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Abstract
Hybrid rice row detection at the pollination stage is critical for the automation of in-field 
pollination agricultural vehicles. The parental crops of hybrid rice are planted at intervals 
in seed production fields with narrow inter-row spacing. During the advance of the pollina-
tion vehicle, in addition to the centerline of the crop row, information on the crop region 
boundaries is required to guide the vehicle and prevent it from running over the crop. For 
complete crop row detection, a novel machine vision-based method was presented to iden-
tify each of the individual regions of the crop rows, more than the centerlines, by line-
shaped mask scanning combined with the vanishing point of the crop rows. The approach 
consisted of grayscale transformation, vanishing point detection, crop region identification, 
boundary position fine-tuning and crop region segmentation. Its region detection perfor-
mance outperformed the convolutional neural network-based (CNN-based) methods with 
an intersection over union (IoU) of 0.832, an accuracy of 90.48%, a recall of 86.36%, a pre-
cision of 98.96% and an f1-Score of 92.23%. Its centerline extraction ability was compared 
with Hough Transform-based and SegNet-based methods on the basis of average lateral 
distance (ALD) between the ground truth line and the detected line. The proposed method 
resulted in an ALD of 1.943 pixels in a 640*360 resolution image, which was superior to 
the Hough Transform-based (5.704) and the SegNet-based (3.555) methods.

Keywords Autonomous navigation · Machine vision · Crop detection · Vanishing point · 
Region detection · Line-scanning method

Introduction

High-yield and high-quality seed production of hybrid rice can only be achieved by arti-
ficially assisted cross-pollination due to rice’s meager natural hybridization rate (Li et al., 
2017). At present, the pollination of hybrid rice is mainly carried out manually or mechani-
cally and has not yet been automated (Jiang et  al., 2021). Pollination requires high pre-
cision and long-time repetitive work, exhausting and demanding for humans. Automated 
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pollination is urgently required due to growing rice consumption and an ever-declining 
agricultural labor force (Kakani et al., 2020). As a foundational task to realize automated 
pollination, in-field autonomous navigation of agriculture vehicles is required in the first 
place.

In-field autonomous navigation has been widely researched over recent years. The 
potential advantages of in-field autonomous navigation generally encompass human labor 
reduction, vehicle positioning accuracy improvement and operation safety enhancement 
(Gerrish et  al., 1997; Han et  al., 2004). Commonly used in-field autonomous navigation 
methods include global navigation satellite systems (GNSS), machine vision navigation 
and laser navigation (Bonadies and Gadsden, 2018). Among these, a vision sensor out-
performs the others considering its cost-effectiveness, flexibility and technical characteris-
tics of simulating the human eye, making machine vision a research priority (Mousazadeh, 
2013). Accurate crop row detection is crucial to provide reliable guiding information for 
agricultural vehicles in machine vision navigation. Extensive research has been conducted 
on detecting crop rows with image processing approaches, and they can be divided into two 
main categories: methods based on traditional image processing techniques and methods 
based on convolutional neural networks (CNN).

Hough transform-based (HT-based), linear regression-based and vanishing point-based 
methods are the three most widely studied methods based on traditional image processing 
techniques for crop row detection. HT converts the straight line detection in an image into 
a peak point detection in parameter space. Zhang et al. (2017) carried out HT on SUSAN 
corner points representing the rice crop rows to obtain reference guidelines. By limiting 
the detection angle and setting a known point in advance, Chen et al. (2021a) alleviated 
the computational burden of HT. Though HT is convenient to apply, it’s limited to the 
detection angle and the detection  number of crop rows, and the algorithm cannot work in 
complex scenarios such as the presence of crop gaps and weed noise. Linear regression is 
used to fit the centerline of the crop row, so it is necessary to complete the extraction and 
clustering of crop feature points before. Zhang et  al. (2018) utilized a modified vegeta-
tion index and double thresholding technique to obtain the binary image of maize crops. 
A position clustering algorithm and the shortest path method were applied to confirm the 
final clustered feature points, and the linear regression method was employed to fit the crop 
rows. Yu et al. (2021) accomplished  paddy crop row detection based on an improved Otsu 
(Otsu, 1979) algorithm and a double-dimensional clustering method. Then linear regres-
sion was performed to obtain the navigation lines. A major drawback of linear regression 
is its sensitivity to additional visual noise from weeds or other  outliers, even with robust 
regression methods. However, such noise is typically unavoidable in field scenes, which 
restricts the fitting accuracy of linear regression methods. The basic principle of the van-
ishing point-based approach comes from the image perspective property. Crop rows paral-
lel to each other in the real world will converge at one point in the image, which is  the 
vanishing point. Then the crop rows arrangement can be inferred according to the vanish-
ing point position. Pla et  al. (1997) extracted the skeleton information of the vegetation 
area to obtain several candidate crop lines and selected those lines that could converge to 
the vanishing point as the real crop row. Jiang et al. (2016) determined the location of the 
vanishing point by  clustering the voting points in the Hough space and eliminated false 
detection lines according to the positional relationship between the vanishing point and 
candidate crop rows. However, the above vanishing point-based methods rely heavily on 
complex image preprocessing to obtain feature points representing crop rows, which result 
in image information loss and increases  image processing time. Besides the three types 
of studies, Vidović et al. (2016) matched a crop row distribution template with row width 
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and inter-row spacing as the main parameters for every input image. A global optimization 
function was established to determine the coefficients of the two parameters. This method 
performed well both in the straight line and curve detection. But the algorithm contained a 
lot of user-defined hyper-parameters, and its time cost  needed to be further optimized for 
the actual field operation process. Ma et al. (2021) first determined the straight lines repre-
senting the crop rows approximately using the horizontal strip method and the prior knowl-
edge of crop row distribution patterns. Then the crop lines were refined through iteratively 
clustering. However, this method relied on strong prior knowledge, leading to declining 
applicability.

