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Abstract
The precise use of specific types of herbicides according to the weed species and density in 
fields can effectively reduce chemical contamination. A weed species and density evalua-
tion method based on an image semantic segmentation neural network was proposed in this 
paper. A combination of pre-training and fine-tuning training methods was used to train 
the network. The pre-training data were images that only contain one species of weeds 
in one image. The weeds were automatically labeled by an image segmentation method 
based on the Excess Green (ExG) and the minimum error threshold. The fine-tuning data-
set was real images containing multiple weeds and crops and manually labeled. Due to 
the limitation of computational resources, larger images were difficult to segment at one 
time. Therefore, this paper proposed a method of cutting images into sub-images. The rela-
tionship between sub-image size and segment accuracy was studied. The results showed 
that the training method reduced the workload of labeling training data while effectively 
avoiding overfitting. The accuracy of image segmentation decreases as the sub-image size 
decreases. Considering the limitation of computational resources, a subgraph of 256 × 256 
size was selected. The semantic segmentation network achieved 97% overall accuracy. The 
coefficient of determination ( R2 ) of weed density calculated by the algorithm and manu-
ally assessed was 0.90, and the root means square error ( � ) was 0.05. The method could 
effectively assess the density of each species of weeds in complex environments. It could 
provide a reference for accurate spraying herbicides based on weed density and species.
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Introduction

Weeds are one of the most common agricultural damages (Hamuda et  al., 2016). They 
compete with crops for water, sunlight, and nutrients in the field, which leads to crop yield 
reduction (Berge et  al., 2008). To overcome the problem, researchers and farmers have 
made a lot of efforts. Since 1940, chemical weed control has become the most popular 
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method (Hamuda et  al., 2016). This method usually sprays herbicides uniformly regard-
less of the presence or absence of weeds. Spraying herbicides in weed-free areas not only 
wastes herbicides but also pollutes the agroecology (Rodrigo et al., 2014). Precise spraying 
herbicides according to the density of the weeds is an effective way to reduce agroeco-
logical pollution and herbicide waste. Also, choosing specialized herbicides according to 
the species of weeds is a way to enhance effectiveness. Accurate assessment of density 
and species of weeds is an important step in precision spraying. Therefore it is crucial to 
develop a method to assess weed species and density.

In recent years, along with the development of machine vision techniques, many schol-
ars have researched precision weed control servo. Devices such as three-dimensional cam-
eras, spectral cameras, and thermal cameras were used to collect images of the field. Sev-
eral scholars have studied algorithms to segment weeds on these images to achieve weed 
identification and segmentation. Li and Tang (2018), Khan et  al. (2018), Lammie et  al. 
(2019), Stroppiana et al. (2018), Kazmi et al. (2015), Ge et al. (2019), Alenya et al. (2013), 
Kusumam et al. (2017), and Kazmi et al. (2014). However, the high price of such devices, 
and the requirement for a stable working environment, make it difficult to use them in com-
plex agricultural industries nowadays (Zhang et al., 2020). The color camera is a simple, 
reliable, and cheap imaging device. It can acquire visible light images in complex farmland 
environments. Therefore, many scholars have studied using color cameras to do vision-
serviced precision weeding (Sabzi et al., 2018; Bakhshipour & Jafari, 2018; Wang et al., 
2019; Abdalla et al., 2019). Crop and weed segmentation by color difference and thresh-
old segmentation is a simple method for weed segmentation. Researchers have also pro-
posed a series of color indexes for weed segmentation (Lee et al., 2021; Rico-Fernández 
et al., 2019). However, most weeds, such as dogwood, oxalis, and quinoa, are green, the 
same as crops. Therefore, it is usually difficult to achieve better image segment results by 
color index and threshold segmentation methods. Commonly, colors can also form feature 
groups with other features, such as texture and shape, to segment the image by classify-
ing pixels or regions with a classifier. Machine-learning algorithms are the most common 
classifiers, such as Artificial Neural Network(ANN), Support Vector Machine (SVM), and 
Naive Bayes (Zhang et al., 2021; Zou et al., 2019; Bakhshipour & Jafari, 2018; Chen et al., 
2021). In a stable environment, the combination of image features and machine learning 
classifiers can achieve wonderful results with an 80–98% classification accuracy (Lottes 
et al., 2018). However, the field working environment is complex, the lighting conditions, 
the density of weeds, and the growth stages of plants are all changeable (Wang et  al., 
2019). And, occlusion, clustering and changing lighting conditions in a natural environ-
ment remain major challenges in weed detection and localization (Gongal et  al., 2015). 
Using the traditional machine learning method to classify different species of crops is still 
difficult. Therefore, it is necessary to research an efficient, automated, and robust algorithm 
to deal with such situations (Abdalla et al., 2019).

