regions  (R2 > 0.65) can be screened 

Fig. 4  Quantitative relationships between the LNC and NDSI (762,1458,2301) (left panels) and between 
the LWC and NDII (right panels) for five different nitrogen treatments and seven growth stages of win-
ter wheat. (nregreening = 73, njointing = 60, nbooting = 76, nflowering = 94, ninitial-filling = 40, nmid-fill-
ing = 56, nlate-filling = 36; the number of each N treatment = 39)

Fig. 5  Contour maps of determination coefficients  (R2) for linear relationships between LWC and NDSI, 
RSI, and DSI of the possible two-band combinations
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out; for the green/red band combination region, the green band was concentrated at 
550–560 nm, and the red band was concentrated at 615–630 nm; for the red edge/red 
band combination region, the red edge band was concentrated at 735–745 nm, and the 
red band was concentrated at 635–675 nm; for the NIR/NIR band combination region, 
the NIR bands were concentrated at 770–820 nm and 1020–1120 nm, respectively; for 
the two SWIR/SWIR band combination regions, the SWIR-1/SWIR-1 bands were con-
centrated at 1565–1600 nm and 1720–1780 nm, respectively, and the SWIR-2/SWIR-2 
bands were concentrated at wavelengths of 2020–2040 nm and 2220–2300 nm, respec-
tively (Fig. 5).

Three large regions (NIR/NIR band combination, SWIR-1/SWIR-1 band combination, 
and SWIR-2/SWIR-2 band combination) with high monitoring accuracy and wide suitable 
bands were selected, and the three types of spectral indices with the best correlation in 
these regions were screened; NDSI (815, 1080)  (R2 = 0.729, RMSE = 6.67%), NDSI (1585, 
1740)  (R2 = 0.657, RMSE = 8.08%), and NDSI (2030, 2260)  (R2 = 0.701, RMSE = 7.30%). 
Compared with the conventional vegetation indices NDII and NDSI (762, 1458, 2301), 
the ability of these three types of spectral indices to monitor LWC under different nitrogen 
treatments was improved; this was especially true for the high nitrogen (N4) treatment, 
in which the monitoring ability was improved the most (≥ 5.1%). Therefore, the accuracy 
of the overall modeling under different nitrogen treatment conditions was also improved 
correspondingly, and the improvement rate was ≥ 12.6%. Similarly, these three types of 
vegetation indices weakened the influence of the growth period to a certain extent, which 
was mainly manifested as a greater increase in the monitoring accuracy of the regreening 
period and the jointing period (≥ 28.2%) (Fig. 6).

Construction of the mNDWI monitoring model

In order to weaken the influence of nitrogen application levels at different growth periods 
in the monitoring of winter wheat LWC, RIDA was introduced into three sensitive combi-
nation regions (the NIR/NIR band combination, the SWIR-1/SWIR-1 band combination, 
and the SWIR-2/SWIR-2 band combination). The contour maps of the combined deter-
mination coefficients at the three sensitive regions were drawn based on mNDWI (Fig. 7). 
Compared with two-band normalized contour maps, the sensitive bandwidths of the NIR/
NIR band combination, SWIR-1/SWIR-1 band combination, and SWIR-2/SWIR-2 band 
combination became larger. According to the principle of the largest  R2 for the models, 
the NIR/NIR band combination is based on central bands of 815 and 1080 nm with band-
widths of 30 nm and 60 nm, respectively. The SWIR-1/SWIR-1 band combination is based 
on central bands of 1585 and 1740 nm with bandwidths of 80 nm and 40 nm, respectively. 
The SWIR-2/SWIR-2 band combination is based on central bands of 2030 and 2260 nm 
with bandwidths of 130 nm and 30 nm, respectively.