In addition to the shortcomings mentioned above, these crop row detection algorithms 
based on traditional image processing techniques have a common defect. That is, they only 
focus on extracting the crop row centerline while ignoring the crop region detection. The 
detected centerline is suitable for providing navigation information for agricultural vehi-
cles operating in crop rows with wider inter-row gaps because only the center tracking 
accuracy is required in such fields. However, the planting pattern of crop rows in hybrid 
rice seed production fields is quite different. The paternal and maternal hybrid rice rows 
in seed production fields are planted at intervals and close to each other to enable uniform 
and adequate pollination, so the inter-row gap for pollination vehicles to pass through is 
small. Crop region detection extends the work of centerline extraction to obtain complete 
crop rows with more helpful information like crop area and boundary so that the naviga-
tion accuracy would be complimented. The centerline of the crop row and the crop region 
need to be identified simultaneously during the pollination period to properly formulate 
the navigation strategy to guarantee that the pollination vehicle won’t drive over the crops 
while in use.

CNN is undergoing a period of rapid development. Scholars have attempted to apply 
CNN-based target detection and semantic segmentation models in the crop recognition 
process due to their solid ability of data expression. Ponnambalam et al. (2020) adopted the 
SegNet to segment strawberry field images into crop and not-crop regions, and the naviga-
tion path planning was completed according to the prediction masks of the crop regions. 
Kim et al. (2020) divided an orchard image into rectangular patches, then determined the 
type of each patch through a CNN-based classification model, and finally completed the 
navigation centerline fitting according to the location of the image patches belonging to the 
road part. CNN-based methods are capable of solving the crop region detection problem. 
However, as a strongly supervised learning algorithm, CNN models require substantial 
non-repetitive samples for training and a mobile device with powerful computing (Wang 
et  al., 2020). The time-consuming and laborious manual annotation work has become a 
bottleneck hindering the successful implementation of CNN-based methods. Meanwhile, 
when deploying CNN models on mobile computing terminals, crop region detection accu-
racy has to be compromised in order to ensure their real-time performance, which will 
cause sub-optimal navigation performance in hybrid rice fields at the pollination stage.

To address the shortcomings of previous research, this study proposed a real-time and 
accurate image processing-based crop row detection method to accomplish the region iden-
tification as well as centerline extraction in the seed production field of hybrid rice during 
the pollination period. By providing agricultural machinery with additional information on 
the location of crop region boundaries, their navigation accuracy is expected to be further 
improved. Taking full advantage of the perspective imaging characteristics, the method 
presented located the crop area according to the vanishing point and the arrangement pat-
tern of hybrid rice rows. A line-shaped mask scanning algorithm was constructed for com-
plete crop row detection according to the overall distribution of pixel values in the image. 
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The proposed method did not call for elaborate graphic preprocessing steps, so the image 
features could keep to a maximum extent, which reduced the time required and guaranteed 
the rice row detection accuracy.

Materials and methods

Image acquisition

The camera, mounted on a Mavic Air 2 drone produced by Da-Jiang Innovations (DJI), 
Shenzhen, China, was used for hybrid rice image acquisition. The focal length of the cam-
era lens was 24 mm and the aperture setting was f/2.8. When performing image acquisi-
tion, the drone flying height was kept 1 to 3 m above the crop, and the inclination angle 
between the camera and the horizontal line was maintained at 10°–45°. Sampling opera-
tion was performed in Gancheng Township, Dongfang City, Hainan Province, China, at 
18°51′49.7" N and 108°42′10.1" E, in April 2021. Images were taken and stored as 24-bit 
RGB color images in jpeg format with a resolution of 1920 × 1080. Before image process-
ing, the images were downsampled to 640 × 360 through bilinear interpolation to reduce 
the computational load.

Some images of hybrid rice taken under different light conditions during pollination 
are shown in Fig. 1. In Fig. 1(b), the part enclosed by the solid red frame is one paternal 
region and the dotted blue frame surrounds one maternal region. The paternal and maternal 

Fig. 1  Crop row images of hybrid rice at the pollination stage under different lighting conditions, a–c are 
images in low light condition, d–f are captured under moderate illumination, g–i are taken under high light
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regions are planted interlaced to facilitate pollen dispersal. The pollination period gener-
ally lasts 7 days. The pollination process is completed during rice flowering time, which 
is 1.5–2 h at noon each day. During the flowering period, the color of the paternal region 
turns from green to yellow due to pollen production, while the maternal region remains 
basically green. When the agricultural vehicle performs auxiliary pollination operations, 
the vehicle straddles the paternal row, and its wheels are located within the inter-row gaps 
between the paternal and maternal areas. With the pollination machine marching forward, 
the crop regions are continuously detected according to the currently captured image 
frame, and the navigation information is updated in real-time to adjust the vehicle’s motion 
state. The constructed image dataset of hybrid rice rows in seed production fields during 
the pollination stage has been made publicly available on this web page.1

Crop region detection strategy

A geometric model constructed to describe the hybrid rice region distribution is shown in 
Fig. 2. Since the mechanized planting mode makes the crop row a more regular arrange-
ment, the boundaries of the crop rows can be regarded as straight lines starting from the 
vanishing point within the working field of view (Pla et al., 1997). Each of the required 
crop regions is enclosed by image borders and two boundaries of crop row. The centerline 
is the angle bisector of the two region boundaries. The positioning line is the auxiliary line 
generated in the intermediate process to determine the approximate location of the paternal 
area. Once the boundary lines and the positioning lines are determined, the crop regions 
and centerlines can be obtained accordingly.

