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Abstract
The coffee crops are exposed to different pathogens that directly affect yield. These in-
clude nematodes, which attack the roots of plants and compromise their physiological de-
velopment. Given the losses caused by this pathogen and the lack of information on spatial 
distribution in infested areas, it is important to adopt technologies that enable crops under 
different management systems to be monitored during their growth cycle. The remote 
sensing associated with machine learning algorithms is presented as a potential tool for 
monitoring agricultural crops. The present study assesses different machine learning algo-
rithms, using radiometric values of multispectral images as input datasets, and identifies 
the best algorithms, to estimate the physiological agronomic parameters in coffee crops 
submitted to 11 treatments for nematode management. Based on the association between 
the images taken by a low-cost camera (bands: (R) red, (G) green and (B) blue) mounted 
on a remotely piloted aircraft (RPA), machine learning algorithms (Random Forest (RF) 
and support-vector machines (SVM)), the results made it possible to estimate with sat-
isfactory accuracy (root mean square error (RMSE) less than 26.5% the main physical 
parameters of coffee plants: chlorophyll, plant height, branch length, number of branches 
and number of nodes per branch. With Planet satellite-derived multispectral bands, the 
SVM algorithm estimated plant canopy diameters with an RMSE of 7.74%. Based on 
the spatial distribution maps of the physical parameters, the application machine learning 
methods offered an opportunity to better use remote sensing data for monitoring coffee 
crop growth conditions and accurately guiding several management techniques.
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Introduction

As the world’s largest producer and exporter of coffee, Brazil plays an important role in 
coffee production. According to the International Coffee Organization (ICO, 2021), in the 
2019/2020 growing season the country produced 63,400 million bags of coffee, 40,511 mil-
lion of which were exported. Given the economic importance of coffee farming, a wide 
range of management techniques are used to directly influence aspects such as yield, pro-
duction costs and quality. Additionally, much like other crops, coffee is exposed to different 
physiological disturbances, as well as pests and diseases that affect the plants and compro-
mise yields or make it impossible to economically exploit the crop.

One example are nematodes, plant pathogens that live and develop in the soil and attack 
the roots of coffee plants, compromising their physiological development in the field and 
hampering growth and production. Visible symptoms on plants parasitized by nematodes 
include leaf yellowing, foliar necrosis, leaf drop, nutrient deficiencies, dry branches, a gen-
eral plant decline and can even cause plant death (Ferraz, 2008; Villain et al., 2013). Several 
methods have been applied to reduce nematode populations in different crops, including the 
use of cultivars resistant to certain nematode species and chemical control. Biological con-
trol with bionematicides, using fungi and rhizobacteria, has been effectively applied in cof-
fee crops to reduce and manage nematode populations in the soil (Campos & Silva, 2008).

The high cost of laboratory testing to quantify levels of nematode infestation in the soil 
and the losses caused by these pathogens has demonstrated the need for new methods to 
detect and quantify them in coffee crops (Martins et al., 2017). In this respect, it is important 
to consider that despite the scarcity of data on the spatial distribution, management and sur-
rounding environments of infested areas, it is vital to monitor the crop throughout its growth 
cycle in order to obtain high yields and quality crops (Alves et al., 2016).

In light of the need to obtain more information on agricultural systems, technological 
advances have led to the use of remote sensors to estimate yield components (Zerbato et 
al., 2016). These sensors measure the radiation reflected from targets, which can be used to 
obtain information on the type of crop planted and its phenological or nutritional status, and 
to identify the occurrence of diseases and pests (Sharifi, 2021; Arantes et al., 2021; Abdul-
ridha et al., 2019; Diao, 2020; Martins et al., 2020).

Advanced machine learning techniques have been applied to develop models, using dif-
ferent variables capable of associating yield with factors that influence crop growth (Bocca 
& Rodrigues, 2016). In conjunction with the data acquired by remote sensors, these tech-
niques have been the focus of several studies aimed at monitoring and estimating agronomic 
parameters (Singhal et al., 2019; Ranđelović et al., 2020; Zha et al., 2020; Zhou et al., 2019; 
Sousa et al., 2021).

A number of studies describe the performance of spectral models based on machine 
learning algorithms in detecting categorical agricultural variables (areas under water and 
nutritional stress) and estimating continuous variables (agronomic yield parameters). Che-
mura et al., (2017) used the RF algorithm and MSI Sentinel-2 spectral data with spatial 
resolutions of 10 and 20 m to estimate chlorophyll indices in coffee crops. The algorithm 
produced significant RMSE results of 6.80 for plants in different phenological stages across 
the entire experimental area, using spectral bands with a spatial resolution of 10 m. Other 
studies used Artificial Neural Network (ANN) and linear regression to estimate plant height, 
based on data acquired by remote sensing platforms. Ndikumana et al., (2018) used three 
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algorithms (multiple linear regression, support vector regression and RF) to validate the 
ability of Sentinel-1 multitemporal radar images to estimate plant height and dry bio-
mass in rice plants. The RF algorithm exhibited the best performance, with R²= 0.92 and 
RMSE = 16%. The model performed best when applied only to plants with mature fruit, with 
a decline in RMSE to 5.90. In other studies, SVM, ANN and linear regression were used to 
estimate chlorophyll indices based on data acquired by remote sensing platforms. Sánches 
(2019) used hyperspectral data with the SVM algorithm to estimate chlorophyll indices in 
Guinea grass and recorded an average RMSE of 0.2280. Visible and red-edge spectral bands 
produced the most accurate chlorophyll content estimates. Oliveira et al. (2019) used algo-
rithms based on artificial neural networks to predict the maturation of peanut pods in irri-
gated and dry regions. The neural networks produced significant results and performed best 
when the modified vegetation indices were used, with RMSE values of 0.069 and 0.088, 
whereas the original indices produced RMSE results of 0.090 and 0.094. To assess plant 
height in sugarcane plantations, Bunruang & Kaewplang (2021) tested three machine learn-
ing algorithms (generalized linear model, decision tree and support vector machine) using 
the reflectance values of RGB images obtained in RPA surveys and digital terrain models. 
The results demonstrated a correlation between measured and estimated height, with the 
support vector machine exhibiting the best performance (R² = 0.82 and RMSE = 0.19).