In recent years, deep learning has been more widely used due to the decreasing cost of 
computer hardware and the improvement of GPU performance. It also has a wide range of 
applications in agriculture (Fu et al., 2020; Aversano et al., 2020; Too et al., 2019; Tiwari 
et  al., 2019; Kamilaris & Prenafetaboldu, 2018; Kalin et  al., 2019). Some scholars have 
studied crop weed segmentation using deep learning networks. Huang et  al. (2018) pro-
posed a weed cover map-generating workflows based on unmanned aerial vehicle (UAV) 
imagery and Fully convolutional networks (FCN). The segmentation accuracy was 94% 
. Le et  al. (2021) proposed a weed detection method based on Faster-RCNN. However, 
the detection time of this method was 0.38s per image. The detection speed was slow. 
An instance segmentation-based weed detection algorithm was proposed by Champ et al. 
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(2020). However, the accuracy of this algorithm is only 10–60%. From the above studies, it 
can be seen that deep learning models, especially semantic segmentation neural networks, 
can achieve better results in weed estimation than other methods. However, due to the limi-
tation of computing resources, the performance of deep learning can be improved.

Deep learning requires a large amount of training data. These data usually need to be 
labeled manually. It is often difficult to manually label large amounts of data, especially for 
semantic segmentation tasks. Because this type of task requires labeling each pixel with a 
category (Deng et al., 2018; Kemker et al., 2018; Pan et al., 2017). Transfer learning is an 
effective way to reduce training samples (Abdalla et al., 2019). Transfer learning usually 
consists of two steps: pre-training and fine-tuning. The weights obtained in the pre-training 
stage are applied in the fine-tuning stage. This approach allows the fine-tuning stage to find 
the optimal solution faster than the random initialization of parameters. In order to make 
the fine-tuning stage faster, the selection of samples for the pre-training stage is usually 
made by two criteria. The first criterion is to get as close as possible to the final target sam-
ple; The second criterion is to make it as easy as possible to obtain. Usually, the pre-trained 
dataset is an open-access dataset with labels (Zhang et al. 2017; DeVries & Taylor, 2017; 
Yun et al., 2019; Cubuk et al., 2020). This method can obtain a large number of labeled 
pre-training samples quickly. Transfer learning and fine-tuning have been widely used in 
agricultural applications including plant species classification, plant disease detection, and 
weed detection (Dyrmann et al., 2016; Ferreira et al., 2017; Barbedo, 2018; Picon et al., 
2019). For example, Abdalla et  al. (2019) studied weed density semantic segmentation 
method based on a fine-tuning convolutional neural network with transfer learning. The 
highest semantic segmentation accuracy was 96%. From the above studies, it can be seen 
that transfer learning can effectively reduce the number of samples used in weed segmenta-
tion network training. However, an open-source weeds dataset suitable for this study did 
not find. Therefore, it is necessary to investigate a training method for this research.

This paper hypothesized that semantic segmentation neural networks can achieve an 
accurate assessment of weed density than the traditional method and transfer learning can 
effectively improve the training efficiency of the network. The main objective of this arti-
cle is to investigate a weed species and density assessment method. The specific research 
objectives are: (1) design a semantic segmentation neural network for segmenting different 
species of weeds; (2) investigate a convenient and fast neural network training method to 
train this neural network.

Materials and methods

Imaging system

In this study, a spray vehicle based image acquisition device was used to acquire weed 
images in the field (Zou et al., 2021). A spray vehicle (FJ 3WP 500A) was used as a mobile 
platform. The camera, the positioning module, and the control unit were mounted on this 
vehicle. Three cameras (RMONCAM HD908) were mounted in the front of the vehicle 
to capture images. A POS sensor (WIT-IMU, WIT-MOTION Technology Co, China) was 
mounted on the vehicle to record the ground coordinates. The camera was installed hor-
izontally with its lens facing down vertically, 140 cm from the ground. The size of the 
imaging area was 90 × 120 cm. Vehicle movement speed did not exceed 0.1 m/s during 
image acquisition. The images of the acquisition device and camera are shown in Fig. 1.
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Weeds image acquisition

The images for this study were taken on 4th June 2021 at 15:30–17:30, 9th June 
2021 at 8:00–12:00, and 15th June 2021 at 13:00–15:00 in a maize field and a soy-
bean field, located at Qixing Farm, Jiansanjiang, Jiamusi, Heilongjiang Province, China 
(132° 35′ 32″ E, 47° 10′ 58″ N), shown in Fig. 2. The original image resolutions were 
3000 × 4000 pixels and 2250 × 4000 pixels. It was too large for processing, especially 
for the deep-learning-based method, so a series of small-size images of 256 × 256 pix-
els were randomly cut out from the original images. There was no interaction or overlap 
between sub-images.