The monitoring accuracies of mNDWI (815, 1080), mNDWI (1585, 1740), and 
mNDWI (2030, 2260) under the different nitrogen treatments were 0.724–0.829, 
0.710–0.785, and 0.736–0.831, respectively. Compared with the selected ND (815, 
1080), ND (1585, 1740), and ND (2030, 2260), the monitoring accuracy was signifi-
cantly improved (Table 5). Among them, the relative increase was highest for the N0 
treatment (29.8%–33.6%). The  R2 of mNDWI (815, 1080), mNDWI (1585, 1740), and 
mNDWI (2030, 2260) for the entire nitrogen treatments were 0.716, 0.703, and 0.728, 
respectively; the RMSEs were 5.53, 6.05, and 5.17%, respectively, and the relative 
increase was ≥ 12.2%. The mNDWI not only greatly alleviated the “differentiation of 
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nitrogen treatment” phenomenon, but also reduced the effect of the “differentiation of 
growth period” phenomenon. The monitoring accuracy was improved in each growth 
period, and it was greatly improved at anthesis and the early grain filling stage, and the 
relative increases were 16.3%–28.7%. mNDWI (815, 1080), mNDWI (1585, 1740), and 
mNDWI (2030, 2260) can better monitor the winter wheat LWC throughout the growth 
period with  R2 values of 0.823, 0.811, and 0.837, respectively, and the RMSEs were 
5.64%, 5.92%, and 5.25%, respectively (Fig.  8). The influence of several confounding 

Fig. 6  Quantitative relationships between the LWC and the three optimized two-band combinations NDSI 
(815, 1080) (left panels), NDSI (1585, 1740) (center panels), and NDSI (2030, 2260) (right panels) for 
five different nitrogen treatments and seven growth stages. (nregreening = 73, njointing = 60, nbooting = 76, 
nflowering = 94, ninitial-filling = 40, nmid-filling = 56, nlate-filling = 36, the number of each N treat-
ment = 39)
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factors, such as LNC, LAI, and LDM on the mNDWI model were further analyzed. 
As shown in Fig.  9, the mNDWI (815, 1080), mNDWI (1585, 1740), and mNDWI 
(2030, 2260) performed poorly, with  R2 values of 0.459, 0.504, and 0.407, and RMSEs 
of 0.63%, 0.61%, and 0.66% for LNC monitoring; with  R2 values of 0.423, 0.487, and 
0.398, and RMSEs of 1.53, 1.49, and 1.56 for LAI monitoring; and  R2 values of 0.408, 
0.421, and 0.394, and RMSEs of 0.74 t  ha−1, 0.71 t  ha−1, and 0.76 t  ha−1 for LDM moni-
toring, respectively.

Testing LWC estimation models

To determine whether the mNDWI (815, 1080), mNDWI (1585, 1740), and mNDWI 
(2030, 2260) models are reliable for estimating wheat LWC, the three models were tested 
using an independent dataset obtained from Exp. 3. The 1:1 relationship between the meas-
ured and estimated values at five growth periods and five nitrogen application levels helped 
confirm the reliability and accuracy of the three models. Note that the monitoring model 
based on mNDWI (1585, 1740) had slightly weaker performance, with  R2 of 0.787 and 
RMSE 4.78%. The models based on mNDWI (815, 1080) and (2030, 2260) performed 
better, with  R2 values of 0.803 and 0.820, and RMSEs of 4.51% and 3.58%, respectively 
(Fig. 10). Therefore, mNDWI, especially mNDWI (815, 1080) and (2030, 2260) could be 
a good indicator for monitoring LWC in wheat under different nitrogen treatments and at 
multiple growth stages.

Discussion

The effects of nitrogen on LWC estimation

Water and nitrogen are the main factors that limit plant growth, and they interact in a com-
plex manner. Previous studies have shown that water and nitrogen are indirectly related 
through chlorophyll and cellulose (Pu et al., 2000). In this study, the changes in the char-
acteristics of LWC and LNC with growth period were systematically analyzed, and found 
that the trend for both is basically the same and is closely related, indicating that nitrogen 
may be an important physiological factor affecting crop water monitoring. Taken a step 