Thus, the hypothesis is that agricultural variables can be accurately estimated by spectral 
models based on machine learning algorithms, considering vegetation indices and spectral 
bands derived from RPA orbital sensors as predictor variables. In addition, given the limited 
literature investigating the estimation of coffee plant yield via spectral models, it remains 
unclear whether accurate agricultural monitoring can be applied to estimate the physiologi-
cal parameters of coffee plants based on machine learning algorithms.

In order to answer these questions and test the research hypothesis, the present study 
aims to compare different machine learning algorithms, using input datasets compiled with 
remote sensing data, identify the best algorithm combinations, datasets and remote sensors, 
and propose a means of monitoring the agronomic physiological parameters of coffee crops 
submitted to nematode management treatments in an area with a history of high infestation 
levels, without the need for direct and destructive measurement methods. It is important to 
underscore that these technologies may provide a more cost-effective means of obtaining 
rapid, accurate and adequate information in extensive agricultural areas and allow decisions 
about the precise management of the nematode in a localized area.

To that end, spectral models based on machine learning algorithms were developed to 
monitor a nematode-infested coffee plantation submitted to 11 chemical and biological 
treatments. The ANN, SVM and RF algorithms were assessed and the images taken by 
multispectral images mounted on an RPA and orbital satellites.

Methodology

For the purposes of this study, stages were established for field analyses involving the col-
lection of agronomic data, image acquisition and data processing, as follows: (1) definition 
of the study area; (2) field assessments to obtain agronomic parameters; (3) multispectral 
image acquisition; (4) digital image processing; (5) data mining; (6) generating predictive 
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models for agronomic variables; (7) assessing the accuracy of the predictive models; and (8) 
generating spatial distribution maps for the agronomic parameters.

Fig. 2 Location of the study area. (a) Brazil. (b) Minas Gerais state (MG). (c) Municipality of Monte Carme-
lo-MG, located in the Triângulo Mineiro e Alto Paranaíba mesoregion. (d) Experimental area, outlined in red, 
in a natural color composition (RGB) image obtained by RPA survey

 

Fig. 1 Flowchart of the study stages
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Figure 1 presents the flowchart for the activities carried out in the assessment stages, data 
processing and results analysis.

Study area

The experiment was conducted at Fazenda Juliana, a private farm in the municipality of 
Monte Carmelo, Minas Gerais state (MG), in the Triângulo Mineiro and Alto Paranaíba 
mesoregion, Brazil (-18º41’59’ latitude, -47º33’53 longitude and 826 m a.s.l.; Fig. 2). Cli-
mate in the region is tropical with a dry winter, according to the Köppen–Geiger classifica-
tion system.

Biological and chemical treatments

For the management of plant-parasitic nematodes, coffee plants were treated with seven 
Bacillus isolates separately (B. subtilis isolates B18, B202, and B33; B. thuringiensis isolate 
B22; B. safensis isolate B53; B. amyloliquefaciens isolate B266). The isolates belong to the 
Laboratory of Microbiology and Plant Pathology of the Federal University of Uberlândia 
– Campus Monte Carmelo and were applied at a dose of 4 L ha− 1 and with a concentration 
of 1 × 109 CFU mL− 1 (colony forming unit). In addition, the plants were treated with a com-
mercial biological product based on B. subtilis + B. licheniformis (Q; 300 g of product ha− 1); 
combined application of abamectin + Q (AQ; abamectin at 375 mL ha− 1); and a commercial 
chemical nematicide based on fluensulfone (F; 2 L ha− 1). Water was applied as a negative 
control (T).

Non-commercial bacterial isolates were streaked onto Petri dishes containing solid 
medium 523 (Kado and Heskett, 1970). The plates were kept in an incubator at 25 °C. After 
2 days, 1 cm³ of the colonized medium was transferred to 250 mL conical flasks contain-
ing liquid medium 523. The flasks were shaken at 25 ± 2 °C and 150 rpm for 5 days in the 
dark. The bacterial suspensions were indirectly calibrated using a light spectrophotometer 
adjusted for optical density at 600 nm. Readings equal to 1.8 were equivalent to the concen-
tration of 1 × 109 CFU mL− 1. The choice of this concentration was based on liquid formula-
tions of commercial products based on Bacillus spp. All bacterial isolates and commercial 
products were applied on the soil surface on both sides of each plant using a backpack 
sprayer. A spray volume of 500 L ha− 1 was used to cover a 50-cm-wide band under the plant 
canopy. The organic materials on the soil surface were removed before application and were 
replaced after the soil treatment. The experiment was arranged in a randomized block design 
with 11 treatments and five replicates, with each experimental plot consisting of 28 plants, 
with two plants at each end used as borders.

Characterization and general conditions of the experimental area

The experimental area covers 15,113 m2 and is cultivated with the coffee species Coffea 
arabica L. cv. Yellow Bourbon, established in 2013, with a history of high nematode infes-
tation levels. It is irrigated via drip irrigation, with plants spaced 0.7 m apart and 3.8 m 
between the rows. Nematode analyses indicated the presence of four nematode genera in the 
experimental area, namely Meloidogyne, Pratylenchus, Rotylenchulus and Mesocriconema. 
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Among these, Meloidogyne and Pratylenchus are detected more frequently in coffee crops, 
causing substantial economic losses.

To characterize nematode population distribution before and after treatment, character-
ization maps were created based on the laboratory test results for Meloidogyne and Prat-
ylenchus, the genera with the highest incidence in coffee crops. The results were interpolated 
by inverse distance weighting (IDW), using ArcGis 10.5 software.

