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Abstract
Continuous canopy status monitoring is an essential factor to support and precisely apply 
orchard management actions such as pruning, pesticide and foliar treatment applications, 
or fertirrigation, among others. For that, this work proposes the use of multispectral veg-
etation indices to estimate geometric and structural orchard parameters from remote sens-
ing images (high temporal and spatial resolution) as an alternative to more time-consuming 
processing techniques, such as LiDAR surveys or UAV photogrammetry. A super-inten-
sive almond (Prunus dulcis) orchard was scanned using a mobile terrestrial laser (LiDAR) 
in two different vegetative stages (after spring pruning and before harvesting). From the 
LiDAR point cloud, canopy orchard parameters, including maximum height and width, 
cross-sectional area and porosity, were summarized every 0.5 m along the rows and inter-
polated using block kriging to the pixel centroids of PlanetScope (3 × 3 m) and Sentinel-2 
(10 × 10 m) image grids. To study the association between the LiDAR-derived parameters 
and 4 different vegetation indices. A canonical correlation analysis was carried out, show-
ing the normalized difference vegetation index (NDVI) and the green normalized dif-
ference vegetation index (GNDVI) to have the best correlations. A cluster analysis was 
also performed. Results can be considered optimistic both for PlanetScope and Sentinel-2 
images to delimit within-field management zones, being supported by significant differ-
ences in LiDAR-derived canopy parameters.
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Introduction

During the last decade, the cultivation of almond trees (Prunus dulcis) has experienced a 
major boom worldwide, particularly in Europe where it has been pushed by both higher 
demand and price (Lorite et al., 2020; Torres-Sánchez et al., 2018). Spain is the main pro-
ducer of almonds in Europe and the third largest in the world after the United States and 
Australia, with a 31.1% increase in cultivated area between 2010 and 2020 (from 547 822 
to 718 540 ha). Much of this increase was due to new intensive or super-intensive orchards 
under irrigation (in Spain from 40  855  ha in 2010 to 118  202  ha in 2020), which rep-
resented a 290% increase in such types of orchard (source: Spanish Ministry of Agricul-
ture, Fisheries and Food). Such numbers show how almond has evolved from being an 
almost marginal crop to become a focal point of attention amongst woody crops. In this 
regard, an important aspect to highlight is the advances made in training and pruning sys-
tems that have allowed a process of continuous intensification and greater mechanization 
of tasks such as pruning and harvesting (Iglesias, 2020). In addition, the almond has been 
recognized as a fruit species with the application of increasingly specialized production 
technologies. Nevertheless, although mechanization for intensive crop management has 
increased (Bechar & Vigneault, 2016) most modern orchards are still uniformly managed 
and generally no consideration is given to possible intra-field spatial variability. Under-
standing this variability is key to achieving greater efficiency and sustainability in food 
production and forms part of the roadmap of the Common Agricultural Policy of the Euro-
pean Union within the ’Green Deal’ and ’From Farm to Fork’ strategies (European Com-
mission, 2019).

The measurement of geometrical and structural tree parameters is an essential but 
labour-intensive activity in fruticulture. Canopy size, tree height, porosity and crop vigour 
are key factors to take into account for orchard management tasks such as training or prun-
ing, which are major contributors to crop production costs (Díaz-Varela et al., 2015). To 
achieve a more sustainable and precise management of orchards, different precision agri-
culture technologies have started to be developed at research level in the last decade (Arnó 
et al., 2013; Colaço et al., 2018; Escolà et al., 2017). These include LiDAR (Light Detec-
tion And Ranging), a technology that is acquiring growing importance because it allows 
very precise geometric and structural parameters to be obtained, including height, width, 
volume, leaf density and porosity (Escolà et al., 2017). One example of its application can 
be found in the works of Gené-Mola et al., (2019, 2020) who used a mobile terrestrial laser 
scanner (MTLS) to detect fruits in an apple orchard. They achieved success rates higher 
than 80% due to the higher infrared light reflectance of apples in relation to leaves and 
trunks. Other works have addressed the characterization of tree volume and canopy density 
for precision spraying (Gu et al., 2021; Mahmud et al., 2021). LiDAR point clouds have 
also been applied to the precise mapping of tree branch structures and their automatic clas-
sification to support precision pruning (Zhang et  al., 2020). In this line, a procedure for 
automated tree pruning using LiDAR scans was also proposed by Westling et al. (2021). 
However, LiDAR point clouds still constitute voluminous data sets, which are difficult to 
convert into useful information to support management decisions (Gregorio & Llorens, 
2021). This constitutes a particular bottle neck for the application of this technology in 
orchard management, where monitorization of canopy geometry and structure at different 
times along the annual crop cycle is necessary for precise management.

Another alternative to map orchard geometric parameters is the use of structure-from-
motion photogrammetry from unmanned aerial vehicles (UAVs). This provides a large 
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capacity to monitor the development and dynamics of tree growth and structure over time 
(Johansen et al., 2018). Zhang et al. (2019) reviewed the use of UAVs in orchard manage-
ment, describing sensing devices, platforms and data processing approaches for the meas-
urement of biophysical and geometric parameters, the detection of diseases and health sta-
tus, or yield estimation, among others. Their main conclusion was that, although UAVs 
have numerous potential uses in orchard management, they are still largely underutilized 
for several reasons. For example, the vast amounts of data require significant processing 
and specialized operators are needed to derive, clean and obtain useful information from 
the point clouds. It should also be noted that UAV operating restrictions may be applicable 
and licensed pilots required in some countries and/or production regions. In addition, there 
are commonly differences in the quality of the UAV images associated with the speed, 
height or direction of the flight, and there may be additional problems related to the pres-
ence of shadows depending on the azimuth and inclination of the sun at the time of acqui-
sition (Tu et al., 2020). This has implications in terms of the alteration of the radiometric 
values of the sensed covers. Therefore, UAV imagery still presents low field efficiency for 
large farm operations (Sozzi et al., 2021). However, although the use of UAVs in the moni-
toring of commercial orchards has not been extensive, some important research studies in 
this regard have been conducted. These include the quantification of pruning impacts on 
olive tree architecture and annual canopy growth using UAV-based 3D modelling (Jimé-
nez-Brenes et al., 2017), the mapping of the 3D structure of olive trees using point clouds 
and object-based image analysis (Torres-Sánchez et al., 2018), and a study of the pheno-
typic variability of different almond varieties by mapping tree height, volume, flowering 
dynamics and flower density from photogrammetric 3D point clouds and object-oriented 
based images analysis (OBIA) (López-Granados et al., 2019).