Fig. 7  Contour maps of determination coefficients (R2) for linear relationships between LWC and the 
mNDWI of the NIR/NIR band combination (left panel), the SWIR-1/SWIR-1 band combination (center 
panel), and the SWIR-2/SWIR-2 band combination (right panel)
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further, the regression analysis between the conventional water vegetation index and the 
LWC showed clearly the phenomenon of “nitrogen treatment differentiation”. The distribu-
tion trend of the water concentration dataset for the different nitrogen treatments is incon-
sistent, and the slopes and intercepts of the regression equation are quite different, resulting 
in lower accuracy of the unified monitoring model under different nitrogen treatments. The 
conventional indices, NDII and NDSI (762, 1458, 2301), showed poor accuracy in moni-
toring LWC in the low nitrogen conditions (N0 and N1). This may be because when crops 
experience low-nitrogen stress, water absorption is restricted, resulting in lower vegetation 

Fig. 8  Quantitative relationships between the LWC and the novel spectral indices mNDWI (815, 1080), 
mNDWI (1585, 1740), and mNDWI (2030, 2260) for five different nitrogen treatments and seven growth 
stages. (nregreening = 73, njointing = 60, nbooting = 76, nflowering = 94, ninitial-filling = 40, nmid-fill-
ing = 56, nlate-filling = 36, the number of each N treatment = 39)
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density, LAI and LDM, and the difference in spectral response between vegetation and 
the soil background gradually increases (Guo et al., 2019). When the amount of nitrogen 
applied exceeds the normal level, the monitoring accuracy of LWC is also low, which may 
be related to the saturation of leaf area, LDM and water indicators caused by excessive 
nitrogen application. The interaction of water and nitrogen in this study is the most com-
mon phenomenon encountered in monitoring wheat production. Hence, it is very important 
to decouple the interaction between water and nitrogen. Finding a way to reduce the influ-
ence of nitrogen while monitoring the water status, or to explore the vegetation index and 
monitoring model that is sensitive to water but insensitive to nitrogen, is of great signifi-
cance for further improving the accuracy of water monitoring.

The effects of growth period on LWC estimation

The coverage of winter wheat changes constantly during each growth period, and differ-
ent water and nitrogen treatments exacerbate the coverage difference. This study analyzed 
and compared the effects of various vegetation indices in monitoring LWC under differ-
ent growth periods. For the same vegetation index, the regression model differs greatly 
during the growth period, and the monitoring accuracy tends to gradually increase and 
then decrease as the growth period advances. The main reason is that when wheat is in the 
regreening stage, the LAI, LDM and leaf angle distribution is low, so the plant structural 
characteristics are not obvious, leading to plant coverage that is low, and the vegetation 

Fig. 9  Quantitative relationships between LNC, LAI, LDM and the novel spectral indices mNDWI (815, 
1080), mNDWI (1585, 1740), and mNDWI (2030, 2260)
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indices are greatly affected by soil background (Huang et al., 2005). Around anthesis, LAI 
reaches its maximum value and the leaves are fully extended, the crop coverage is relatively 
high, the observation field is dominated by wheat information, and the soil background has 
little effect on the reflectance of the wheat canopy (Zhao et al., 2013a). In the late filling 
stage, winter wheat transitions from vegetative growth to reproductive growth; nutrients 
in the leaves transfer to the wheat ears, the lower leaves become senescent and fall off, 
and the proportion of the soil background in the field of view increases once again (Zhang 
& Zhang, 2008). In addition, the water content of wheat stalks will also affect the mixed 
spectrum of the canopy, lignin accumulation in wheat stems showed a gradually increasing 
trend from the stem appeared. The bending resistance of the stem is higher during anthe-
sis, and the storage material in the stem starts to break down and is transported into the 

Fig. 10  Comparison of estimated and measured wheat LWC based on mNDWI (815, 1080), mNDWI 
(1585, 1740), and mNDWI (2030, 2260) for five different nitrogen treatments and five growth stages 
(n = 215)
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grain from the filling period, resulting in a substantial degree of decline in the mechanical 
hardness of the stems (Matos et al., 2013). The radiation at 970 nm cannot penetrate the 
increasingly hardened stalk tissue and therefore cannot convey information about the water 
contained within it (Wocher et al., 2018). This further proves that the monitoring accuracy 
depends on the assessed crop’s growth period.