The characterization map shows initial nematode population distribution (before treat-
ment application) and were generated based on the results of laboratory analyses of soil 
collected for the first assessment (09/23/2019) (Fig. 3). For Meloidogyne sp. (Fig. 3a), 
the eastern portion of the experimental area exhibited the highest concentration of juve-
niles/150 cm³ of soil and the western section the lowest. The western region contains areas 
with a population density of 200 to 600 and 600 to 800 juveniles/150 cm³ of soil, and three 
critical sites with 800 to 1000 juveniles/ 150 cm³ of soil. Smaller juvenile populations were 
observed across almost the entire western portion of the experimental area, with 0 to 200 
juveniles/150cm3 of soil, and some points closer to the eastern section exhibiting densities 
of 200 to 600 and 600 to 800 juveniles/150 cm³ of soil. Population density for Pratylenchus 
sp. (Fig. 3b) is 0 to 300 individuals/150 cm³ of soil across almost the whole experimental 
area, with 300 to 600 individuals/150 cm³ of soil at some locations. Two critical points can 

Fig. 3 Spatial distribution of nematode populations in the experimental area before treatment, for (a) 
Meloidogyne sp. and (b) Pratylenchus sp. in the first assessment (09/23/2019)
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be seen in the eastern section, with density populations of 1300 to 1500 individuals/ 150 cm³ 
of soil.

A randomized block design (RBD) was used, with each block separated by 2 rows of 
coffee plants and 11 nematode-management treatments/block, with 5 repetitions. The plots 
contained 32 coffee plants, with the 2 at the ends of each plot disregarded as border plants 
in order to prevent interference from treatments applied in neighboring plots. Among the 
plants eligible for assessment of agronomic parameters, the 3 center plants were selected for 
analysis, as shown in Fig. 4.

All the plots were delimited using striped tape to indicate the beginning and end of each 
plot. The 3 plants selected for assessment were identified with small flags mounted on stakes 
placed in front of the center plant, making them easier to locate. The pair of plagiotropic 
branches were identified using red tape tied to the base of the branch. The experimental 
area, plots and plants assessed were georeferenced using coordinates obtained with a HiPer 
V dual-frequency global navigation satellite system (GNSS) receiver (L1/L2) by real-time 
kinematic (RTK) positioning.

Acquiring and measuring agronomic parameters

Sample collections to measure the agronomic parameters were conducted in 3 assessment 
periods. For the first assessment, initiated in the week beginning September 23, 2019, soil 
samples from each plot were analyzed to quantify the initial nematode population density 
in the experimental area, and the first application of chemical and biological treatments was 
carried out in the first week of October. The second application of treatments was performed 

Fig. 4 Characterization map of the experimental area. (a) Experimental area consisting of 55 plots divided 
into 5 blocks (BL), and distribution of the chemical and biological treatments applied during the study to 
manage nematodes, each plot is identified with the code of the treatments applied (B18, B202, and B33: B. 
subtilis isolates; B22: B. thuringiensis isolate; B53: B. safensis isolate; B266: B. amyloliquefaciens isolate; 
Q: B. subtilis + B. licheniformis; F: fluensulfone; AQ; abamectin + Q ; T: negative control); (b) Location of the 
three center plants assessed in each plot
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in the second assessment (week beginning November 25, 2019) and in the third assessment 
(week beginning March 12, 2020), soil samples were collected for a second time to quan-
tify nematode population density after treatment. Multispectral images were obtained and 
growth-related agronomic parameters measured in all the assessment stages.

The following agronomic physiological parameters were assessed: plant height (m), 
measured from the plant base to the apical bud of the orthotropic branch (m), with a 5-meter 
stadiametric rangefinder; number of plagiotropic branches, obtained by counting the pro-
ductive branches along the orthotropic branch; number of nodes, determined by counting 
pairs of north and south-facing plagiotropic branches in the middle third of the plant; length 
of the plagiotropic branches (m), measured from the base of the orthotropic branch to the 
apex of the north or south-facing plagiotropic branch, with a fiberglass measuring tape; total 
chlorophyll index, determined in healthy leaves in the middle and upper third of the plants, 
using a portable chlorophyll meter (Falker CFL 1030); canopy diameter (m), measured from 
the multispectral images obtained in aerial surveys.

The sample data collected were measured and evaluated on the same plants for all the 
assessments. After collection, the data were tabulated and the arithmetic means of the 3 
plants assessed per plot were considered in analyses.

Soil sampling for nematode analyses

In order to quantify the nematode population and identify the different species in the experi-
mental area, 500 g soil samples were collected at a depth of 20 cm. Samples were taken in 
the middle of all the plots, from the location of the center plants. Laboratory testing was 
conducted in partnership with the Brazilian Laboratory of Environmental and Agricultural 
Analyses (LABRAS) in Monte Carmelo (MG).

Multispectral image acquisition

Concomitantly to the growth assessments, multispectral images were taken of the study 
area in order to estimate the agronomic parameters of coffee plants based on these images, 
which depict the development of the crop after treatments to manage areas infested with 
nematodes. In this respect, multispectral data were obtained by aerial surveys and orbital 
platforms.

The aerial survey images were obtained by a remotely piloted aircraft (RPA) (Phanthon 4 
PRO) equipped with a native camera (Complementary Metal Oxide Semiconductor sensor) 
that captures blue (B) (430–460 nm), green (G) (550–570 nm) and red (R) (640 680 nm) 
wavelengths, with 20MP resolution.

A second multispectral camera (MAPIR Survey 3 N, non-fisheye), equipped with a sen-
sor that captures red (R) (640–680 nm), green (G) (540–560 nm) and near-infrared (NIR) 
(8330 − 870 nm) wavelengths at 12MP resolution, was used in the aerial surveys. The 
MAPIR camera was attached to the RPA so that images could be obtained simultaneously 
by both sensors during the same flight. The images were taken at similar times of day.