A third alternative for data acquisition and orchard monitoring is satellite imagery, 
which offers an increasingly high temporal and spatial resolution. More specifically, the 
Sentinel-2 mission (Copernicus Program, European Union) provides a spatial resolution 
of 10 m and a time revisit of 5 days considering the two satellites of the mission (Sentinel-
2A and Sentinel-2B) (European Space Agency (ESA), 2015). Other missions or satellite 
constellations include PlanetScope (Planet Labs Inc.), which offers daily images with very 
high resolutions of up to 3 m (Planet Labs Inc, 2021). However, when considering crops 
with discontinuous patterns of vegetation, such as hedgerow orchards, the inter-row pres-
ence of weed vegetation and/or bare soil can affect the pixel values when computing spec-
tral indices. To solve this drawback, some works have focused on extracting pure canopy 
pixels from UAV images using crop-specific masks (Khaliq et al., 2019; Pastonchi et al., 
2020). However, although the best correlations with satellite vegetation indices (VIs) were 
obtained for NDVI (normalized difference vegetation index) maps computed with mixed 
UAV pixels, as reported by Pastonchi et al. (2020), neither satellite nor UAV images were 
able to correctly detect the spatial variability of vigour within the vineyard.

Despite the above-mentioned drawbacks, the use of satellites to monitor crops and sup-
port management actions is increasingly attracting the attention of scientists, commercial 
service companies and farmers. From the scientific point of view, one of the latest devel-
opments can be found in the work of Abdelmoula et al. (2021) who established a method 
to assess the spatio-temporal dynamics of biophysical parameters in olive orchards using 
Sentinel-2 images fused with PlanetScope and radiative transfer models. This allowed 
parameters such as leaf area index (LAI), chlorophyll and water content, and mesophyll 
structure to be retrieved. Barajas et al. (2020) evaluated the organoleptic characteristics and 
the agronomic, phenological and nutritional quality of pistachios (Pistacia vera L.) based 
on the NDVI, calculated in the nut-filling phenological stage from Sentinel-2 images. No 
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significant differences were observed between vigour levels, although the most vigorous 
trees had nuts with a higher percentage of fibre and protein. In a study on almonds, Chen 
et al. (2019) developed an enhanced bloom index to quantify flowering status in orchards 
of the Central Valley of California from series of PlanetScope and Sentinel-2 imagery. 
There has also been growing interest in recent years in mobile and web applications that 
offer vegetation vigour monitoring based on Sentinel-2 and/or PlanetScope images. Such 
applications, examples of which include Auravant (Buenos Aires, Argentina), E-STRA-
TOS (Barcelona, Spain), and SatAgro (SatAgro Sp., Warsaw, Poland), usually integrate 
different data sources to provide a detailed description of crop status which allows the user 
to make appropriate management decisions. In some cases, the application is customized 
according to the needs of the individual client, making interpretation of the information 
easier as a support for the decision-making process.

Nonetheless, despite the advantages offered by satellite imagery and the increasing 
existence of services based on continuous monitoring capabilities, there remains a gap that 
needs to be bridged in terms of the estimation of geometrical and structural vegetation 
parameters of orchards on the basis of the applications and services available to farmers. 
More specifically, in-depth knowledge is required about the relationships between geomet-
ric and structural parameters of the fruit tree architecture and canopy density, which are 
used in the orchard management decision-making process, and the vegetation indices that 
can be derived from satellite images.

In this line, the present work aimed to study the relationships between ground-derived 
geometric and structural parameters of super-intensive almond orchards and vegetation 
indices derived from satellite images. The goal was to use the information obtained to sup-
port management actions, such as differential pruning and the application of plant protec-
tion products, and to facilitate the delimitation of within-field management zones on the 
basis of VIs, potentially reducing the dependence on more time-consuming processing 
techniques such as 3D LiDAR scans or UAV photogrammetry. Moreover, the results could 
serve as a basis for the use of this type of relationship in commercial applications based on 
the monitoring of fruit orchards from detailed satellite images.

Accordingly, the objectives of the present work were: (a) to explore the spatial rela-
tionships between LiDAR-derived canopy parameters and vegetation indices derived from 
multispectral satellite images in a super-intensive almond orchard; (b) to define potential 
management zones at different times of the crop cycle along with a campaign based on 
satellite images that reliably reproduce the within-field variability in canopy characteris-
tics; and (c) to compare the cluster maps based on vegetation indices with the cluster maps 
derived from the interpolation of geometric and structural canopy parameters in order to 
evaluate their consistency.

Materials and methods

Study area

The study area comprised a 0.75  ha block of a super-intensive almond orchard (Pru-
nus dulcis cv Lauranne Avijor) located in Raimat (Catalonia, NE Spain, X 288  260, Y 
4 616 100, ETRS89 UTM 31 Zone T, Fig. 1), with a plantation pattern of 3.2 × 1.5 m (2800 
trees  ha−1). The tree rows form a continuous and vertical wall (Fig. 1). The orchard was 
planted during the 2016/17 winter. The orchard is pruned each year in winter to create a 
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hedge of low vigour branches (fine, short with a certain horizontal tendency). Then, at the 
end of the spring, the orchard is mechanically pruned to maintain an efficient and active 
exposed leaf area to develop the maximum productive potential, and to facilitate the work 
of harvesting machines. The width of the vegetation hedge is usually adjusted to a distance 
of about 0.35 m on each side of the central axis of the three rows. With that, lighting and 
aeration conditions are improved. In the present case study, the spring mechanical pruning 
was done on June 19th, 2019.