There were mainly five species of weeds in this area, namely Green bristlegrass 
(EPPO: SETVI), Thistle (EPPO: CIRJA), Acalypha copperleaf (EPPO: ACCAU), Equi-
setum arvense (EPPO: EQUAR), Goosefoots (EPPO: CHEAL) (shown in Fig. 3). One 
thousand images were collected for each weed species. There were no green plants other 
than weeds in these images, shown in Fig.  3. There are also 1000 images containing 
crops, maize (EPPO: ZEAMX), and soybeans (EPPO: GLXMA). In total 6000 images 
were used in the pre-training stage, called the "pre-training set". One thousand images 
contained crops, and different species of weeds were manually labeled. Some of the 
images and labels are shown in Fig. 4. Eight hundred of the images were used in the 

Fig. 1  Imaging system
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fine-tuning stage of training, called the "fine-tuning set". The remaining 200 images 
were used in the test stage, called the "testing set".

General steps of weed density evaluation

The weed density evaluation method described in this paper relies on a semantic segmenta-
tion neural network. The main process consists of the following steps: (1) Original image 

Fig. 2  Location of imaging

Fig. 3  Weed samples
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cutting: original images were cut into sub-images of a specified size; (2) Pre-training set 
auto labeling: sub-images containing only one species of weed were selected as pre-train-
ing images. Labels were automatically added to the images by an algorithm; (3) Fine-tun-
ing set labeling: sub-images containing different species of weeds and crops were selected. 
And labels were added to the images manually; (4) Semantic segmentation network con-
struction: based on the complexity of the images and the requirements for segmentation 
accuracy, the neural network was constructed based on the encoding and decoding struc-
ture; (5) Network training: the neural network was trained in two stages, pre-training and 
fine-tuning; (6) Image segmentation: the sub-images were segmented by the network. After 
segmentation, the results were stitched into one map again; (7) Weed density calculation: 
the ratio of the area occupied by each species of weed to the total area was calculated 
to obtain the density of each weed. The weed contamination type and density could be 
obtained by the above steps from the field image. The results could be used to guide accu-
rate spraying. The flow chart was shown in Fig. 5.

Pre‑training set automatic labeling

Transfer learning is divided into two phases: pre-training and fine-tuning (Abdalla et al., 
2019). The pre-training phase can use synthetic samples to train the model. This can reduce 
the amount of real labeled samples required (Zou et al., 2021). In this paper, to solve the 
problem of difficult labeling of semantic segmentation neural networks, a two-stage train-
ing method combining pre-training and fine-tuning was used. The pre-training sample set 
consists of 6000 images. One thousand of them were crop images. All pixels, including 
bare land, maize and soybeans, on these images were labeled as 0. And there were 1000 
images for each species of weed. In these images, bare land was labeled as 0. Green bris-
tlegrass, Thistle, Acalypha copperleaf, Equisetum arvense, and Goosefoots were labeled as 
1, 2, 3, 4, 5, respectively. These images contained only one species of weed on each image. 
The rest of the areas were bare land. Therefore, the automatic labeling of the weed samples 
was to segment the weeds and bare land and then label the weed areas according to the 
weed types. The weed species on each image were manually labeled.

(a)

(b)

Non-weed Green bristlegrass Thistle Acalypha copperleaf Equisetum arvense Goosefoots

Fig. 4  Fine-tune set a images, b label
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There is a significant difference in color between weeds and bare land. Therefore, weed 
segmentation on the pre-training set can be performed by a color index with threshold seg-
mentation. Excess Green (ExG) was a common color index (Meyer & Neto, 2008). It could 
enlarge the difference between green areas and other areas. It was often used in green plant 
image segmentation. The calculation method was shown in Eq. 1.

The minimum error method was a segmentation threshold finding method based on the 
normal distribution (Hsu et al., 2019). In this paper, it was used to find the optimal segmen-
tation threshold in the Excess Green. In the natural environment, the data usually distribu-
tion obeys the normal (Gaussian) distribution. The normal test can be used to detect the 
extent to which the sample points conformed to a normal distribution (Ghasemi & Zahe-
diasl, 2012; Virtanen et al., 2020). The images in this study were collected from the natural 
environment, so this method could be used. The distribution curve of one sample obeys the 
normal distribution curve (a) (shown in Fig. 6a). The other sample distribution curve obeys 
the normal distribution curve (b) (shown in Fig. 6b). When the centers of these two curves 

(1)ExG = 2 × g − r − b

Semantic 
segmentation 

neural network

Train set image Pre-train set image

Fine-tune set image 

Pre-train set label

Fine-tune set label Segmentation network

Test image Segmentation results Weed density map

Fig. 5  Weed density assessment flow chart
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do not overlap. The value of the horizontal coordinate corresponding to the intersection 
point "o" ( shown in Fig. 6o) of these two curves was the segmentation threshold with the 
minimum error.