High resolution multispectral images were obtained via orbital remote sensors from the 
PlanetScope-PS2 satellite constellation, taken on the same or similar dates to those of the 
assessments, considering the weather conditions in the region. The spatial and radiometric 
resolutions of the Planet satellite images are 3 m and 12 bits, respectively. The satellite con-
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stellation uses Charge Coupled Device sensors equipped with Bayer filters that capture blue 
(B) (455–515 nm), green (G) (500–590 nm), red (R) (590–670 nm) and near-infrared (NIR) 
(780–860 nm) wavelengths. The images are configured in the Universe Transverse Mercator 
(UTM) projection system, WGS-84 datum surface and 3B correction level, provided with 
an orthorectified image product and corrected to surface reflectance values.

Digital image processing

Geometric and atmospheric corrections

Drone survey images were processed by photogrammetry, where the images were imported 
with their respective metadata (geotags, geographic coordinates, altitudes and focal dis-
tance, referenced to SIRGAS 2000 datum). Aerotriangulation was performed automatically, 
following the workflows that involve photoalignment and construction of densified clouds 
and the digital elevation model, applying machine learning models based on the search for 
homologous image points and using Agisoft PhotoScan Professional software. Next, the 
images were georeferenced using the ENVI 5.1 program, based on the control points col-
lected in the field with the GNSS receiver.

The Planet satellite images did not require atmospheric correction because they were 
obtained in Surface Reflectance (SR) format. In this format, standard analytical products 
(radiance) are processed for top-of-atmosphere reflectance and then atmospherically cor-
rected for surface reflectance. Surface reflectance is determined from top of atmosphere 
(TOA) reflectance, calculated pixel-to-pixel using search tables created from the radiative 
transfer code, which maps reflectance (TOA) for 2 bottom of atmosphere (BOA) reflec-
tances for all the relevant physical condition combination ranges of satellite images from 
this constellation. Based on near real-time (NRT) MODIS satellite data, and if there is no 
overlap of water vapor and ozone data collected on the same day, a 6 S atmospheric model 
is selected based on the local latitude and time of the year of image acquisition, using the 
FLAASH atmospheric correction tool.

Radiometric normalization

In this stage, images from the first assessment served as the basis for normalizing those from 
the second and third assessments. The radiance of the RPA images and the surface reflec-
tance factor of the Planet image were extracted by supervised learning for the same bright 
and dark targets and each image to be normalized. The values extracted were used in Eq. 1 
and processed via the Band Math function in ENVI 5.1 software.

 Ti = mi ∗ xi + bi  ((1))

Where:

 mi = (Bri ∗ Dri) /(Bsi − Dsi);

 bi = (Dri ∗ Bsi − Dsi ∗ Bri)/(Bsi − Dsi);
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 Ti = BRDFoftheimagetobenormalized ;

 xi = BRDFoftheoriginalimagetobenormalized;

 Bri = averageofthelighttargetreferenceset;

 Dri = averageofthedarktargetreferenceset;

 Bsi = averageofthelighttargetsettobenormalized;

 Dsi = averageofthedarktargetsettobenormalized

 i = bandsofthesensorunderstudy

Calculating the vegetation indices

Nine vegetation indices widely applied in agricultural areas were selected as predictors for 
the predictive models of the agronomic parameters: NDVI, CVI, VARI, TGI, ARVI, SIPI, 
MPRI, SR and GNDVI (Table 1). The indices were applied to each sensor, considering its 
respective spectral range.

Cluster analysis

Several configurations were evaluated to select the best predictive model, varying the 
algorithms and input datasets with different spectral bands and vegetation indices. Cluster 
analysis was applied to the input datasets in order to determine the different band and index 
combinations for each individual sensor, using Minitab 19 software.

Vegetation Index Reference Formula
NDVI - Normalized Difference 
Vegetation

Rouse et al. 
(1974)

(NIR-R)/
(NIR + R)

MPRI - Modified Photochemi-
cal Reflectance Index

Yang et al. 
(2008)

(G-R)/(G + R)

GNDVI - Green Normalized 
Difference Vegetation Index

Gitelson et al. 
(1996)

(NIR-G)/
(NIR + G)

ARVI - Atmospherically Resis-
tant Vegetation Index

Kaufman e Tanré 
(1992)

(NIR-(2*R) + B)/
(NIR+(2*R) + B)

VARI - Visible Atmospherically 
Resistant Index

Gitelson et al. 
(2002)

(G-R)/(G + R-B)

CVI - Chlorophyll Vegetation 
Index

Vincini et al. 
(2008)

NIR*(R/G²)

SIPI - Structure Insensitive Pig-
ment Index

Peňuelas et al., 
1995

(NIR-B)/
(NIR-R)

TGI - Green Triangular Index Hunt et al. 
(2011)

G - (0.39 *R) 
- (0.61*B)

SR - Simple Ratio Jordan (1969) (NIR/R)

Table 1 Vegetation indices ap-
plicable in agricultural areas
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For this stage, the software was set to a fully connected layer with distance measured by 
correlation. This means that similarities between two clusters are defined by the greatest 
distance between any variable in one cluster and any in another, calculated by a distance 
matrix. Additionally, as a final partitioning criterion, the similarity level was selected using 
the value corresponding to three σ (sigma), that is, 67%, as stipulated by the empirical rule.

The final results of these clusters were presented in a dendrogram. Bands and vegetation 
indices were randomly selected for each cluster generated.

Generating predictive models

After each assessment, databases were created in table format containing the values of the 
agronomic variables collected in the field and the radiometric values extracted from the 
spectral bands and vegetation indices for all the sensors.

Based on the corrected multispectral images and points identified in the field by the 
GNSS receiver, shapefiles with vector polygons were created to extract the radiometric 
values in the region of each plant assessed in the plots, using the region of interest (ROI) 
tool in ENVI 5.1 software. The radiometric values from band to band were automatically 
extracted and calculated by the software, considering the average values of the pixels in the 
vectorized polygons for each plot.