Methodological scheme

LiDAR data, PlanetScope and Sentinel-2 satellite images from two dates (June and Septem-
ber 2019) were acquired and analysed. The data analysis procedure is shown in Fig. 2 and 
the acquisition and processing methods are explained in detail in the following sections.

Canopy orchard parameters were obtained from the LiDAR point clouds. The LiDAR 
datasets were georeferenced and summarized every 0.5 m along the rows. After cleaning 
the data for possible outliers, a spatial analysis of LiDAR-derived parameters was carried 
out to know their spatial autocorrelation. These parameters were later mapped using ordi-
nary kriging to be compared with VIs from satellite images.

A canonical correlation analysis (CCA) was then carried out between two sets of vari-
ables (a LiDAR-derived geometric and structural parameter set and a satellite multispectral 
VI set). The objective was to identify the main inter-relationships between geometric and/
or structural LiDAR-derived canopy parameters and satellite VIs.

Once the most inter-related parameters and VIs had been identified, a cluster analy-
sis was carried out to delineate potential management zones. For that, a series of analy-
sis of variance (ANOVA) tests was carried out to discriminate significant differences in 

Fig. 1  Location of the case study area. Right: almond field and block where LiDAR data was acquired. Bot-
tom left: view of the super-intensive almond orchard
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the canopy parameters from the vegetation indices cluster zones (k = 2). Finally, to com-
plement this cluster analysis, a map class comparison of the reclassified cluster VIs and 
LiDAR maps was performed to evaluate their consistency by means of the fraction correct 
(FC) and Kappa index (KI) of agreement.

LiDAR data acquisition and processing

LiDAR data was acquired on June 22nd and September 20th, 2019, with a self-developed 
mobile terrestrial laser scanner using a VLP-16 LiDAR sensor (Velodyne Lidar Inc., Sili-
con Valley, USA). This sensor has a range of 100 m and dual return capability. It uses 16 
simultaneous laser beams with a 30° field of view to acquire ~ 300 000 points  s−1 with a 
360° scanning window. These data were georeferenced with a Leica GPS 1200 GNSS-
RTK system (Leica, Wetzlar, Germany). The LiDAR sensor was mounted in a self-pro-
pelled mobile platform moving at a constant speed of 2 km  h−1.

Data from 24 tree rows (84 m long each) were acquired during the survey, with a total 
number of 3D points of 469 million. This point cloud was processed with RStudio soft-
ware (Version 1.4.1717 using R version 4.0.3 as calculation engine), with an own-devel-
oped R code described in Llorens et al. (2019). By applying this code, different geomet-
ric and structural parameters of the canopy were summarized every 0.5 m along the tree 
rows (Table 1). In the processing algorithm, two regions of interest (ROIs) are considered 
(Fig. 3): ROI-A are rectangular parallelepipeds along the almond rows with centroids each 
0.5 along the rows and ROI-B are parallelepipeds of 0.10 m in height along the vertical 
axes passing by the ROI-A centroids. ROIs A and B were used consecutively to extract the 
LiDAR crop parameters from all the rows of the field. To reduce the point cloud to be ana-
lysed, only the central LiDAR beam was used to extract information from the point cloud.

Satellite data acquisition and processing

To compute the different VIs used in this study, six satellite images were acquired 
(Table 2).

Fig. 2  Overview of the method workflow
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All images were of the bottom-of-atmosphere (BoA) surface reflectance type and pro-
jected onto the WGS84 UTM 31 N co-ordinate system, as provided by the Copernicus and 
Planet Labs services. The PlanetScope satellite constellation consists of multiple individual 

Table 1  Description of the geometric and structural vegetation parameters extracted from the LiDAR point 
cloud along the tree rows

Obtained values of each parameter were assigned at each ROI-A centroid

Parameter Description

MaxHeight (m) Maximum height of the vegetation row in each ROI-A
MaxWidth (m) The average width of the vegetation row is calculated as the average of the maxi-

mum width in each vertical section (ROI-B)
SMaxWidth  (m2) Cross-sectional area in each ROI-A calculated according to the maximum width 

measured at each ROI-B
Porosity Average (%) Average (left and right scan sides of the row) of LiDAR beams that have passed 

through the vegetation wall with respect to all beams sent from the LiDAR sen-
sor and calculated as a percentage

Fig. 3  Graphical description of 
the different regions of interest 
A, B used in the process of crop 
parameters extraction (adapted 
from Llorens et al., 2019). ROI-A 
is shown as a zenithal view and 
ROI-B as a cross-sectional view

Table 2  Satellite images dataset 
used in the present study

Platform Image code Date

Sentinel-2 
(10 m)

S2A_MSIL2A_20190625T105031_
N0212_R051_T31TBG

Jun 25th, 2019

S2B_MSIL2A_20190918T105029_
N0213_R051_T31TBG

Sep 18th, 2019

Planet-
Scope(3 m)

20190625_131344_0f02 Jun 25th, 2019
20190627_102804_0f17 Jun 27th, 2019
20190919_102702_1012 Sep 19th, 2019
20190920_101730_0e2f Sep 20th, 2019
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nano-satellites called Doves (Planet Labs Inc, 2021). To ensure homogeneity with respect 
to the calibration of the different sensors of the PlanetScope satellites, the VIs calculated 
from the June 25th and 27th images were averaged. The same procedure was applied to 
calculate the VIs from the September 19th and 20th images.

The first step for image analysis was the calculation of different VIs. Four of the most 
quoted VIs in the scientific literature were calculated (Xue & Su, 2017): the enhanced veg-
etation index (EVI) (Huete et  al., 1997), the NDVI (Rouse et  al., 1973), the green nor-
malized difference vegetation index (GNDVI) (Gitelson et  al., 1996), and the green–red 
vegetation index (GRVI), which is a good index to detect changes in crop phenology (leaf-
colour change) (Motohka et al., 2010).