Fig. 2  The region distribution 
model of hybrid rice rows

1 https:// github. com/ ZeroH eading/ Image- datas et- of- hybrid- rice- crop- rows- during- polli nation- in- seed- 
produ ction- fields. git.

https://github.com/ZeroHeading/Image-dataset-of-hybrid-rice-crop-rows-during-pollination-in-seed-production-fields.git
https://github.com/ZeroHeading/Image-dataset-of-hybrid-rice-crop-rows-during-pollination-in-seed-production-fields.git
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The flowchart of the proposed method is demonstrated in Fig. 3. The strategy is to gray-
scale the image first and determine the vanishing point directly from the gray image using 
the line-scanning method. After that, the line scanning method was performed again to find 
the lines representing the crop line boundaries from the rays with the vanishing point as the 
endpoint. Meanwhile, the rays that represent the positioning lines are identified to distin-
guish the paternal regions from the maternal regions. The line-scanning method is in the 
form of a line-shaped mask scanning through the image towards a specific direction. Sev-
eral pixel value statistics of different image parts are recorded to generate a set of feature 
curves during the scanning process. The waveforms and inflection points of the curves cor-
responded strictly to the image content, so the position of the boundary lines and position-
ing lines can be inferred from their distribution. The vanishing point detection results may 
be inaccurate because the crop row distribution in the field does not perfectly follow the 
ideal model, so the identified crop boundaries are fine-tuned in the fourth step. Finally, the 
crop area is segmented based on the relationship between the detected boundary and posi-
tioning lines. Next, the role of each step and its implementation way is described in detail.

Grayscale transformation

Grayscale transformation was the only image preprocessing step required in this method. 
The primary purpose of grayscale transformation was to emphasize the pixels belonging 
to the paternal region and restrain the rest. Redundant information was removed to relieve 
the computational burden. The three-channel grayscale histogram of the color image in 
Fig. 4a is depicted in Fig. 4b. The overall color image is greenish, so the green channel 
dominates the high grayscale response. The red channel has the middle response level due 
to the yellow rice panicle in the paternal regions. Therefore, the excess red color index 
(ExR) (Meyer et  al., 2004), a grayscale method that emphasizes the content of the red 
channel, was selected in this study to accentuate the paternal areas. ExR was calculated 
by Eq. (1), where r and g represented the components of the red and green channels of the 

Fig. 3  Flowchart of the proposed method
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color image, respectively. The grayscale image was histogram equalized to promote the 
display effect. Equation (2) was used for equalizing the histogram of the gray image, where 
H and W were the height and width of the gray image, respectively, k was the number of 
gray levels in the image, and nj denoted the number of pixels belonging to the gray level. 
The result of the grayscale transformation is shown in Fig. 4d.

Vanishing point detection

The vanishing point is the intersection of the extension lines of the boundary lines of all 
crop rows in the image. The vanishing point detection was carried out on the gray image to 
set a reference for crop region inference. The vanishing point can be obtained by calculat-
ing the intersection of any two crop region boundary lines. The paternal region lying near 
the middle of the image was selected for the crop boundary calculation. Compared with 
other regions, the central paternal region was superior to symmetry, which facilitated its 
boundary calculation. The vanishing point detection was completed in two major steps. 
First, determine the positioning points on the left and right boundaries of the central pater-
nal region using the proposed line-scanning method. Second, fit the left and right points 
into two straight lines, respectively, to get the intersection point.

(1)ExR = 1.4r − g

(2)Ek =
(L−1)

HW

∑k

j=0
nj, k = 0, 1, 2,⋯ , L − 1

Fig. 4  Grayscale transformation
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Determination of the positioning points of the central crop region

(a) Sub‑images cutting Taking the crop row image in Fig. 5b as an example, the central 
crop area was determined by the positioning points located at the region boundary. As end-
points of the central crop area, P1 and P2 have fewer pixels on one side and denser pixels on 
the other. This pixel distribution pattern was used by the line-scanning method to determine 
the abscissa of the positioning points. Two positioning points on the left and right sides of 
the central region could be resolved in one image at a time, but a boundary line needed to be 
fitted with multiple positioning points, so the grayscale image was cut horizontally into mul-
tiple sub-images. The cutting process was done in two steps. The red dotted line in Fig. 5b 
outlined the three sub-images obtained by the first cutting procedure. In this cutting way, 
basically, all foreground pixels in the same column of the sub-images belonged to one pater-
nal row. The same pixel distribution pattern in all sub-images facilitated the line-scanning 
method to find the positioning points. The solid green line divided each sub-image equally 
into two parts to avoid the situation where no sub-image was produced in the first cutting 
procedure and increased the number of positioning points.