This dataset was used to generate the predictive model. A total of four classification algo-
rithms available in Weka 3.9.4 software were trained, namely; RF, ANN and SVM.

As proposed by Breiman (2001), the RF algorithm allows flexible modeling of high 
dimensional data, resulting in a large number of regression trees, and calculating the aver-
ages of their predictions. It uses kernels and the nearest neighbor method because it assigns 
weights to predictions based on the weighted average of the nearest observations. However, 
unlike other methods, the RF relies on data to determine which nearest neighbors will be 
assigned the most weight (Wager & Athey, 2018). The network settings proposed by the 
software were used for RF modeling: batch size (100 instances), number of iterations (100) 
and bag size percentage (100).

ANN neural networks consist of an input layer, an output layer and a hidden layer, 
referred to as units or neurons, through which the input signal travels, and use an error back-
propagation algorithm. The network settings proposed by the software and applied to ANN 
modeling were: learning rate (0.3), momentum (0.2), and training epochs (500).

The SVM algorithm implements the SMO algorithm proposed by Platt (1999) and 
improved by Shevade et al., (2000), who presented an iterative algorithm, denominated 
sequential minimal optimization (SMO), to solve regression problems in association with a 
support vector machine. Unlike other learning models, the support vector machine is based 
on minimizing errors. Based on a dataset, this algorithm aims to create a hyperplane equi-
distant from the closest data of each class in order to reach a maximum margin on either 
side of the hyperplane, considering only the training data of each class that falls within the 
boundary of these margins as training data. These data are denominated support vectors. 
The following network settings, proposed by the software, were used for SVM algorithm 
modeling: batch size (100 instances) and Kernel (Polykernel).

The supplied test set was used for training. A total of 165 samples were analyzed and 
randomly allocated into training sets, containing 80% of the data (132 samples), and test 
sets, with 20% of the data (33 samples) using the supervised learning method. Data model-
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ing was performed using the input datasets from all three assessments in a single analysis. 
This made it possible to create multitemporal models applied to each agronomic parameter 
in all the assessment periods.

It is important to underscore that, after several tests, the adjustment parameters used for 
all the regression algorithms were those established as standard by the Weka 3.9.4. algo-
rithm. This is justified by the fact that adjustment values other than those proposed by the 
algorithm itself did not significantly improve the accuracy of the predictive models.

In order to assess the relationship between the agronomic parameters and radiometric 
values, three different algorithms were evaluated for the predictive model: the original spec-
tral bands alone; vegetation indices alone; spectral band and vegetation indices combina-
tions resulting from cluster analysis.

Metrics used to assess the models

Metrics such as the root mean square error (RMSE) and relative root-mean-squared error 
(RMSE%) were used to validate the quality of the predictive models and identify the best 
model.

The RSME and RMSE% are calculated by Eqs. 2 and 3:

 
RMSE =

√∑n
i=1 (xi − xmeas)

2

n
 ((2))

 
RMSE% =

√∑n
i=1 (xi − xmeas)

2

n
X

(
100Xn∑n
i=1 xmeas

)
 ((3))

where, xi  and xmeas  represent the estimated and measured value; and n  the number of 
samples.

For the trained models, only the four best and worst-performing algorithms were selected, 
as a function of RMSE and normalized RMSE (RMSE%), considering the error of the dif-
ference between measured and estimated variables for each agronomic parameter assessed 
in the experimental area.

Characterization maps of the growth rate of coffee plants

After defining the best model based on the algorithms, input datasets and sensors, interpola-
tion images were generated using the agronomic parameter estimates for each epoch of the 
assessment stages, in order to create a standard grid of values to calculate plant growth rates. 
Inverse distance weighting (IDW) was applied to generate the interpolated images, using 
ArcGis 10.5 software.

The plant growth rate (GR) was calculated using the relative growth rate (RGR) equa-
tion, which shows the monthly GRs for each parameter assessed (Eq. 4). In this stage, GRs 
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were calculated between the first (09/23/2019) and third (03/12/2020) assessments, com-
prising a six-month period.

 
RGR =

Nf−Ni

Ni

t
 ((4))

where, Nf  = final value; Ni  = initial value; and t = time.

Results

Cluster analysis to select input dataset combinations

Based on the results presented in the dendrogram, a spectral band of vegetation index was 
randomly chosen for each cluster to compile an input dataset for the predictive model.

The dendrogram created for spectral bands and vegetation indices from the MAPIR cam-
era sensor (Fig. 5) was partitioned into four clusters containing the following observations: 
First cluster (R/G/N); second cluster (SR); third cluster (NDVI); and fourth cluster (CVI/
GNDVI). The respective observations selected for each cluster were N, SR, NDVI and CVI.

Figure 6 shows the dendrogram created after analysis of the spectral bands and vegetation 
indices from the RPA sensor, partitioned into two clusters with the following observations as 

Fig. 5 Dendrogram of the spectral bands and vegetation indices for the MAPIR camera sensor. The dendro-
gram was partitioned into four clusters, with the following variables randomly selected from each cluster: N 
(NIR), SR, NDVI and CVI
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predictive variables: first cluster (R/B/G); second cluster (MPRI/VARI/TGI). Observations 
G and TGI were selected for each cluster, respectively.

Analysis of the vegetation indices and original spectral bands from the Planet satellite 
constellation (Fig. 7) resulted in a dendrogram with two clusters, as follows: first cluster 
(B/G/R/SR/SIPI); second cluster (N/NDVI/ARVI/GNDVI/MPRI/VARI/TGI/CVI). Obser-
vations G and TGI were selected for each cluster, respectively.