Mapping of LiDAR‑derived canopy parameters on satellite pixels

As mentioned above, LiDAR data were summarized in points along the tree rows every 
0.5 m (ROI-A) (Fig. 3). Then, for the purpose of comparison with the VIs from the Senti-
nel-2 and PlanetScope images, geostatistical interpolations of each LiDAR-derived param-
eter were carried out. These interpolations were performed using QGIS and its Precision 
Agriculture Tools (PAT) plugin (Ratcliff et al., 2019), which uses VESPER software (Vari-
ogram Estimation and Spatial Prediction Plus Error) (Minasny et  al., 2005). The central 
co-ordinates of the image pixels covering the study area were used as the grid points for 
variable interpolation. Only pixels that fully included ROI-A centre points were considered 
(Fig. 4).

For geostatistical interpolation, Webster and Oliver (2007) suggest that, when more 
than 100 sample points are considered, the best method to apply is ordinary local block 
kriging. This type of kriging estimates the values of the variable at the grid points tak-
ing into account the value of the original sampled points included in a mobile window 
defined by the user. Ratcliff et al. (2019) suggested that it should be approximately 5 times 
the pixel size which, in this case, is 15 m for PlanetScope images and 50 m for Sentinel-2 
images. Before kriging, and following the criteria of Taylor et  al. (2007), values above 
or below ± 2.5 standard deviations (SD) were considered outliers and removed from the 

Fig. 4  LiDAR data along the tree rows with an indication of the centroids of the interpolation pixels (Plan-
etScope and Sentinel-2 grids) where the LiDAR-derived geometrical and structural orchard parameters 
were interpolated. The background image is UAV-sourced and was taken on June 26th, 2019
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LiDAR ROI-A data set. Therefore, in this study, a total of 1595 ROI-A points were con-
sidered as input for local block kriging using the PAT QGIS plugin (high-density kriging).

Canopy orchard parameters can be distributed unevenly at reduced distances. In such 
cases, exponential or spherical models are the most suitable to fit semivariograms for krig-
ing interpolation (Millán et  al., 2019). Therefore, in this study exponential models were 
used. As mentioned above, two interpolation grids (block grids in the PAT QGIS plugin) 
were defined: one with 697 central points for 3 m resolution of PlanetScope images and 
one with 54 central points for 10 m resolution of Sentinel-2 images.

Analysis of the spatial structure of LiDAR‑derived canopy parameters

Changes in local variability are reflected in the semivariogram parameters (Oliver, 2010). 
The spatial dependency of each LiDAR-derived parameter was tested using the Cam-
bardella Index (CI) (Cambardella et al., 1994) (1) and range (A1) which is the distance at 
which some variograms reach the sill. Point samples that are at a higher distance than the 
range are supposed to be spatially independent (Oliver, 2010).

where C0 is the nugget variance, C1 is the estimate of the spatial structural variance, allow-
ing C0 + C1 (sill) to be obtained as a measure of the total variance contained in the data.

According to Cambardella et al. (1994), if the CI is less than or equal to 25%, the vari-
able has a strong spatial structure (or spatial autocorrelation), if the ratio is between 25 and 
75%, it has a moderate spatial dependency, and if it is greater than 75% the variable has a 
weak spatial dependency. In other words, the higher the CI, the worse the spatial structure 
of distribution of a parameter. When C0 is high, parameters change a lot in short distances 
and, therefore, the semivariogram cannot explain correctly the total variance along the 
orchard. Therefore, a higher probability exists of obtaining a randomized interpolated map.

Another important parameter to determine how those properties vary spatially is the 
range (A1), which evaluates the adequacy of the interpolated maps in terms of reflecting 
the spatial distribution of variability. The higher the range, the more homogeneous distri-
bution a property can have.

Since ordinary kriging was made based on local semivariograms, the Cambardella 
Indices (1) and range (A1) were calculated from the average value of the semivariogram 
parameters, referred to as the ROI-A centroids (Table 4).

Correlation between geometrical and structural orchard parameters 
and vegetation indices

To study the relationship between the two considered groups of variables (LiDAR-derived 
parameters and VIs), a canonical correlation analysis was carried out. The aim was to 
select the VIs that best explain the variability of the geometry and structure of the vegeta-
tion for the definition of potential management zones.

A CCA is a generalization of multiple regression used to highlight associations between 
two datasets U and V containing a defined number of variables Y1, Y2, …, Yn and X1, X2, 
…, Xn, respectively. In this method, several Y variables are simultaneously related to sev-
eral X variables. In the present case, set U was composed of the four multispectral indices 
(Y1-EVI, Y2-NDVI, Y3-GNDVI, Y4-GRVI) and set V included the four LIDAR-derived 

(1)CI =
C0

C0 + C1
∗100
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parameters (X1-MaxHeight, X2-MaxWidth, X3-SMaxWidth, X4-Porosity-Avg). After the 
estimation of linear combinations among the parameters corresponding to the same set, 
the method searches first for a pair of canonical variables (U1 and V1) that, each being a 
linear combination of the corresponding set variables, show the highest possible correla-
tion between them. The procedure continues looking for new canonical variables (U2 and 
V2), and so on, until all the variability is explained (Fig. 5). This procedure allows hidden 
relationships between variables to be discovered (Manly & Navarro, 2017). This analysis 
was implemented using RStudio (Version 1.2.5001 using R version 3.6.1) and the CCA R 
package, freely available from the Comprehensive R Archive Network (C RAN, https:// 
cran.r- proje ct. org/).

Definition and analysis of management zones

The variables selected from the CCA were clustered using a k-means algorithm (Hamerly 
& Elkan, 2003) to delineate potential management zones. The k-means algorithm imple-
mented in Google Earth Engine was used. Two clusters (classes) were created. To deter-
mine whether the clusters were able to effectively differentiate almond tree canopies with 
different characteristics, a series of one-factor ANOVA tests was carried out, with the 
LiDAR-derived parameters as the dependent variable and the clusters the analysis factor 
of the model. Three t-student tests were carried out to assess statistical differences among 
the groups. To minimize errors of Type I the Bonferroni adjustment was applied (Manly & 
Navarro, 2017).