The first cutting procedure consisted of three steps. (1) Add the pixel values of each row 
horizontally in the selected columns to generate an accumulation curve. (2) Classify the 
accumulation curve into a binary curve with Tv, where Tv is the classification threshold of 
the curve height value. (3) Find those curve segments whose length was longer than Tl in 
the zero-value part of the binary curve, where Tl is the classification threshold for the curve 
length value. The curve segments found were marked with orange rectangle frames in 
Fig. 5a, and their transition points to the one-value part of the binary curve were recorded 
as the cutting points. The second cutting was to bisect the sub-images along the horizontal 
midline. Suppose both row boundaries were not visible on the image for all crop rows (e.g., 
the left or right boundary was not visible on the image for the left or right edge rows), then 
no sub-images would be generated according to the above two-step cutting method. In this 
case, the grayscale image would be horizontally cut into five equal parts to ensure sufficient 
positioning points for boundary line fitting. After the image cutting, the bottom endpoints 
of the truncated central paternal region in each sub-image were to be located and used as 
positioning points.

Fig. 5  Image cutting: a normalized pixel value accumulation curves, b sub-images
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(b) Positioning point identification The crop area in the center of the sub-image has 
the densest distribution of pixels, and the number of pixels on the left and right sides in 
the horizontal direction at the bottom endpoint of the area changes drastically. The line-
scanning method was used to quantify the above pixel distribution to obtain the exact 
location of the positioning points. Take the bottom sub-image as an example to illustrate 
the specific implementation steps. The process diagram is illustrated in Fig. 6a. In this 
part, the scanning line used was a vertical line-shaped mask with a width of one pixel 
and a length equal to the height of the current sub-image. The sub-image was scanned 
horizontally from left to right. At each scanning position, the specific gravity of the pixel 
values in the scanning, scanned and unscanned areas were calculated by Eq.  (3) and 
denoted as W1, W2 and W3, respectively.

Fig. 6  The determination process of the positioning points in the sub-image: a the bottom sub-image, b the 
curve of the normalized sum of pixel values in the current scanning area, c the curve of the normalized sum 
of pixel values in the scanned area, d the curve of the normalized sum of pixel values in the unscanned area
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where i = 1, 2, 3. cols and rows were the width and height of the corresponding area and 
vm,n was the pixel value at the image position (m, n).

Three curves were generated according to the recorded W1, W2 and W3. The waveform 
of each curve and the position of the inflection point on it could reflect the specific law 
of pixel distribution in the sub-image. The Savitzky-Golay filter (Luo et  al., 2005) was 
applied to smooth the curves so that the interference of the noise pixels that remained in the 
grayscale transformation process could be eliminated while retaining the curve’s primary 
inflection points. The smoothed curves S1, S2 and S3 are shown in Fig. 6b-d. The promi-
nent local peak points of S1, which should appear within the paternal region, were used to 
determine the approximate location of the paternal regions. The appearance of local valley 
points on S2 and S3 indicated that the scanning mask was entering or leaving a region with 
a high density of pixels, so the endpoints of the central crop region were determined by the 
abscissa of the local valley points on S2 and S3. When identifying the local peak points on 
S1 and the local valley points on S2 and S3, the curve was taken as a one-dimensional array 
and all local extreme points were found by comparison of neighboring values.

Multiple local extreme points existed on a curve, some of them were desired feature 
points, and the rest were noise points. The contour height of the curve at the local extreme 
points was calculated to distinguish the two. The contour height of a curve peak measures 
how much a peak stands out from the surrounding baseline of the curve and is defined as 
the vertical distance between the peak and its lowest contour line. The strategy to compute 
a peak’s contour height was as follows: (1) Extend a horizontal line from the current peak 
to the left and right until the line either reaches the window border or intersects the sig-
nal again at the slope of a higher peak. An intersection with a peak of the same height is 
ignored. (2) On each side, find the minimal curve value within the interval defined above. 
These points are the peak’s bases. (3) The higher one of the two bases marks the peak’s 
lowest contour line. The contour height can then be calculated as the vertical difference 
between the peak height itself and its lowest contour line.

The co-ordinates of the positioning points were determined by follow-up steps. (1) Cal-
culate the contour height of S1 at all local peak points and record the peak point with maxi-
mum contour height as the feature point F1. The image column at F1 has the greatest pixel 
density, which should lie within the central paternal area. (2) Record the first local valley 
point to the left of F1 on S2 and the first local valley point to the right of F1 on S3 as the 
positioning point F2 and F3. F2 and F3 were the local valley points with the largest contour 
height on S2 and S3, and they were adjacent to the central paternal region, indicating that 
they were the endpoints of the central crop region. The positioning points on the other sub-
images could also be obtained in the same way.

Vanishing point co‑ordinates calculation

The detected positioning points were divided into two categories representing the left and 
right boundaries of the central paternal region, respectively. The random sample consensus 
(RANSAC) (Fischler and Bolles, 1981) method was used to perform robust linear regres-
sion for each category. The intersection colored in orange in Fig. 7a of the two fitting lines 
is the vanishing point of the crop rows.

(3)Wi =
cols,rows
∑

m=0.n=0

vm,n∕(cols ∗ rows)
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Crop region identification

The paternal regions could be determined by their left and right boundaries and dis-
tinguished by the positioning lines. Boundary and positioning lines were feature lines 
that were hidden in rays ending at the vanishing point. An infinite number of rays can 
be emitted from the vanishing point, and the line-scanning method was used to narrow 
the range from all rays to the candidate boundary lines and the candidate positioning 
lines. Afterwards, the candidate feature lines were divided into two categories, with 
the noise lines removed and the real feature lines retained. The candidate feature lines 
and the real feature lines are drawn in Fig. 7c and d.