Determining the best algorithm for the predictive models

Table 2 show the results of analyses conducted to identify the best algorithms, input datasets 
and sensors, respectively, for the following parameters: total chlorophyll index; plant height 
(m); branch length (south-facing) (m); branch length (north-facing) (m); number of nodes; 
number of nodes (south-facing); number of nodes (north-facing); and canopy diameter (m).

For the total chlorophyll index, the RF algorithm performed best with the radiometric 
values of vegetation indices from RPA images as input data, exhibiting the lowest RMSE 
(4.7975) and RMSE% (9.0545). However, this same algorithm exhibited the worst perfor-
mance in estimating total chlorophyll indices when the radiometric values of the spectral 
bands and vegetation indices selected by cluster analysis from Planet satellite images were 
used, producing the highest RMSE (6.1261) and RMSE%, (11.5621) values.

The best-performing algorithm for plant height (m) was SVM with the radiometric val-
ues of spectral bands and vegetation indices selected by cluster analysis of RPA images used 
as input data and the lowest RMSE (0.1128) and RMSE% (3.6929) values. The algorithm 

Fig. 6 Dendrogram of the spectral bands and vegetation indices for the RPA camera sensor. The dendrogram 
was partitioned into two clusters, with the following variables randomly selected from each cluster: G and 
TGI
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with the worst performance for plant height (m) was the RF, which obtained the lowest 
RMSE (0.1718) and RMSE% (5.6244) values and used the radiometric values of spectral 
bands from the MAPIR images as input data.

The most accurate branch length (south-facing) (m) estimates were obtained by the SVM 
algorithm, with the radiometric values of spectral bands and vegetation indices selected by 
cluster analysis of RPA images as input data and the lowest RMSE (0.1329) and RMSE% 
(15.3025) values. The least accurate predictions for this parameter were generated by the 
ANN algorithm, which obtained the highest RMSE (0.1691) and RMSE% (19.4707) values 
and used the radiometric values of spectral bands from RPA images as input data.

The most accurate branch length (north-facing) (m) estimates were obtained by the SVM 
algorithm, with the radiometric values of spectral bands and vegetation indices selected by 
cluster analysis of RPA images as input data and the lowest RMSE (0.1436) and RMSE% 
(16.8162) values. The RF was the worst-performing algorithm for this parameter when the 
radiometric values of vegetation indices from MAPIR images were used as input data, pro-
ducing the highest RMSE (0.1825) and RMSE% (21.3715) values.

For number of branches, the most accurate estimate were obtained by SVM, which gen-
erated the lowest RMSE (12.2239) and RMSE% (16.5459) values used the radiometric 
values of spectral bands and vegetation indices selected via cluster analysis of RPA images 
as input data. The worst-performing algorithms for these parameters was the RF, with the 
radiometric values of spectral bands and vegetation indices selected via cluster analysis 
of Planet satellite images as input data and the lowest RMSE and RMSE% (17.0949 and 
23.1391).

Fig. 7 – Dendrogram of the spectral bands and vegetation indices for the Planet satellite camera sensor. The 
dendrogram was partitioned into two clusters, with the following variables randomly selected from each 
cluster: G and TGI
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The most accurate predictions for number of nodes (south-facing) were obtained by the 
SVM algorithm, which obtained the lowest RMSE (5.1289) and RMSE% (18.5753) values 
the radiometric values of spectral bands and vegetation indices selected via cluster analy-
sis of RPA images as input data, and the least accurate were those generated by the ANN, 
with the radiometric values of spectral bands from the MAPIR images as input data, which 
obtained the highest RMSE (10.5508) and RMSE% (36.8191) results.

In the same, the most accurate predictions for number of nodes (north-facing) were 
obtained by the SVM algorithm, which obtained the lowest RMSE (7.5937) and RMSE% 
(26.4997) values the radiometric values of spectral bands and vegetation indices selected 
via cluster analysis of RPA images as input data, and the least accurate were those generated 
by the ANN, with the radiometric values of spectral bands from the MAPIR images as input 
data, which obtained the highest RMSE (10.5508) and RMSE% (36.8191) results.

For canopy diameter (m), SVM performed best, using the radiometric values of spectral 
bands from the Planet multispectral images as input data and producing the lowest RMSE 
(0.1302) and RMSE% (7.7374) results. The worst-performing algorithm for this parameter 
was the RF, which generated the highest RMSE (0.1903) and RMSE% (11.3090) values 
with the radiometric values of spectral bands and vegetation indices selected by cluster 
analysis of RPA images as input data.

Characterization maps for the parameters

Figures 8, 9, 10, 11, 12, 13, 14 and 15 present the characterization maps of growth rate of 
coffee plants for the six-month period between the first (09/23/2019) and third assessments 
(03/12/2020) for total chlorophyll index; plant height (m); number of branches; branch 
length (south-facing) (m); branch length (north-facing) (m); number of nodes per branch 
(south-facing); number of nodes per branch (north-facing); and canopy diameter (m), sub-
jected to different chemical and biological treatments aimed at reducing the population of 
nematodes.

Figure 8 shows the growth rate (%) for the total chlorophyll index (%). Total chlorophyll 
indices declined in the experimental area, exhibiting negative growth rates of 0 to -3% 
growth/month. Values of -3 to -4% growth/month were also recorded in isolated areas of all 
the plots. Positive growth rates of 0 to 3% growth/month were also recorded in all the plots, 
particularly in the south-facing portion of the experimental area.

Figure 9 shows the growth rate (%) for plant height (m). Plant growth was positive across 
the entire experimental area, varying from 0 to 1% growth/month. Values between 1 and 2% 
and 2 and 3% were also observed in some isolated plots, particularly those for treatments 
B33 and B202 (Bacillus subtilis) and treatment T (water) in blocks two and five, which 
exhibited the largest concentrations of these values.