In addition, the regression relationship between vegetation index and LWC shows obvi-
ous differentiation in the different growth periods, which makes it difficult to construct a 
unified LWC monitoring model for the entire growth period using a conventional water 
vegetation index, thus limiting its wide application in crop production. Previous studies 
have tried to solve the problem of growth period incompatibility when monitoring light 
energy and nitrogen utilization efficiency using the index difference method (Gitelson 
et al., 2017) and the introduced coefficient method (Zhang et al., 2018). In order to reduce 
the noise from plant nitrogen before and after anthesis, Yao et  al. (2014) introduced the 
third band information indicating cellulose on the basis of the preferred spectral parameter 
NDSI (1429, 416). Although the three-band vegetation index partially alleviates the influ-
ence of the growth period when monitoring leaf EWT, the monitoring accuracy over the 
entire growth period still needs to be improved. Therefore, ways in which the other bands 
can be introduced on the basis of the water sensitive band and its combination, and reduce 
the growth period differentiation phenomenon from the conventional water index in moni-
toring crop water concentration, need further discussion.

The relationship between mNDWI and LWC

Screening water-sensitive bands is very important for constructing an LWC model. This 
study analyzed the relationship between the LWC and the spectral parameters of a random 
two-band normalized combination of 350–2500 nm, selected three large regions for moni-
toring LWC, i.e., the NIR/NIR band combination, the SWIR-1/SWIR-1 band combination, 
and the SWIR-2/SWIR-2 band combination. Water absorption is weak for the NIR region 
(900–1300 nm) due to the multiple scattering of NIR bands in the leaves, but the vegeta-
tion spectrum in this region is sensitive to LWC change, unless LAI reaches a high value 
(Lillesaeter, 1982). Previous studies also used NIR band combinations to establish veg-
etation indices for indicating water change; the normalized difference water index NDWI 
(860, 1240) based on the NDVI was built to estimate the canopy water content (Gao, 1996). 
The NIR (858) and SWIR (1240, 1640) bands in MODIS were used to construct the Short-
wave Angle Normalized Index, which can effectively track water changes (Orueta et  al., 
2005). The leaf water absorption dominates the spectral reflectance in the 1350–2500 nm 
band. There are strong absorption characteristics of 1450 nm, 1940 nm and 2700 nm, and 
two main reflection peaks are near 1650 nm and 2200 nm. The 1550–1750 nm region was 
found to be best suited for remote sensing of plant canopy water status (Tucker, 1980). 
The first derivative index DR1653/DR1687 can monitor EWT and fuel moisture content 
(Yi et al., 2013). Sensitive bands at 2130 nm and 2301 nm were used for constructing the 
normalized multi-band drought index and NDSI (762, 1458, 2301) to estimate plant water 
changes (Wang & Qu, 2007; Yao et  al., 2014). In this study, the optimized NDSI (815, 
1080), NDSI (1585, 1740), and NDSI (2030, 2260) were selected based on the above three 
sensitive regions, but the selection of sensitive bands was carried out under different nitro-
gen levels, so the water sensitive bands may convey key nitrogen information. When moni-
toring the LWC using NDSI (815, 1080), NDSI (1585, 1740), and NDSI (2030, 2260), 
although the monitoring accuracy at different nitrogen levels and growth periods has been 
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improved, there are still the phenomena of “nitrogen treatment differentiation” and “growth 
period differentiation”. This screening method for sensitive bands further proves that it is 
necessary to reduce the influence of nitrogen on monitoring crop water status under dif-
ferent growth periods, to enhance the accuracy of water monitoring in actual production 
applications.