Cluster maps comparison

To assess whether LiDAR-derived parameter clusters could be estimated from the cluster 
maps defined from the multispectral indices, a comparison of cluster maps was carried out.

For this purpose, the Map Comparison Kit (MCK version 3.2.3 http:// mck. riks. nl/) soft-
ware was used. This program provides a good understanding of the differences between 
pairs of maps (Visser & De Nijs, 2006). In this case, the map pairs were compared using 
two statistics: the FC and the KI. The FC (fraction correct), or percentage of agreement, is 

Fig. 5  Canonical statistical procedure. Set U includes the four multispectral indices (Y1-EVI, Y2-NDVI, 
Y3-GNDVI, Y4-GRVI) and set V the four LIDAR-derived parameters (X1-MaxHeight, X2-MaxWidth, 
X3-SMaxWidth, X4-Porosity-Avg)

https://cran.r-project.org/
https://cran.r-project.org/
http://mck.riks.nl/
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calculated as the number of equal cells in both maps divided by the total number of cells 
in the map. This statistic is considered flawed as an overall measure of similarity because 
it tends to consider maps with few or unevenly distributed categories to be more similar 
than those with many, more equally distributed categories (Visser & De Nijs, 2006). For 
a better-balanced measure of similarity, the Kappa index of agreement can be used. It is 
based on a contingency table that summarizes the cross-distribution of categories over the 
two maps. This index is the result of multiplying two statistics (2): Kappa Histo  (KHisto), a 
measure of the agreement of the total number of pixels considered for each class category 
among the two maps, and Kappa Location  (KLoc), which is sensitive to differences in the 
spatial distribution of classified pixels in the two maps.

Results

Spatial structure of the orchard canopy geometric and structural parameters

Table  3 shows the main descriptive statistics for the original LiDAR data aggregated at 
0.5 m along the orchard rows. According to these results, the geometric parameters (Max-
Height, MaxWidth and SMaxWidth) presented considerably lower coefficients of variation 
(CV) than the structural one (Porosity-Avg) in both June and September. Table 4 shows 
the Cambardella parameters (C0 and C1), and the Cambardella indices (CI) and ranges 
(A1) calculated from the parameter average of the local semivariogram after the local krig-
ing interpolations to PlanetScope and Sentinel-2 grids. Figure 6 offers an example of the 
LiDAR-derived parameters maps corresponding to June interpolated to the PlanetScope 
and Sentinel-2 grids.

Regarding the CI values (Table 4), the geometrical parameters reflected a better spatial 
structure than the porosity parameter. In addition, spatial structure for all parameters was 
higher after spring pruning (June) than before harvesting (September). Porosity presented 
the poorest spatial autocorrelation (CI values around 70%) due to high values of C0 and 
C1 (low explained variance). This property presented higher range values, meaning that 
this poor spatial autocorrelation is continuous throughout the orchard. Maximum height 
(MaxHeight) was the geometrical parameter with the best spatial autocorrelation after 
mechanical pruning (CI values ≤ 25%). This parameter also presented the most important 
changes from June to September (from 20–24% to 50–56%). The width-related parameters 
(maximum width and cross-section) showed a moderate-to-high spatial autocorrelation (CI 
between 33 and 40%).

(2)Kappa = KHisto × KLoc

Table 3  Descriptive statistics 
of the original normalized 
LiDAR-derived geometrical and 
structural orchard parameters

June September

x̄ σ CV (%) x̄ σ CV (%)

MaxHeight (m) 2.67 0.09 3 3.28 0.18 5
MaxWidth (m) 0.91 0.14 15 1.13 0.15 14
SMaxWidth  (m2) 2.47 0.39 16 3.74 0.56 15
Porosity-Avg (%) 25.34 8.07 32 24.21 6.48 27
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CI values were similar for both PlanetScope and Sentinel-2 semivariograms. There-
fore, as reflected in Fig. 6, the spatial structure of distribution of the different param-
eters was very similar in both sets of interpolated maps. There existed a high corre-
spondence between the width-related variables and the inverse correspondence of them 
with porosity. In addition, maximum height presented a different gradient of distribution 
along the rows.

Table 4  Averaged local semivariogram parameters from interpolated ROI-A data to PlanetScope and Sen-
tinel-2 grids

C0 and C1 are the Cambardella parameters; CI-Cambardella index (%) (1) plus A1-Range (m)

C0Jun C1Jun CIJun (%) A1Jun (m) C0Sep C1Sep CISep (%) A1Sep (m)

PlanetScope
 MaxHeight (m) 0.00 0.01 24 8.13 0.02 0.02 50 15.13
 MaxWidth (m) 0.01 0.01 34 12.78 0.01 0.02 39 8.58
 SMaxWidth  (m2) 0.05 0.10 33 5.09 0.12 0.20 38 8.58
 Porosity-Avg (%) 47.12 20.65 70 12.64 31.07 12.50 71 49.58

Sentinel-2
 MaxHeight (m) 0.00 0.01 20 5.38 0.02 0.01 56 8.76
 MaxWidth (m) 0.01 0.01 40 5.57 0.01 0.01 40 7.42
 SMaxWidth  (m2) 0.05 0.11 30 5.56 0.13 0.19 40 7.45
 Porosity-Avg (%) 45.59 22.00 67 9.55 30.50 11.62 72 10.36

Fig. 6  Interpolated LiDAR-derived parameters to the satellite grids: PlanetScope (top), Sentinel-2 (bottom) 
in June 2019



2052 Precision Agriculture (2022) 23:2040–2062

1 3

Relationships between orchard canopy geometrical and structural parameters 
and vegetation indices

To study the associations between the groups of variables considered, a CCA was per-
formed considering Set U (MaxHeight-MH; MaxWidth-MW; SMaxWidth-SMW; Poros-
ity-Avg-P) and Set V (EVI-(E); NDVI-(N); GNDVI-(GN); GRVI-(GR) (Fig. 5).