Figure 10 presents the growth rate (%) for number of branches, which increased across 
the entire experimental area, displaying positive rates of 2 to 4% and 4 to 8% of growth/
month. Negative rates (%) were also recorded, with values between 0 and − 2% growth/
month throughout the area and − 2 to -4% in some plots, particularly treatments B33 (Bacil-
lus subtilis) and B05 (Bacillus methylotrophicus) in block four and B53 (Bacillus safensis) 
and B33 (Bacillus subtilis) in block five, which obtained the greatest concentrations of these 
values.
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Figure 11 depicts the growth rate (%) for number of branches (south-facing) (m), indicat-
ing the greater occurrence of positive rates for south-facing plagiotropic branches through-
out the study area, varying from 0 to 4% growth/month. Some plots showed 4 to 8% growth/
month, especially B202 (Bacillus subtilis) in block two and B33 and B202 (Bacillus sub-
tilis), T (water) and B05 (Bacillus methylotrophicus) in block five, with larger concentra-
tions of these values. Negative growth rates of 0 to -4% growth/month were found in some 
areas of all the plots, with the highest incidences of these values observed for B05 (Bacillus 
methylotrophicus) in blocks three and four.

The growth rate (%) for branch length (north-facing) (m) is presented in Fig. 12, dem-
onstrating greater positive growth rates for north-facing plagiotropic branches across the 
experimental area, ranging from 0 to 3% growth/month. Growth of 3 to 6% was also 
observed in some points of all the plots, Negative growth was also recorded in some of 

Fig. 9 Characterization map of the growth rate for plant height

 

Fig. 8 Characterization map of the growth rate for total chlorophyll index
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the plots, ranging from 0 to -3% growth/month, with the largest concentration of these 
rates observed for treatments B33 (Bacillus subtilis) and B05 (Bacillus methylotrophicus) 
in blocks three and four and B53 (Bacillus safensis) and B266 (Bacillus amyloliquefaciens) 
in block five.

The growth rate (%) for number of branches is shown in Fig. 13, with south-facing nodes 
displaying greater positive growth of 0 to 5% and 5 to 10% per month, as well as 10 to 15% 
and 15 to 20% in some locations of all the plots. Negative growth rates of -5 to -10% were 
recorded in some plots, most notably B33 (Bacillus subtilis) and B05 (Bacillus methylotro-
phicus) in block four and B53 (Bacillus safensis) in block five.

Figure 14 depicts the growth rate (%) for the number of nodes (north-facing), which 
was positive in most of the study area, with rates between 0 and 5% and 5 and 10% per 
month. A greater concentration of 10 to 15% and 15 to 20% growth rates was observed in 

Fig. 11 Characterization map of the growth rate for branch length (south-facing)

 

Fig. 10 Characterization map of the growth rate for number of branches
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some plots, particularly for B266 (Bacillus amyloliquefaciens) and B33 (Bacillus subtilis) 
in block one, treatments F (Fluensulfone) and B33 (Bacillus subtilis) in block two, AQ 
(Abamectin + Bacillus subtilis / Bacillus licheniformis) and B53 (Bacillus safensis) in block 
three, and B266 (Bacillus amyloliquefaciens) and F (Fluensulfone) in block four. Some 
plots also exhibited negative growth rates of 0 to -5% per month, most notably for B05 
(Bacillus methylotrophicus) in block two, B22 (Bacillus thuringiensis) and F (Fluensulfone) 
in block three, B18 (Fluensulfone) in block four and B266 (Bacillus amyloliquefaciens) in 
block five.

Figure 15 presents the growth rate (%) for canopy diameter. Positive growth for this 
parameter was most evident in the western portion of the experimental area, ranging from 2 
to 4% and 4 to 5% per month, with rates of 0 to 2% per month more frequent in the eastern 

Fig. 13 Characterization map of the growth rate for number of nodes (south-facing)

 

Fig. 12 Characterization map of the growth rate for branch length (north-facing)

 

2333



Precision Agriculture (2022) 23:2312–2344

1 3

section. Negative growth was only observed in two plots, namely treatments B22 and B222 
in block two.

The characterization maps show the final population distribution of nematodes (after 
treatment) for the genera Meloidogyne and Pratylenchus (Fig. 16). The maps were generated 
based on the results of laboratory tests performed during the third assessment (03/12/2020). 
There was a decline in the concentration of juveniles/150 cm³ of soil after treatment for 
Meloidogyne sp. (Fig. 16a) in the eastern section, with a population density of 0 to 200 
juveniles/150 cm³ of soil across the experimental area.

For Pratylenchus sp. (Fig. 16b), population density rose after treatments application, 
with an increase in the number of areas containing 300 to 600 individuals/150 cm³ of soil. 
Two points with critical concentrations, observed for this genus in the first assessment 

Fig. 15 Characterization map of the growth rate for canopy diameter

 

Fig. 14 Characterization map of the growth rate for number of nodes (north-facing)
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period in the eastern portion of the study area, exhibited a decline in population density, one 
to 0 to 300 and the other to 900 to 1300 individuals /150 cm³ of soil. Three points within the 
western section increased to 900 to 1300 individuals /150 cm³ of soil.

Discussion

Cluster analysis

Spectral bands and vegetation indices show great potential in estimating agricultural param-
eters. Vegetation indices are indicators of the dynamic biophysical properties related to yield 
and energy balance in plants, due to the correlation between sunlight and active photosyn-
thetic tissue. The availability of several spectral bands makes it possible to more efficiently 
explore spectral characteristics in conjunction with the operating modes of sensor systems, 
that is, the more spectral bands available, the greater the chance of extracting information 
on the object analyzed (Martins et al., 2017).

For the three sensors, visible band clustering (Figs. 5, 6 and 7) into a same cluster reflects 
the natural high correlation between the three bands and plant characteristics sensitive to 
this spectral interval, such as chlorophyll a and b content, pigmentation and similar senes-

Fig. 16 Spatial distribution of nematode populations in the experimental area after treatment, for (a) Meloido-
gyne sp. and (b) Pratylenchus sp. in the third assessment (03/12/2020)
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cence for all plants. This similarity occurred because nematode infestation symptoms were 
initial in the experimental area, that is, phenological stage, leaf color and size were the same 
for healthy and infected plants. The separation of indices into different visible band clusters 
occurred because they are sensitive to the structural characteristics of leaves such as bio-
mass and leaf area index (Jensen, 2009).