The physiological and ecological variables of the crop canopy are usually closely 
related. When monitoring a certain physiological variable, other closely related physiologi-
cal and ecological factors often interfere with its monitoring effect. Previous studies have 
attempted to reduce the interaction influence between factors on remote sensing monitor-
ing. In order to minimize the effect of water on nitrogen estimation, the water resistance 
vegetation index (WRNI) was constructed to improve the monitoring accuracy of LNC 
(Feng et al., 2016). The ratio of the transformed chlorophyll absorption reflectance index 
(TCARI) to soil canopy reflectivity (OSAVI) or extracting the characteristic chlorophyll 
bands can minimize the influence of vegetation structure variables and soil background on 
the monitoring of crop chlorophyll content (Cui et al., 2019; Haboudane et al., 2002). With 
the development of remote sensing research, the vegetation index has evolved from two-
band to three-band or even multi-band, and the calculation framework of the spectral index 
has gradually diversified (Haboudane et al., 2002; Yao et al., 2014). For the optimized two-
band normalized combination, especially for NDSI (1585, 1740) and NDSI (2030, 2260), 
the sensitive bands at 1740 nm and 2260 nm are the absorption peaks of protein, cellulose, 
and starch by stretch CH and rotation CH,  CH2, and stretch OH (Fourty et al., 1996), which 
can also be affected by nitrogen nutrition. Therefore, the decoupling of water and nitrogen 
cannot be ignored. Based on the sensitivity of RIDA to changes in LNC (Feng et al., 2014), 
RIDA may be used as a nitrogen indicator, which was introduced as a reduction coeffi-
cient into the water-sensitive two-band optimization combination (NDSI). In the formula, 
815 nm, 1585 nm, and 2030 nm are the reference bands, and “1 + Ne” increases the role 
of the reference bands. The 1080 nm, 1740 nm, and 2260 nm bands are sensitive to water, 
especially 1740 nm and 2260 nm that are also affected by nitrogen-related compounds such 
as protein, cellulose, and starch. Thus, “1 − Ne” attenuates the nitrogen effect of 1080 nm, 
1740 nm and 2260 nm, which decouples the effect of water and nitrogen on the same band. 
Compared with the conventional vegetation index and the sensitive band combinations, the 
newly derived water index, mNDWI, weakens the influence of nitrogen on water moni-
toring under different growth periods. This effectively alleviates the “nitrogen treatment 
differentiation” and “growth period differentiation” phenomena, and greatly enhances the 
practicality of mNDWI in actual production.

In the practice of wheat production, the soil fertility or the nitrogen applied may be dif-
ferent, the precise identification ability of the crop growth period is poor, which limits the 
application of conventional moisture vegetation indices. The new water index established 
in this study can provide method reference and technical support for accurately evaluating 
crop water concentration under different nitrogen fertilizer rates and growth period condi-
tions. The water estimation model constructed in this experiment using many years, mul-
tiple points, and multiple varieties has good accuracy and applicability. Nevertheless, the 
vegetation index and the monitoring model still need to be verified on more regions and on 
other spatial scales, especially the optimal bandwidths of mNDWI for use with the UAV 
platform (including other middle-infrared bands), so as to provide robust technical support 
for large-scale water monitoring and the precise irrigation of wheat.
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Conclusions

Hyperspectral reflection data can quickly and non-destructively diagnose crop water stress 
status, which is important for guiding winter wheat growth monitoring and variable irri-
gation decision-making. Different nitrogen treatments and irrigation systems significantly 
affect the temporal and spatial characteristics of canopy reflectance, which in turn leads 
to the phenomenon of “nitrogen treatment differentiation” and “growth period differen-
tiation” for the conventional vegetation water index NDSI (762, 1458, 2301) and NDII 
monitoring models. Through the normalized optimization combination analysis of any 
two bands in the 350–2500 nm range, there are five water-sensitive combination regions, 
and the bands with good correlation to LWC are mainly concentrated in the 770–1120 nm, 
1565–1780 nm, and 2020–2300 nm ranges. On the basis of the optimized normalized band 
combination, the nitrogen factor RIDA was introduced to construct a modified multi-band 
water index, mNDWI. Compared with the conventional water index NDSI (762, 1458, 
2301), the monitoring accuracy of mNDWI, especially mNDWI (815, 1080) and mNDWI 
(2030, 2260) under different nitrogen treatments and growth periods increased by more 
than 18.6%, effectively reducing the impact of nitrogen status on the LWC monitoring 
model and realizing the unified modeling and accurate inversion of LWC for the entire 
growth period. This indicates that the application of hyperspectral reflection data can bet-
ter convey the LWC status of the winter wheat crop under its different growth conditions, 
which is important for the real-time diagnosis of plant moisture to guide precision field 
irrigation applications.
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