The first pair of canonical variables CanR1 (Xcan1 and Ycan1) showed correlation 
coefficients between 0.71 (PlanetScope image) and 0.81 (Sentinel-2 image) (Table 5). The 
correlation coefficients of the second canonical variable (CanR2) were lower but still sig-
nificant, except for the Sep S-2 dataset. Figure 7 shows the two-dimensional graphs that 
represent the weight of the original variables in the highest significant canonical variables 
CanR1 (Xcan1, Ycan1) and CanR2 (Xcan2, Ycan2). The first dimension reflected direct 
correlations of NDVI and GNDVI with the geometrical parameters (highlighting Max-
Width and SMaxWidth), as well as inverse relationships of those indices with Porosity-
Avg. This trend was identified in both dates and both satellite datasets. The second dimen-
sion was more significant and stronger in June for both the PlanetScope and Sentinel-2 
datasets. MaxHeight was the geometrical parameter with the worst relationship in general 
with all the VIs.

Analysis of potential management zones

Regarding the CCA analysis, the first canonical variable reflected direct and strong cor-
relations of geometrical parameters with both NDVI and GNDVI. These VIs also reflected 
an inverse, but also significant, relationship with Porosity-Avg. Therefore, the NDVI and 
GNDVI from PlanetScope and Sentinel-2 images were clustered using the k-means algo-
rithm and a cluster analysis performed. In addition, only the canopy orchard parameters 
that presented the best performance in the CCA (MaxWidth, SMaxWidth and Porosity-
Avg) were considered for the ANOVA tests.

Figure 8 shows a basic statistics summary corresponding to the NDVI and GNDVI vig-
our classes (clusters) from the PlanetScope and Sentinel-2 images of June and September 
2019.

From Fig.  8, it can be observed that the NDVI and GNDVI cluster maps showed 
similar spatial patterns and, in both cases, small differences were found in the mean 
and standard deviation values. However, LiDAR-derived parameters were significantly 
differentiated (p-value < 0.001), as reflected in Table 6. This table presents the ANOVA 
t-student tests (three for NDVI and three for GNDVI) carried out to assess the vari-
ability of the LiDAR-derived parameters in the delimited potential management zones 
According to the Bonferroni correction, given the total number of ANOVA tests (three) 

Table 5  Canonical correlation 
analysis significance

Significance expressed as (***)p-value ≤ 0.001, (**)p-value ≤ 0.01, 
(*)p-value ≤ 0.05, (.)p-value > 0.05. Jun (June 2019); Sep (September 
2019); PS (PlanetScope); S-2 (Sentinel-2)

Jun PS Sep PS Jun S-2 Sep S-2

CanR1(r) 0.79*** 0.71*** 0.81*** 0.80***
CanR2(r) 0.33*** 0.42** 0.65** 0.41
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with an overall significance level of 0.05, the probability of declaring each univariate 
ANOVA test as significant was 0.016.

As Table 6 suggests, both NDVI and GNDVI were useful to separate different classes 
of the LiDAR-derived parameters. However, NDVI seems to have a better performance 
than GNDVI in general. For that reason, for the rest of the cluster analysis, only the 
NDVI was utilised. In order to check the correspondence between the NDVI and the 
LiDAR-derived cluster classification (k = 2), a map comparison was carried out. The 
results of this analysis are presented in Table 7 and Fig. 9.

PlanetScope June PlanetScope September

Sentinel-2 SeptemberSentinel-2 June

SMW (-0.98, 0.02)

MH
(-0.26, 0.90)

P

(0.79, 0.27)

MW (-0.94, -0.29)

N
(-0.99, -0.13)

GN (-0.96, 0.21)

(-0.73, -0.12)E

GR
(-0.37, -0.81)

P
(0.61, 0.73)

GR
(-0.33, 0.31)

E
(-0.45, 0.75)

MW (-0.85, -0.04)

GN
(-0.97, -0.16)

N (-0.98, -0.01)
SMW (-0.99, 0.01)

MH (-0.47, 0.11)

MW (-0.41, 0.83)

SMW (-0.62, 0.71)

N
(-0.56, 0.56)

GN (-0.90, 0.03)

MH
(-0.84, -0.22)

P
(0.60, -0.25)

(-0.16, 0.33)E

GR
(0.33, 0.86)

MH
(-0.66, 0.69)

(-0.72, 0.43)E

GR (-0.30, 0.10)

SMW (-0.62, 0.71)

N (-0.95, -0.15)

GN (-0.91, -0.25)

MW (-0.65, -0.51)

P
(0.63, 0.74)

Fig. 7  Canonical correlation analysis graphs. CanR1 means the correlation (Xcan1, Ycan1). CanR2 means 
the correlation (Xcan2, Ycan2). Xcan are the canonical variables of the geometrical and structural orchard 
parameters and Ycan the canonical variables of the vegetation variables. The triangles (MH (MaxHeight), 
MW (MaxWidth), SMW (SMaxWidth) and P (Porosity-Avg)) represent the (Xcan1, Xcan2) and the points 
(EVI (E), NDVI (N), GNDVI (GN), and SAVI (S) the (Ycan1, Ycan2)
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As can be seen in Table 7, the FC was higher than the KI. The reason was explained in 
the methodology section. FC is a method which only considers the percentage of change 
of pixels, with the KI being more restrictive. Despite this, both indices showed the same 
trends. In accordance with Landis and Koch (1977) criteria, width-related parameters 