The error could be defined as Eq. 2. In order to obtain the minimum value of E(t), let 
the partial derivative of E(t) with respect to t be 0, and the conditions for minimizing 
the error fraction were as Eq.  3. When both weeds and bare land obey normal distribu-
tion, the equation to solve for o could be expressed as Eq. 4. The t value of Eq. 4 could 
be solved as Eqs. 5 and 6:

where w represents the proportion of one kind of samples in the whole image, while 1 − w 
represents the proportion of the other kind of samples in the whole image.

where �a and �b are the mean value of two kind of smple pixels, �a and �b are the root 
means square error of two kind of smple pixels.

In this paper, 30 images were randomly selected and 3000 pixels were randomly 
selected from these 30 images. Each pixel was manually labeled bare land pixes(the 
value set as 0) or green plants (the value set as 1). In these pixels, 2000 pixels were used 
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to calculate the segmentation threshold, and 1000 pixels were used to test the accuracy 
of segmentation. Part of the sample points and labels are shown in Fig. 7.

Determination of sub‑image size.

Due to the limitation of computational resources and the difficulty of manual labeling, the 
original images were cut into sub-images by a Python script. Semantic segmentation was 
used to segment the sub-images. The segment results were then stitched together into a 
complete result map. Since the size of the segmented sub-images had an impact on the seg-
mentation accuracy (Strudel et al., 2021). So an experiment was used to find the optimal 
sub-image size. The images were cut into 256 × 256 , 128 × 128 , 64 × 64 , 32 × 32 , respec-
tively (shown in Fig. 8). FCN, Segnet, and U-net neural networks were used for seman-
tic segmentation of the sub-images (Huang et al., 2018; Badrinarayanan et al., 2017; Zou 
et al., 2021). A suitable sub-image size was selected based on the segmentation accuracy.

Fig. 7  Part of the sample points for green plant segmentation

25612864

64

128

256

32 2561286432

32

64

128

256

32

Fig. 8  Cutting sub-image illustration
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Neural network structure

A semantic segmentation neural network commonly consists of two parts, the encoding 
part, and the decoding part (Huang et al., 2020). The encoding part is the backbone part 
of the neural network. It consists of convolutional layers and pooling layers. Usually, the 
encoding part consists of several abstract feature extraction units. These units are com-
posed of two consecutive convolutional layers and a pooling layer. Multiple such units are 
successively lined up and extracted to the abstract features. In complex classification tasks, 
such as the ImageNet challenge, where there are thousands of categories to be classified, 
the feature extraction units are usually relatively more (Deng et al., 2009). The classifica-
tion in this paper was relatively simple, with only 7 species of plants and bare ground. 
Therefore, there were only two feature extraction units in the encoding part. However, the 
task described in this paper required more information in the shallow layers to improve the 
accuracy of the neural network concerning details. Therefore, the number of convolutional 
kernels in the convolutional layer of the encoding part was doubled. The decoding part 
usually consists of upsampling layers, concatenation layers, and convolutional layers. In 
the research, this part was inspired by U-net(shown in Fig. 9a). In the U-Net, the decoding 
part is usually connected with two consecutive convolutional layers after the concatenate 
layer. The concatenate layer connects the upsampling layer with the corresponding con-
volutional layer of the encoding part. It is used to restore the abstract features extracted by 
the encoding part to the segmentation result. In this research, the number of convolutional 
layers was reduced to one. Although the image class in this paper was relatively few, the 
detailed accuracy of segmentation was required to be high. For example, very thin weed 
leaves should also be accurately segmented. Therefore, the input layer is connected with 
the last convolutional layer. A convolutional layer was added after the concatenate layer. 
This was used to improve the processing ability of details. The structure of the proposed 
semantic segmentation network is shown in Fig.  9b. The parameters of the network are 
shown in Table 1.

Training of neural network training

The hardware environment was Intel Core i7-9700 K CPU, 16 GB memory, NVIDIA 
GeForce RTX 2080 Super. The software environment was Windows 10, CUDA 10.1, 
Python 3.6, and Tensorflow 2.3.