Fig. 7  a Schematic diagram of the vanishing point detection process, b Schematic diagram of the rotary 
scan process, c Candidate feature lines, d Real feature lines



932 Precision Agriculture (2023) 24:921–947

1 3

Candidate feature lines determination

The specific implementation of the second line-scanning process was as follows. A 
rotary scan was performed on the grayscale image to obtain the candidate feature lines, 
as shown in Fig. 7b. The scan line used here was a line-shaped mask of one-pixel width. 
One endpoint of the line was the vanishing point, and the other was a dynamic point, 
moving on the image borders. The starting point, ending point and moving trajectory 
of the dynamic point are given in Fig. 7b. The moving step was set to one pixel, so the 
co-ordinates of the dynamic point were obtained by sequentially taking points from the 
left, bottom and right borders of the image. At each scanning position, the sum of pixel 
values in the current scanning area was calculated by Eq. (4) and recorded as Vline.

where l was the number of pixels in the scanning area and vt was the value for each pixel.
As shown in Fig. 8, Cr1 was generated according to the recorded Vline, and Cr2 was 

the gradient curve produced with one derivation of Vline. Cr1 and Cr2 were also smoothed 
headmost by the Savitzky-Golay filter to reduce noise interference. Cr1 represented the 
pixel distribution in the scanning area. The local peak points of Cr1 appeared when the 
scanning mask passed through the paternal regions so that the candidate positioning 
lines could be determined by the abscissa of local peak points on Cr1. Cr2 corresponded 
to the pixel value changing rate along the scan direction. Therefore, the abscissa of local 
extreme points on Cr2 could be used to identify the candidate boundary lines contain-
ing the region boundaries. However, there were some noise points in the local extreme 
points of Cr1 and Cr2 that must be eliminated since they were produced when the mask 

(4)Vline =
l
∑

t=1

vt

Fig. 8  Feature curves generated in the rotary scan process: a normalized distribution curve of Vline, b nor-
malized gradient curve of Vline
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was scanned across the remaining pixel blocks in the maternal area and the holes in the 
paternal area.

Real feature lines confirmation

Although both noise points and real feature points appeared as local extreme points on Cr1 
and Cr2, the noise points were produced by small pixel blocks, so they could only cause 
slight curve fluctuations. On Cr1 and Cr2, the contour heights of the noise points, as seen in 
Fig. 9, are roughly equal to and substantially lower than those of the actual feature points. 
Accordingly, the real feature lines could be picked out from candidate feature lines. The 
following are the precise steps for implementation.

The contour height was denoted as Hcnt. The relative distance of Hcnt between two adja-
cent points, denoted as dh, was used to classify the point set. dh was calculated by Eq. (5). 
Arrange Hcnt in ascending order first, calculate dh between two adjacent points in turn, and 
the point with the largest dh was the demarcation point.

where j = 0, 1, …, number of points. The real feature points are marked with stars in Fig. 8 
and the real feature lines are shown in Fig. 7d.

Boundary position fine‑tuning

As shown in Fig. 7d, the identified boundaries of crop regions are sometimes inaccurate 
when the vanishing point detection is biased or when the planting of the crop rows does 
not quite fit the ideal distribution model. When the two boundary lines of a crop area are 
accurately detected, they should locate at the junction of the paternal and maternal areas, 
and the number of pixels distributed around them should be roughly equal. Based on this, 
an algorithm for fine-tuning the boundary position was proposed. As depicted in Fig. 10, 
the number of foreground pixels in the two circles belonging to one circle pair would be 

(5)dh = (Hcntj+1 − Hcntj)∕Hcntj+1

Fig. 9  Classification results of the a real positioning points, b real boundary points. Note: The points in a 
and b are the candidate positioning points and the candidate boundary points arranged in ascending order of 
contour height, respectively
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approximately the same when one circle pair is located at the correct boundary position. 
Otherwise, the center position of one circle pair should be adjusted horizontally.

When the difference between the number of pixels contained in the two boundary 
circles at the same horizontal position was bigger than the preset proportional thresh-
old T1, the position of the circle pair was considered to be inaccurate. In order to make 
the algorithm maintain a certain tolerance for noise interference, the boundary line 

Fig. 10  Boundary position fine-tuning: a the initial boundary detection result of the crop region surrounded 
by the dotted red frame in Fig.  7(d), b fine-tuned result of the single region, c fine-tuned results of the 
image. Note: raw_circle_l and raw_circle_r were the circles generated along the initially identified left and 
right crop region boundary, respectively. adjusted_circle_l and adjusted_circle_r were the corresponding 
fine-tuned circles. The radius of the blue circles was set to 10 pixels, the vertical distance between the cent-
ers of two adjacent circles on the same side was set to 20 pixels. The positive horizontal direction of the 
image is specified as right
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fine-tuning algorithm was only implemented when the proportion of circle pairs in the 
correct position was less than the preset tolerance threshold T2. During the fine-tuning 
process, the circle pair was moved left or right horizontally by a fixed step Se each time, 
and the moving direction was always toward the side of the circle that contained more 
pixels. The fine-tuning process was looped until the proportion of circle pairs with accu-
rate center positions of all circles exceeded T2, and the algorithm would be terminated.