Cluster a
x̄ = 0.47
σ = 0.006

=358 

Cluster b
x̄ = 0.46
σ = 0.007

=339

Cluster a
x̄ = 0.57
σ = 0.009

=27 

Cluster b
x̄ = 0.54
σ =0.015 

=27

Cluster a
x̄ =0.54
σ = 0.006

=330

Cluster b
x̄ =0.53
σ = 0.006

=367

Cluster a
x̄ = 0.67
σ = 0.010

=29

Cluster b
x̄ = 0.66
σ =0.011

=25

Cluster a
x̄ = 0.53
σ = 0.005

= 357

Cluster b
x̄ =0.51 
σ = 0.005

=343 

Cluster a
x̄ = 0.60
σ = 0.009

=27

Cluster b
x̄ = 0.58
σ = 0.009

=27

Cluster a
x̄ = 0.57
σ =0.006

=343

Cluster b
x̄ =0.55
σ = 0.005

=354 

Cluster a
x̄ = 0.68
σ =0.011

=21

Cluster b
x̄ =0.65
σ = 0.008

=33

Fig. 8  NDVI and GNDVI from PlanetScope and Sentinel images in June (upper part of the figure) and Sep-
tember (bottom part of the figure) in the experimental almond orchard. Cluster a = High values; Cluster 
b = Low values. N is the number of pixels in the class

Table 6  Analysis of variance (ANOVA) of LiDAR-derived parameters according to NDVI and GNDVI (2 
classes)

Letters denote statistical differences at p = 0.016. Bold expresses significance at p-value < 0.001, Jun (June 
2019), Sep (September 2019)

NDVIJun NDVISep GNDVIJun GNDVISep

1 2 1 2 1 2 1 2

PlanetScope
 MaxWidth (m) 0.89b 0.93a 1.11b 1.15a 0.89b 0.93a 1.10b 1.15a

 SMaxWidth  (m2) 2.40b 2.53a 3.65b 3.84a 2.41b 2.53a 3.64b 3.85a

 Porosity-Avg (%) 26.0a 24.6b 24.6a 23.8b 26.0a 24.6b 24.8a 23.7b

Sentinel-2
 MaxWidth (m) 0.89b 0.93a 1.11b 1.15a 0.90a 0.92a 1.11b 1.15a

 SMaxWidth  (m2) 2.42b 2.52a 3.63b 3.84a 2.43b 2.51a 3.67b 3.86a

 Porosity-Avg (%) 25.8a 24.9b 24.9a 23.6b 25.9a 24.8b 24.8a 23.3b
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(MaxWidth and SMaxWidth) showed moderate KIs (0.41–0.60) and, slight to fair agree-
ments were found between the VI cluster maps and Porosity-Avg (around 0.30). These 
trends can be appreciated in Fig.  9, where the correspondence of the spatial patterns of 
the NDVI and the LiDAR-derived parameters interpolated to the satellite image grids is 
shown. As for the interpolated maps, despite their differences in spatial resolution, the clus-
ter distributions of PlanetScope and Sentinel-2 were very similar. However, higher corre-
spondences were found between the LiDAR clustered maps and the NDVI from Sentinel-2.

Table 7  Statistics calculated for the 2 cluster maps from NDVI and LiDAR selected parameters in June and 
September 2019: FC (Fraction correct), KI (Kappa index),  KLoc,  KHisto

Jun Sep

MaxWidth SMaxWidth Porosity-Avg MaxWidth SMaxWidth Porosity-Avg

PlanetScope
 FC 0.73 0.79 0.28 FC 0.69 0.74 0.34
 KI 0.46 0.58 − 0.45 KI 0.36 0.48 − 0.33
  KLoc 0.64 0.72 − 0.47 KLoc 0.5 0.49 − 0.38
  KHisto 0.72 0.80 0.95 KHisto 0.72 0.97 0.97

Sentinel-2
 FC 0.78 0.82 0.37 FC 0.7 0.74 0.35
 KI 0.56 0.63 − 0.26 KI 0.42 0.49 − 0.31
  KLoc 0.71 0.74 − 0.30 KLoc 0.59 0.62 − 0.35
  KHisto 0.78 0.85 0.85 KHisto 0.71 0.78 0.89

Fig. 9  Within-field maps of the NDVI and LiDAR-derived parameters
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Regarding the  KHisto and  KLoc indices, high agreements were found.  KHisto was high in 
general, which means that the total number of pixels of each class did not experience sig-
nificant changes between pairs of maps: MaxWidth (0.71–0.78), SMaxWidth (0.78–0.97), 
porosity-Avg (0.85–0.97). With respect to the  KLoc values, which refers to the spatial loca-
tion agreement, moderate correspondences were obtained when width-related parameters 
(MaxWidth and SMaxWidht) and NDVI within-field zones were compared (around 0.65). 
Slight to fair agreements were reflected between both maps in relation to porosity (around 
− 0.37).

Discussion

The aim of the present work has been to determine the suitability and accuracy of Planet-
Scope and/or Sentinel-2 satellite images to estimate canopy-related geometric and struc-
tural parameters derived from terrestrial LiDAR surveys in hedgerow almond orchards and 
to use this information to define potential within-field management zones. Such research 
could represent an advance in the continuous monitoring of super-intensive orchards, facil-
itating the interpretation of VIs in terms of different key geometric and structural param-
eters and hence the work of farmers and application services in fruticulture.