In this paper, the training of neural networks consists of two stages: pre-training and 
fine-tuning (Zou et  al., 2021). In the pre-training stage, automatically labeled, single-
species weed pre-training set images were used in this stage. The "Adam" optimizer was 
used to optimize the network. The learning rate was set to 1 × 10−4 . The loss function 
was "sparse categorical cross-entropy". The batch size of pre-training was set to 10 and 
epochs were set to 80. During the training process, the loss and pixel accuracy of the 
pre-training set and validation set were recorded. Since there is a gap between the data 
in the pre-training set and the data in the real field. Most of the time, real field images 
are of multiple weeds existing simultaneously. The error of using the pre-trained model 
directly is relatively large. Therefore fine-tuning is needed. In the fine-tuning stage, due 
to the network being pre-trained before, the weights of the parameters of the neural net-
work were close to the optimal solution. At this time, if a larger learning rate was set, 
the weight combination would deviate from the optimal solution, so it was necessary to 



468 Precision Agriculture (2023) 24:458–481

1 3

reduce the learning rate. In this study, the learning rate of the fine-tuning stage was set 
to 1 × 10−5 . The batch size of fine-tuning was set to 10 and epochs were set to 40. And 
other parameters were consistent with the pre-training stage.

Crop segment network performance evaluation

In this study, 6 quantitative criteria were used to evaluate the performance of the seg-
mentation network. The accuracy (Acc), precision (Pr), recall (Re), F1-Score(F1) and 
mean average precision (mAP) were used to assess the network (Eqs. 7–10). The Acc, 
Pr, and Re were averaged over all images in the testing dataset. The mAP was the aver-
age value of Pr for all species. The segmentation time of different methods were also 
compared. The segment time (ST) was the time needed to segment a single image. It 
was recorded by the program during segmenting the images.

Input Convolutional Pooling
Output

UpSampling Concatenate

(a)

(b)

Fig. 9  Semantic segmentation neural network structure: a U-Net structure; b Proposed semantic segmenta-
tion network structure
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where: TP is true positive; TN is true negative; FP is false positive; FN is false negative.
Weed coverage rate is a common indicator to assess weed density. It can be calcu-

lated by Eq. 11. In this paper, this metric was used to assess the weed density in images. 
The original image was cut into sub-images and segmented by the proposed semantic 
segmentation network. Then the coverage rate for each species of weed was calculated. 
The relationship between the Rw calculated from the image (predicted Rw) and the Rw 
by expertise visual observation (observed Rw) was evaluated by regression analysis 
(Virtanen et al., 2020).Two criteria, coefficient of determination and root mean square 
error, were calculated and used to assess errors. The coefficient of determination ( R2 ) 
was computed by Eq. 12. The root means square error ( � ) was determined by Eq. 13.

(7)Acc =

∑
TP +

∑
TN∑

TP +

∑
TN +

∑
FP +

∑
FN

× 100%

(8)Pr =

∑
TP∑

TP +

∑
FP

× 100%

(9)Re =

∑
TP∑

TP +

∑
FN

× 100%

(10)F1 =2 ×
(
Pr × Re

Pr + Re

)
× 100%

Table 1  Parameters of proposed semantic segmentation network

Layer name Layer type Output shape Connected to

Input_1 Input (256, 256, 3) None
Convolution_1 Conv2D (256, 256, 64) Input_1
Convolution_2 Conv2D (256, 256, 64) Convolution_1
Maxpooling_1 MaxPooling2D (128, 128, 64) Convolution_2
Convolution_3 Conv2D (128, 128, 128) Maxpooling_1
Convolution_4 Conv2D (128, 128, 128) Convolution_3
MaxPooling_2 MaxPooling2D (64, 64, 128) Convolution_4
UpSampling_1 UpSampling2D (64, 64, 128) MaxPooling_2
Concatenate_1 Concatenate (64, 64, 256) UpSampling_1 & Convolution_4
Convolution_5 Conv2D (64, 64, 256) Concatenate_1
UpSampling_2 UpSampling2D (128, 128, 256) Convolution_5
Concatenate_2 Concatenate (128, 128, 384) UpSampling_2 & Convolution_3
Convolution_6 Conv2D (128, 128, 128) Concatenate_2
Convolution_7 Conv2D (256, 256, 64) Convolution_6
Concatenate_3 Concatenate (256, 256, 67) Convolution_7 & Input_1
Convolution_11 Conv2D (256, 256, 6) Concatenate_3
Activation Softmax (256, 256, 6) Convolution_11
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where Rw is the ratio of weed area, Sweed is the area of weeds and Stotal is the area of whole 
field.

where, Yoi and Ypi are respectively the i-th observed and predicted Rw from N total data.

Results and disscussion

Automatic labeling of results for pre‑training sets

After the normal test, the P-value of the weed samples on the ExG color index was 0.88; 
The P-value of the bare land samples on the ExG color index was 0.02. All the P-values of 
the normal test results were more than 0.01, indicating that they all obeyed the normal dis-
tribution significantly. The �a of the weed sample was calculated to be 123.88, the �a was 
39.87. The �b of the bare land sample was 7.38, the �b was 13.34; The split point t was 42. 
Histograms and fitted probability density function curves of weeds and bare land on ExG 
are shown in Fig. 10. After testing on 1000 pixels, the accuracy of weed and bare land seg-
mentation using this method was 98.57%. Some sample images of the pre-training set after 
partial segmentation and labeled by kind are shown in Fig. 11.