The pseudo-code for fine-tuning the two boundaries of each region is given in Algo-
rithm  1. The fine-tuned boundaries were fitted by the least-square method. In Algo-
rithm 1, Cpair was the abscissa of the center of the circle pair. k was the number of the 
circle pairs. circle_area was the area for a single circle. T1, T2, Se were set to 0.15, 0.8, 
3, respectively. Abs() was a function to find the absolute value.
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Crop region segmentation

The crop regions were segmented according to the relative position of the fine-tuned 
boundary lines and positioning lines. When there was a positioning line between the two 
boundary lines, it would be considered an individual paternal region. Then the centerline 
of each crop row was extracted as the angular bisector of the detected region’s left and 
right boundaries.

Evaluation metrics

Ground truth image creation

The results obtained by the proposed methods were evaluated for their similarity to ground 
truth data. As shown in Fig. 11, two types of ground truth images are manually created by 
experts. The ground truth of the paternal region was generated by enclosing the region cor-
ners. The ground truth of the paternal centerline was created by defining both the midpoint 
of the upper and lower border of the crop row.

Evaluation index of crop region detection

Intersection over union (IoU) was adopted in the evaluation process of region detection. 
IoU was used as a measurement index to describe the degree of coincidence between the 
detection results and the ground truth. The detection frame of the paternal region was 
regarded as a prediction frame and labeled as positive data. In contrast, the maternal region 
was viewed as the background and labeled as negative data. It was considered a valid 
detection when the IoU between the data frame and the corresponding ground truth frame 
was more significant than 0.8. Otherwise, it would be treated as an invalid match. Taking 
into account the statistics of true positives (TP), false negatives (PN), true negatives (TN), 
and false positives (FP), multiple metrics like accuracy, recall, precision, and f1-score as 
written in Eqs. (6–9) were used to measure the performance of paternal region identifica-
tion (Chen et al., 2021b).

(6)accuracy =
TP+TN

TP+TN+FP+FN

Fig. 11  Ground truth image of a crop regions, b centerlines
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where TP represented the positive data that was correctly identified; TN was the negative 
data that was correctly identified; FP was the negative data that was incorrectly identified 
as positive; FN was the positive data that was incorrectly identified as negative.

Evaluation index of crop row extraction

A method was constructed to calculate the centerline extraction accuracy. Its schematic dia-
gram of the mechanism is given in Fig. 12. L1 was the manually labeled ground truth line 
representing the centerline of the crop row, and L2 was the detected centerline. n point pairs 
were picked at identical horizontal positions on the two straight lines. The lateral distance dn 
between p1n and p2n was calculated, and the average lateral distance (ALD) of dn was used as 
the evaluation criterion.

Results and discussion

Experimental evaluations were carried out from three aspects to assess the proposed method 
comprehensively. They were crop region detection performance, crop centerline extraction 
accuracy and execution time cost of image processing.

(7)recall =
TP

TP+FN

(8)precision =
TP

TP+FP

(9)f1 − Score =
2TP

2TP+FN+FP

Fig. 12  Schematic diagram 
of accuracy evaluation of the 
extracted centerline



938 Precision Agriculture (2023) 24:921–947

1 3

Evaluation of the performance on crop region detection

Overall performance of crop region detection

The paternal region detection results obtained with the proposed method are shown in 
Fig. 13. The approach performed excellently in detecting paternal regions in hybrid rice 
seed production fields. The detected region boundaries were accurate, regular and com-
plete in shape, which confirmed the applicability of the method presented.

Given the similarity between the approach presented and the CNN-based target 
detection algorithms in terms of region detection effect, the confusion matrix analy-
sis was first introduced to gain a comprehensive understanding of the region detection 
capabilities of the proposed method. The established confusion matrix is depicted in 
Fig.  14. It can be seen intuitively from the confusion matrix that the correct detected 
crop areas accounted for a considerable proportion, and a few wrongly detected areas 
were concentrated in the paternal area. This was because the paternal regions located in 
the upper corners of the image were challenging to detect, while the maternal regions 
were treated as background, thus avoiding such problems.

Table  1 demonstrates the paternal region detection results accessed through Eqs. 
(6–9). The accuracy achieved a value of 90.48%, which showed that the proposed 
method possessed considerable crop region detection performance. The recall was at a 
relatively low percentage of 86.36%, indicating that the proposed method had omissions 
in identifying positive data. The mis-detected paternal regions were basically those 
near the upper left or right corners of the image, as shown in Fig. 13. The boundaries 
of the missed paternal regions were relatively blurred and short in length due to the 

Fig. 13  Crop row detection results obtained by the proposed method. a–i are test images taken under differ-
ent lighting conditions. Note: The score of the detection result of the proposed method in terms of IoU and 
ALD is given in numbers
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perspective imaging property, which led to failing recognition. Additionally, the incom-
plete triangular crop regions that appeared in the upper corners of the image were also 
mis-detected. The precision represented the proportion of the actual paternal region 
in all positive instances, reaching a value of 98.96%, demonstrating that the detection 
results of the paternal region are highly credible. It can be seen from Table 1 that the 
proposed method obtained a low recall but a high precision, so the f1-score was intro-
duced to measure the values of the two comprehensively. The f1-score was found to be 
92.23%, which confirmed the approach as a reliable method in crop region detection.

Comparison with state‑of‑the‑art methods

A comparative study was conducted on the proposed method and several state-of-the-
art semantic segmentation methods, including UNet (Ronneberger et  al., 2015), SegNet 
(Badrinarayanan et al., 2017), PSPNet (Zhao et al., 2017) and DeepLab V3 + (Chen et al., 
2018). MobileNet (Howard et  al., 2017) was adopted as the backbone of feature extrac-
tion for these semantic segmentation models. One thousand three hundred manually anno-
tated images of hybrid rice crop rows at the pollination stage were randomly divided into 
training, validation and test sets in a ratio of 7:2:1 for network training. All networks were 
trained for 100 epochs, and the model weights were used to infer on images in the test set. 
The IoU achieved by each model is listed in Table 2, and their visual segmentation results 
are depicted in Fig. 15.