One of the challenges in this research was related to the differences in data resolution 
between the LiDAR point clouds (0.5 m) and the VIs computed from satellite images (3 or 
10 m pixel resolution). However, results are encouraging, with significant differences found 
in the relationships between some of the variables. From the CCA analysis, higher NDVI 
and GNDVI values were strongly related to higher values of canopy width and cross-
sectional area (MaxWidth, SMaxWidth, respectively). In contrast, higher values of the 
same VIs corresponded with lower values of canopy porosity (Porosity-Avg). This trend 
was identified in both satellite datasets. These findings are relevant because the geometric 
parameters (particularly the width-related ones) are important to determine canopy vol-
ume and because porosity is related to leaf density and, hence, to the optimization of dose 
rates of plant protection products (Arnó et al., 2013; Escolà et al., 2013). In this respect, 
and in relation to canopy volume and in particular in almond orchards, Underwood et al. 
(2016) presented a mobile terrestrial scanning system to predict yield for individual trees. 
Their approach obtained an  R2 = 0.77 between canopy foliage volume and almond yield. 
In addition, Lampinen et al. (2011) and Maldera et al. (2021) established that harvesting 
efficiencies depended on tree canopy size and that yield production was strongly related to 
the previous year’s spur leaf area. However, canopy width is not the only parameter with a 
crucial impact on orchard management. Among other factors, porosity is considered a very 
important element to decide how to handle certain orchard management tasks (Castillo-
Ruiz et al., 2016; Duga et al., 2015). Porosity constitutes a good indicator for total light 
interception and its distribution within the canopy. This is very important for spur health 
and is essential to estimate the application of plant protection products. Additionally, the 
balance between yield production and tree vegetation development is a key factor when 
planning an orchard management campaign. With the above in mind, being able to achieve 
a regular control (inter-season and intra-season) from VI-based estimation of width param-
eters, such as maximum width and cross-sectional area, and porosity distribution in the 
orchard can constitute an advantage for the adoption of appropriate management practices 
that can deliver higher spur productivity and yield.
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However, not all the parameters have the same opportunity to be homogeneously 
spatially distributed in management zones. A key factor presented in this work was the 
study of the spatial distribution of the different LiDAR parameters within the orchard at 
two important times in the campaign. The spatial autocorrelation analysis of the variables 
through the Cambardella index showed the existence of different spatial structures between 
the geometric parameters and porosity. The local semivariograms related to canopy geom-
etry were suitable to detect how these parameters varied with distance (low C0), showing 
that the spatial continuity of these variables within the orchard had a moderate-to-high spa-
tial autocorrelation (CI between 33 and 40%). In contrast, porosity showed high variability 
at very short distances (high C0). This property had considerably higher coefficients of var-
iation than the geometric parameters, and was the variable with the lowest spatial depend-
ency (highest CI). As suggested by Manly and Navarro (2017), the high spatial variability 
of porosity could potentially degenerate into very fragmented and patchy spatially distrib-
uted management zones if based on this property. However, the porosity range showed that 
the spatial continuity of this high variability remained at a higher distance than in the case 
of the geometrical parameters and, as can be appreciated in both Figs. 6 and 9, the value of 
pixels was not overly haphazardly distributed. This could be due to use of the block kriging 
method in the interpolation, since it manages to smooth the pixel values.

From the ANOVA, it can be observed that both the NDVI and the GNDVI were able 
to detect small but significant differences in the geometrical and structural orchard param-
eters. However, in relation to both the ANOVA test and map comparison analysis, the 
NDVI can be considered more adequate for creation of potential management zones. Other 
authors have highlighted the suitability of using the NDVI for canopy characterisation in 
fruit orchards because of its relationship with canopy-related geometric and structural char-
acteristics (Caruso et al., 2017; Johnson et al., 2003). In other horticultural crops, such as 
grapevine, Martínez-Casasnovas et al. (2012), in their analysis of differential management 
zones based on NDVI classes concerning vine development, grape maturity and quality, 
found that differentiation of vine and grape juice characteristics in two zones was optimal 
for the study target.

Evidence of favourable interpolation results was found when assessing the consistency 
between the potential management zones delimited from the NDVI and LiDAR parameters 
maps by means of analysis of similarity (Table 7, Fig.  9). The percentage of agreement 
(Fraction Correct) indicated a moderate-to-high global concordance among the compari-
sons with LiDAR interpolated maps, highlighting the parameters related to width (Max-
Width and SMaxWidth). Regarding the Kappa index and  KLoc and  KHisto statistics, good 
global concordances were found among the NDVI cluster maps from PlanetScope and Sen-
tinel-2 datasets and the cluster maps obtained from the LiDAR interpolated maps. This is 
due to the effect of smoothing related to the interpolation and is very important for simpli-
fying orchard management. Thus, Sentinel is also appropriate for the application of differ-
ent orchard management actions.

In the present research, a point to highlight is that, in spite of the differences in spatial 
resolution, a good correspondence between spatial distribution patterns from the Planet-
Scope and Sentinel-2 datasets was found. Sentinel-2 proved to be highly suitable to reflect 
the spatial variability of orchard geometrical parameters, as well as canopy porosity. This 
concurs with the findings of Pastonchi et al. (2020) who developed a multi-temporal com-
parison between satellite and ground data with UAV information in an experimental vine-
yard. They concluded that Sentinel-2 images allowed within-vineyard vigour spatial varia-
bility to be detected correctly. Results of the present study indicate that management zones 
delineated from the VIs could be used to define crop management practices associated with 
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canopy width-related parameters and porosity. In consequence, the results of the present 
work can add value to current knowledge.

As described in the introduction section, other authors have demonstrated the utility 
of remote sensing images, in particular from UAVs, to derive accurate geometric canopy 
parameters in orchards (Torres-Sánchez et al., 2018), or with the combination of geometric 
parameters and VIs (Jurado et al., 2020). These are mainly based on measurements using 
photogrammetric techniques and, in some cases, with LiDAR data as reference (Hobart 
et al., 2020). However, monitoring based on UAVs or LiDAR 3D point clouds instead of 
satellites has the limitation of the frequency of image acquisition and time-consuming data 
processing, respectively.

Conclusions

The methods evaluated in this work can complement the possibilities of canopy characteri-
zation in super-intensive orchards based on high temporal and spatial resolution satellite 
imagery, as they are able to detect geometrical and structural changes in almond orchard 
canopies. In this respect, vegetation parameters related to width, cross-sectional area and 
porosity of the canopy along the rows offered a high correlation, especially with NDVI 
but also with GNDVI from Sentinel-2 and PlanetScope platforms. Few differences were 
found when clustering parameters, with VIs seeming to work for the monitoring of crop 
status and evaluation of the results of certain agronomic actions. This methodology could 
be interesting as an input to building a model approach, based on the age and physiological 
characteristics of trees and also considering the water, energy and nutrient balance, in order 
to simulate crop growth and better estimate yield production. Additionally, it can be a use-
ful tool to improve field management software applications based on satellite imagery by 
adding geometrical and structural parameter estimations and hence contribute to the man-
agement decision-making process. Although this study was based on data from a super-
intensive almond orchard, the methodology employed can be applied to other crops with 
hedgerow cropping patterns and the mapping of canopy parameters can be extended to 
larger orchards.
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