The results show that the ExG can effectively expand the color difference between 
weed samples and bare land, making the threshold segmentation easier. The segmentation 

(11)Rw =

Sweed

Stotal
× 100%

(12)R2
=

⎡
⎢⎢⎣
1 −

∑N

i=1
(Yoi − Ypi

2
)

∑N

i=1
(Yoi − (Yo)

2
)

⎤
⎥⎥⎦

(13)� =

[
1

N

N∑
i=1

(Ypi − Yoi
2
)

]1∕2

Bare land

Weeds

Fig. 10  Histograms and fitted probability density function curves
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thresholds obtained using the minimum error method could effectively segment weed sam-
ples and bare land samples. The automatically labeling method would theoretically make 
the pre-trained samples have little error. However, a manual labeling sample was used 
in the fine-tuning stage, which can correct the error generated in the automatic labeling 
process.

Sub‑image size evaluation result

The segmentation results of the sub-image in different sizes are shown in Table  2. It 
could be seen that the segmentation accuracy of all neural networks was higher when the 

(a)

(b)

Non-weed Green bristlegrass Thistle Acalypha copperleaf Equisetum arvense Goosefoots

Fig. 11  Automatic labeling of results for pre-training sets

Table 2  Image segmentation results in different sub-image sizes

Subimage 
size

Network 
type

Over accu-
racy

Precision

Non-weed Green 
bris-
tlegrass

Thistle Acalypha 
copper-
leaf

Equi-
setum 
arvense

Goosefoots

256 × 256 U-net 0.96 0.97 0.85 0.79 0.81 0.87 0.97
SegNet 0.95 0.98 0.71 0.78 0.70 0.60 0.81
FCN 0.92 0.94 0.33 0.69 0.92 0.63 0.44

128 × 128 U-net 0.96 0.82 0.98 0.71 0.77 0.92 0.68
SegNet 0.92 0.95 0.73 0.58 0.25 0.05 0.60
FCN 0.89 0.93 0.16 0.43 0.13 0.01 0.07

64 × 64 U-net 0.92 0.97 0.73 0.39 0.54 0.89 0.22
SegNet 0.91 0.97 0.60 0.41 0.60 0.84 0.28
FCN 0.90 0.94 0.12 0.40 0.22 0.59 0.36

32 × 32 U-net 0.89 0.98 0.47 0.29 0.49 0.69 0.15
SegNet 0.89 0.96 0.53 0.33 0.22 0.68 0.01
FCN 0.88 0.95 0.24 0.21 0.20 0.64 0.01
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sub-image size was 256 × 256 . The accuracy of U-net was 0.97, Segnet was 0.95, and 
FCN was 0.92. As the sub-image size decreases, the segmentation accuracy of the neural 
networks gradually decreases. When the sub-image size was 128 × 128 , the segmentation 
accuracy of U-net was 0.96; Segnet was 0.92, and FCN was 0.89. When the sub-image size 
was 64 × 64 , the segmentation accuracy of U-net was 0.92, Segnet was 0.91, and FCN was 
0.89. When the sub-image size was 32 × 32 , the segmentation accuracy of the segmented 
U-net was 0.89, Segnet was 0.89, and FCN was 0.88. From the table, it could also be seen 
that the precision of bare land was relatively high, and was above 90%. But the precision of 
weeds was changing with the change of sub-image size. Especially, Thistle and Acalypha 
copperleaf decreased precision with the decrease of sub-image size.

By observing Fig.  8, it could be found that when the image was relatively large, the 
structure of the weed could be retained in the image relatively intact. Such an image could 
be recognized and accurately segmented by the neural network. But when the image was 
cut smaller, some of the weed structures were incomplete, and the neural network would be 
wrongly segmented because it did not get the complete image information. Since Acaly-
pha copperleaf, Equisetum arvense, and Goosefoots were relatively small, they were more 
likely to have incomplete images after being cut. So their accuracy was lower. Bare land 
was more uniform, and the color and texture features remain unchanged, so they could be 
better segmented. Therefore, when the computational resources were insufficient and the 
image needed to be cut, the larger the cut sub-image size was, the better segment perfor-
mance was. In this paper, due to the limitation of computational resources, the final sub-
image size was determined as 256 × 256.