First, it can be seen that the semantic segmentation models were only able to distin-
guish between paternal and maternal regions, while the proposed method further com-
pleted the identification of paternal areas for a single instance. In terms of segmenting 
hybrid rice rows, PSPNet performed the worst. It occasionally made general predictions 
about different paternal region locations while missing most of the intended ones. The 
paternal regions detected by DeepLab V3 + were smaller than the ground truth labels, 
and there were some excessively protruding or depressed small areas at the region 

Fig. 14  Confusion matrix of 
region detection results obtained 
by the proposed method

Table 1  Detailed analysis results 
of the confusion matrix of the 
proposed method

Accuracy Recall Precision f1-Score

90.48% 86.36% 98.96% 92.23%
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boundaries. The overall detection of DeepLab V3 + was less effective. The region seg-
mentation performance achieved by UNet and SegNet was approximately the same. The 
paternal regions they segmented were relatively complete, but the region boundaries 
remained concave and uneven. Compared to the bottom of the image, the detection abil-
ity of both models degraded at the top. The prediction masks of both models were often 
discontinuous at the top of the image, which could be caused by the narrow crop region 
at the top and the consequent blurring of the region boundaries.

Table 2  IoU obtained by CNN-based region segmentation models and the proposed method in hybrid rice 
row images

PSPNet DeepLab V3 + UNet SegNet Proposed

IoU 72.4 78.6 82.3 82.5 83.2

Fig. 15  Comparison of regional detection performance of hybrid rice crops between CNN-based semantic 
segmentation models and the proposed method. a1–a4 are test images
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Compared with other crop region segmentation methods, the paternal area obtained by 
the proposed method was complete, with a more regular shape and precise boundaries. 
The proposed method was specifically designed for the geometry of hybrid rice rows in the 
image, taking fully into account the perspective imaging characteristics and the crop row 
arrangement pattern. The method presented utilized the gradient law between the inclina-
tion angles of the crop rows as a constraint to guarantee basically correct paternal region 
detection results. Afterwards, a fine-tuning step was used to modify the initial detection 
area to ensure the reliability of the final segmentation result.

Failure detection cases and cause analysis

Several major failure cases that occurred during region detection of hybrid rice crops are 
illustrated in Fig. 16. The failure scenario analysis aids in the further optimization of the 
suggested method.

In Fig. 16a, the proposed method made an error in detecting the central crop area, and 
the location of the vanishing point was thus shifted significantly, leading to the failure of 
subsequent crop area scanning and crop boundary fine-tuning. Since the planting of crop 
rows did not perfectly fit the geometric model in Fig. 2, the location of the vanishing point 
was not strictly fixed. Usually, when the position of the detected vanishing point varied 
within a reasonable interval, the crop area could eventually be correctly located, thanks to 
the boundary fine-tuning algorithm. However, in Fig. 16a, due to the combined effect of 
light conditions and shooting angle, the color of the central paternal area was consistent 
with the surrounding maternal regions. Blurred region boundaries resulted in false vanish-
ing point detection. Such errors are expected to be avoided by seeking a more stable way of 
image preprocessing.

In Fig. 16b, the proposed method incorrectly detected the central parent region as two. 
Since the area of hole-type noise in the paternal region was more significant than the resid-
ual pixel noise in the maternal region, when the scanning mask passed through relatively 
independent large holes of the paternal region, the scanning curve reflected more promi-
nent local extreme points, which led to false detection. False detections like this occur very 
occasionally, and attempts can be made to improve the problem by correlating the detec-
tion results of the before and after frames.

In Fig. 16c, the ridge was identified by mistake as the paternal region. Since the pro-
posed algorithm was designed to maximize the original image details and reduce the image 

Fig. 16  Typical failure detection cases of the proposed method. a1–a3 are test images of hybrid rice rows
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processing time, it was assumed that there are only two kinds of object in the image, the 
paternal regions and the maternal regions. In the future, it is expected to complete the fill-
ing of the ridge area in advance by using the double threshold method to eliminate its influ-
ence on the detection of hybrid crop areas.

Evaluation of the performance on crop row extraction

The centerline extraction performance of the approach presented was compared with the 
Hough Transform-based method (Zhang et al., 2017), one representative crop row detec-
tion method based on traditional image processing techniques. Among CNN-type methods, 
the SegNet with the best crop region segmentation performance was selected for compari-
son with the proposed approach. When applying the HT-based crop row extraction method, 
the specific steps of image processing were modified according to the characteristics of 
hybrid rice at the pollination stage. The implementation process of these two crop row 
detection methods is illustrated in Fig. 17. Before HT was applied, the crop row image was 
sequentially subjected to ExR grayscale, Otsu binarization, connected domain denoising, 
SUSAN corner extraction and DBSCAN crop row clustering. The detected crop rows were 
limited to the three most salient adjacent rows in the image to ensure HT working perfor-
mance. When adopting the SegNet for crop centerline extraction, the paternal region masks 
were predicted first using the trained model. After that, small areas were removed using 
connected domain denoising, too. Then the least-square method was carried out to fit each 
single mask area to a straight line representing the centerlines.