Neural network training results

The changes in accuracy and loss during pre-training and fine-tuning of the neural net-
work as the training proceeds are shown in Figs.  12 and 13. As could be seen from 
Fig. 12, the loss value of the neural network decreases steadily and the accuracy value 
increases steadily as the pre-training proceeds. Although there were some fluctua-
tions, the overall trend tends to be stable. The loss and accuracy tend to stabilize in the 
later stage of training. There was no significant difference between the accuracy and 

(a) (b)

Fig. 12  The accuracy and loss during pre-training. a Training and validation accuracy, b Training and vali-
dation loss
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loss values of the training and validation sets. Therefore, the pre-training was adequate 
and no overfitting. From Fig. 13, it could be seen that the accuracy of the training and 
validation sets steadily decrease during fine-tuning. It stabilizes when it rose to about 
0.97. The loss value decreases and then stabilizes. There was no significant difference 
between the training set loss and the validation set loss, so no overfitting occurs. Fig-
ure 14 shows that when the neural network was trained directly with the fine-tuning set, 
the accuracy went through a growth phase and then stagnated at around 0.87. The loss 
stagnates after a decline phase. This indicated that the training process reached a local 
optimal solution and then stalled.

The results show that the combination of pre-training and fine-tuning used in this 
paper was effective. This method could effectively reduce the need for manually labeled 
samples. At the same time, it could avoid the neural network falling into a locally opti-
mal solution. Direct training with the fine-tuning set without pre-training was much less 
effective than the combination of pre-training and fine-tuning.

(a) (b)

Fig. 13  The accuracy and loss during fine-tuning. a Training and validation accuracy, b Training and vali-
dation loss

(a) (b)

Fig. 14  The accuracy and loss during training only with the fine-tuning set. a Training and validation accu-
racy, b Training and validation loss
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Image segmentation results

The original images, labels, and segmentation results of different neural networks for 
some of the test sets are shown in Fig. 15. By observing the images, it was clear that 
the segmentation results of the proposed semantic segmentation network were better. 
Its segmentation accuracy was the highest, reaching 97%. However, there were still 

(a)

(b)

(c)

(d)

(e)

(f)

Bare land Green bristlegrass Thistle Acalypha copperleaf Equisetum arvense Goosefoots

Fig. 15  Different neural network segmentation results. a Image, b Label, c Proposed network, d U-net, e 
Segnet, f FCN
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errors at the edges. For example, some pixels were segmented as Green bristlegrass at 
the edges of some Thistle. U-net also had good segmentation results, but some details 
were segmented incorrectly, so the segmentation accuracy was slightly reduced to 96%. 
Segnet network was better for the segmentation of large areas. But the detail processing 
ability was poor. Its segmentation accuracy was 0.95. In the segmentation of Equisetum 
arvense, the detail processing ability was weak, so the bare land in the weed gap was 
segmented as weeds. FCN had the weakest segmentation ability. This network could 
only segment large and independent weeds accurately, such as Acalypha copperleaf. It 
was less effective in the case of overlapping crops and weeds, or when the weeds them-
selves were complex. There was also some weed segmented wrongly. The accuracy, 

Table 3  Data analysis of proposed network segmentation results

Sample type Precision Recall F1-score Sample number

Non-weed 0.98 0.99 0.99 2790580
Green bristlegrass 0.87 0.75 0.81 100615
Thistle 0.86 0.71 0.78 83904
Acalypha copperleaf 0.77 0.67 0.72 43016
Equisetum arvense 0.86 0.83 0.85 60623
Goosefoots 0.95 0.95 0.95 132526
Overall accuracy 0.97
Mean Average Precision 0.88

1 %

0 %

2 %

3 %

4 %

≥5 %

Fig. 16  Confusion matrix. a Non-weed b Green bristlegrass c Thistle d Acalypha copperleaf e Equisetum 
arvense f Goosefoots
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precision, recall, F1-score and mean average precision of the proposed semantic seg-
mentation network segmentation results are shown in Table  3. The confusion matrix 
is shown in Fig. 16. The average segmentation time (ST) of one image of the proposed 
semantic segmentation network, U-net, Segnet, and FCN was 56.28 ms, 74.35 ms, 68.23 
ms, and 63.51 ms respectively. The proposed semantic segmentation network was less 
complex and could run faster because the backbone network was simplified.

Weed density assessment results

Weed assessment results of a sample are shown in Fig. 17. The results of the regression 
analysis between the algorithm-assessed weed density results and the manually-assessed 
weed density results are shown in Fig. 18. Firstly, it could be seen from Fig. 18a, regres-
sion analysis showed that the relationship between the algorithm assessed weed den-
sity and the manually observed weed density was y = 0.95x + 0.02 . The coefficient of 
determination R2 was 0.90, and the root means square error ( � ) 0.05. This indicated that 
the correlation between the two was good. It was effective to evaluate weed density by 
the algorithm. The slope of the relationship was 0.95, and the intercept was 0.02. This 
indicates that the weed density assessed by the algorithm was slightly higher than the 
weed density assessed manually. From the images, it could be seen that some of the 
weeds were incorrectly segmented as non-weed. Therefore, the weed density assessed 
by the algorithm was slightly less than that assessed manually. The regression analysis 
of Green bristlegrass is shown in Figure  18b. Where the slope was 1.02, which indi-
cates that the results of the algorithm assessment were higher than those of the manual 
assessment. Some of the other types of weeds were classified as Green bristlegrass by 
the algorithm. It could be found from images that some of the pixels at the edges of 
the other types of weeds were segmented as Green bristlegrass, which led to a higher 

(a)

(c)

(b)

(d)

Fig. 17  Results of weed density assessment in the field. a Image, b Weed segment result c Mixed map of 
weed density, d Heat map of weed density
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density of Green bristlegrass evaluated by the algorithm. The same situation occurs in 
Figure 18d for Acalypha copperleaf. The situation for other types of weeds was consist-
ent with the overall situation.

Discussion

In this paper, a method to assess the density of each species of weed by images was investi-
gated. This method could accurately segment weed images and assessment of weed density 
in complex environments, where containing multiple weeds and different crops.

In previous studies, Mainstream methods usually employ object detection algorithms 
to detect crop locations (Jin et al., 2021). After getting the crop, all other locations were 
sprayed with herbicides. This method was effective in avoiding spraying to the crop. But it 
failed to accurately exclude bare ground. It also causes some herbicide waste and pollution. 

(a) (b)

(d)

(f)

(c)

(e)

Fig. 18  Regression analysis result of algorithm evaluation and manual evaluation. a All weeds, b Green 
bristlegrass, c Thistle, d Acalypha copperleaf, e Equisetum arvense, f Goosefoots
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This study presents the first identification scheme for weeds. The subjects identified were 
five common weeds. This method can accurately identify the location and density of each 
weed. It can weed more precisely.

To solve the problem of difficult manual labeling samples, the training method in this 
research consisted of pre-training and fine-tuning. In the previous pre-training, the open-
access datasets with labels are often used for training (Abdalla et al., 2019; Bosilj et al., 
2020). However, there was no suitable labeled weed dataset available for this study. There-
fore, a training method using automatically labeled samples was proposed for the first time. 
And these samples were automatically labeled by an algorithm. Meanwhile, this paper 
adopted single-class samples pre-training method for the first time. There were multiple 
types of weeds in the real samples. But due to the difficulty of labeling, in the pre-trained 
samples, there was only one type of weed on each sample. The experimental results proved 
that such samples can also be effective for pre-training the neural network. The training 
method in this paper reduced the number of manually labeled samples and made sample 
labeling easier. Labor and time were saved.

Due to the limitation of computational resources, the whole images could not be fed 
into the neural network for semantic segmentation at one time. This paper was the first 
to propose semantic segmentation after cutting the image into sub-images. For this pur-
pose, the relationship between the size of the cut sub-images and the accuracy of the model 
was investigated. After an experiment, it was found that the error was smaller when the 
sub-images were larger. This was because the weed images were cut incomplete when the 
sub-images were too smaller. The neural network could not make an accurate classification 
based on the limited image.

Based on the characteristics of weeds, a new neural network structure was proposed. 
This neural network had less number of network layers in the encoding part. The number 
of convolution kernels became more. In the decoding part, the number of convolutional 
layers was reduced. The connections of the input layers were added. Such a neural network 
could operate faster and have better accuracy for detail segmentation than the classical neu-
ral network used in previous studies (Su et al., 2021; Huang et al., 2018; Khan et al., 2020).

Conclusions

This paper introduces a method for assessing multiple weed densities and species by 
images. A more efficient neural network structure was proposed. This network was trained 
by pre-training and fine-tuning. And a method to automatically label pre-training samples 
was proposed. To solve the limitation of computer resources, a method of cutting images 
into serval sub-images for processing was proposed and studied. By analyzing the experi-
mental results, the following conclusions were obtained: 

(1) The image segmentation method by a combination of ExG and minimum error thresh-
old could be used to automatically label the pre-training samples. The accuracy of these 
labels reaches 98.75%.

(2) In the task of multiple weed segmentation, using images with only one type of weed 
on each image for pre-training was effective in improving model performance.

(3) The larger the sub-image, the higher the accuracy obtained, as far as the computational 
conditions allow. The sub-image size of 256 × 256 or more was acceptable.
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(4) The proposed semantic segmentation network could achieve better weed segmentation 
results. The accuracy rate reached 97%. The average segmentation time of each sum-
image was 56.28 ms. The coefficient of determination ( R2 ) between algorithm-assessed 
weed density and the manually-assessed weed density was 0.90, and the root means 
square error ( � ) was 0.05.

(5) The results show that the algorithm can effectively evaluate the density of various 
weeds. It provides a reference for accurate weed control for weed species.
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