Fig. 17  Crop row detection algorithm implementation steps: a HT-based method, b SegNet-based method
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The comparison results of crop centerline extraction obtained by the three methods are 
shown in Fig.  18. When applying the HT-based method to the hybrid rice images, mis-
detection occurs in Fig. 18a1, and the detection errors near the left and right edges of the 
image are more significant than those in the central crop region as seen in Fig. 18a3. Pixels 
belonging to the paternal crop panicles are scattered in the image, and numerous gaps exist 
in the boundaries of the crop region. The unique morphological characteristics of hybrid 
rice plants seriously affected the accuracy of the HT-based method, resulting in low center-
line extraction accuracy.

Affected by the uneven boundary and the region detection accuracy dropping at the top 
of the image, the results of crop row centerline extraction based on the SegNet were not 
satisfactory. Semantic segmentation models did not take advantage of the planting pattern 
of hybrid rice crops or perspective imaging property to compensate for detection errors, 
resulting in sub-optimal centerline detection performance. Aside from the tedious manual 
labeling process required for training the semantic segmentation models, the slow image 
inference speed remains a bottleneck that limits their practical application in the navigation 
tasks for hybrid rice pollination fields.

Compared with the HT-based and the SegNet-based methods, the presented method 
solved the centerline extraction of hybrid rice crops more accurately. Average values, 
median values and standard deviations of the average lateral distances of all identified cen-
terlines are presented in Table 3. The numerical statistical results were consistent with the 
visualization results. The proposed method achieved the best average and median lateral 
deviations, indicating its superiority over the other two approaches. The standard deviation 
of the lateral distance of the proposed method was the smallest, which illustrated its stabil-
ity in performing centerline extraction of hybrid rice crops.

A normalized cumulative histogram of the average lateral distances of all identified cen-
terlines is drawn in Fig. 19. A normalized cumulative histogram is a data representation 
where the horizontal axis corresponds to values of a measured variable x, and the vertical 

Fig. 18  Comparison of centerline extraction results of hybrid rice crops between the HT-based, SegNet-
based and the proposed methods. a1–a3 images in the test set. Note: Red lines are ground truth lines anno-
tated manually and the detected crop rows are in blue (Color figure online)
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axis represents the percentage of measurements that are ≥ x (Vidović et al., 2016). It can 
be intuitively seen that the presented method outperformed the other two. Experiments 
revealed that crop rows could be considered to be accurately detected when the ALD was 
less than or equal to 5 pixels on an image with 640 × 360 resolution. The proposed method 
achieved an ALD of fewer than 5 pixels on 91.60% of the detected centerline pairs. In 
contrast, the corresponding percentages for the SegNet-based and HT-based methods were 
73.38% and 54.54%, respectively. It should be pointed out that the SegNet-based method 
and the proposed method obtain almost the same IoU, where the former was 0.825 and the 
latter was 0.832. But the proposed approach was designed for the specific task of crop row 
detection, which led to better applicability.

Evaluation of the performance on execution times

Image processing work was executed on a personal computer with an Intel Core i7-8750H 
2.20 GHz processor, 16.0 GB of installed random access memory (RAM) memory, run-
ning the Windows 10 64-bit operating system. The average execution times on images with 
a resolution of 640*360 for the five main image processing modules and total time in mil-
liseconds were 0.9, 15.3, 20.7, 4.5, 0.8 and 42.2, respectively. Grayscale transformation, 
boundary position fine-tuning and crop region segmentation were not computationally 
intensive, while vanishing point detection and crop region identification took a relatively 
long time due to the utilization of the line-scanning method. As shown in Table 4, the exe-
cution time of the proposed method was slightly longer than that of the HT-based crop row 

Table 3  Statistical results of 
the lateral distance deviation 
in pixels obtained by the three 
approaches

HT-based SegNet-based Proposed

Average 5.704 3.555 1.943
Median 3.983 2.097 1.003
Std deviation 4.813 3.648 3.099

Fig. 19  Normalized cumulative histogram of average lateral distance obtained by the HT-based, SegNet-
based and the proposed methods
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detection method but much less than that of the SegNet-based approach, although the light-
weight feature extraction network MobileNet had been used when SegNet was deployed. 
The time consumption of the line-scanning operation is expected to be further reduced on 
parallel architectures such as a graphics processing unit(GPU), which is a noteworthy point 
for future research.

Restricted by the planting pattern of hybrid rice rows in the seed production field and 
the scattered growth characteristics of rice panicles during the pollination period, methods 
based on traditional image processing techniques that could only accomplish crop row cen-
terline extraction and were easily affected by crop growth morphology were not applicable. 
In terms of accuracy, ease of use and real-time performance, the proposed method was 
superior to CNN-based methods, making it a better choice for hybrid rice row detection in 
seed production fields during the pollination period.

Conclusions

This paper proposed a novel  approach for real-time hybrid rice row detection at the pol-
lination stage. The method extended crop row detection from centerline extraction to 
region identification. A line-shaped mask scanning method was constructed to determine 
the crop regions based on perspective imaging property. Its hybrid rice region detection 
performance was superior to CNN-based semantic segmentation methods with an IoU of 
0.832, an accuracy of 90.48%, a recall of 86.36%, a precision of 98.96% and an f1-Score 
of 92.23%. Its centerline extraction ability outperformed the Hough Transform-based and 
SegNet-based methods in lateral distance deviation between the ground truth line and the 
detected line. Future work may include the promotion of its crop region detection ability in 
the upper corners of images, enhancing the stability of image preprocessing, and expand-
ing the image datasets.
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