For the image captured by the MAPIR camera (Fig. 5), the NIR band was also clustered 
into the same visible spectral band cluster. This result is not significantly associated with 
the physiological conditions of coffee plants, but with the construction characteristics of the 
sensor itself, where conception of the NIR band is only possible with filters applied to the 
blue band, which can detect radiance at the start of the NIR spectral interval (800 nm) and 
is highly correlated with the other visible bands (Green et al., 2019).

Estimation performance of spectral models

The dendrograms demonstrated an input data mining option for physiological parameter 
prediction models, where a significant reduction in the number of predictor variables occurs, 
without compromising estimation accuracy, and there is less likelihood of model overad-
justment. Table 2 shows that the RF algorithm model for chlorophyl estimation, obtained 
by the combination of the G band and TGI index derived from the RPA camera, exhibited 
accuracy similar to that of the most accurate model, with RF established by all the plant 
indices obtained by the camera.

The better chlorophyl estimation of the RPA camera demonstrates the potential of bands 
and indices derived from visible wavelengths in estimating photosynthesis-related agricul-
tural variables. This condition is related to the sensitivity of the B and R bands to chlorophyl 
a and b (Jensen, 2009). For this case, the RF algorithm is more accurate than neural network 
algorithms and support vector machines because in some scenarios with few predictor vari-
ables, the RF algorithm performs better than the others. Furthermore, when data obtained 
from remote sensing platforms are used, the advantages of this algorithm when compared 
with other classifiers are its ability to deal with the substantial temporal variation of reflec-
tance from plants, highly dynamic processing capacity, requiring only a few parameters for 
classification, and highly accurate classifications, among others (Zhou et al., 2019).

This premise is presented in a similar study, where Lee et al., (2020) evaluated multispec-
tral images obtained by RPA to prevent nitrogen accumulation in the canopy of corn plants. 
Simple/multiple linear regression, RF and support vector regression (SVR) were selected 
to create the models, using individual spectral bands and vegetation index combinations 
as input data. The RF algorithm performed best, with an RMSE of 4.52. The authors also 
underscore that in order to estimate the chlorophyll and macro and micronutrients present in 
leaves, prediction models based on high spatial resolution images taken by an RPA camera 
are more accurate than their satellite counterparts. This is because of the proximity between 
RPA sensors and the canopy, which makes it possible to record the exact amount of energy 
radiated from leaves on the plant parts where there is greater nutrient concentration. Specifi-
cally for the present study, the RPA images were able to record even the energy radiated by 
the third basal leaves of the plants, that is, where the most mature and developed leaves are 
found, while orbital images were primarily limited to recording energy radiated only by the 
canopy.
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In the mapping of specific nutrients of other crops, the same was observed by Ranđelović 
et al., (2020), who applied the RF algorithm to estimate soybean density using only veg-
etation indices from aerial RGB images captured by RPA. The results obtained showed 
significant model validation, with an RMSE of 7.47. Zha et al., (2020) applied machine 
learning algorithms and linear regression to estimate the biomass and N levels of rice plants 
using vegetation indices obtained from images captured by RPA. The findings demonstrated 
that the machine learning methods provided the most accurate estimates of plant nutrition 
indices when compared with linear regression, particularly RF, which exhibited the lowest 
RMSE (0.09).

The combination of the G band and TGI vegetation index obtained from RPA images 
made it possible to estimate all the agronomic parameters related to coffee plant biomass 
(height, branch length, number of branches and number of nodes), using the SVM algo-
rithm. Inserting the TGI index into the models contributed significantly to estimation accu-
racy, since the index is highly correlated with biomass and LAI (Jensen, 2009). On the 
other hand, the algorithm also contributed, since the support vector machine proved to be 
effective in models that used multispectral images, evident in the positive characteristics 
of its application in remote sensing: the ability to effectively manage small training sets; 
efficiently dealing with highly dimensional spaces; a decision process using only a subset of 
training data; more efficient in terms of memory storage; and applying new kernels instead 
of linear boundaries (Sheykhmousa et al., 2020).

The spatial resolution of RPA images also contributed to more accurate models than 
those based on Planet images, due to the high spatial resolution of the images and radiomet-
ric variability of the drone images, whereas information is generalized in the orbital images, 
that is, the response of canopy plants predominates.

For the canopy diameter (m), the image from the Planet satellite sensor exhibited the best 
performance in estimating this parameter. For this parameter, the models constructed from 
orbital images are more accurate because the sensor captures the energy radiated by the 
canopy and to a lesser extent, the energy reflected by the lower branches and leaves (Ndiku-
mana et al., 2018). In this respect, the models created using the RPA images tend to be less 
accurate due to the high spatial resolution of the images, which increases the radiometric 
variability of the spectral response of the canopy (Jensen, 2009).

The chlorophyll content reflects the physiological state of vegetation; it decreases in 
stressed plants and can therefore be used as a measurement of vegetation health (Carmona 
et al., 2015).This behavior can be explained by the fact that the assessments in the experi-
mental area were conducted between the second and beginning of the fourth phenological 
stage of coffee, comprising part of the flowering period in September (first assessment), 
fruit set and rapid growth in November (second assessment), and physiological maturity 
and the onset of ripening in March (third assessment). Low nitrogen availability in plants 
that need large amounts of this nutrient can limit yield in different crops. The absence of 
nitrogen, important in chlorophyll synthesis and other photosynthetic processes, reduces 
the absorption of sunlight as an energy source and affects essential functions such as nutri-
ent absorption (Pompelli et al., 2010). Additionally, nutrients such as nitrogen, which are 
directly linked to chlorophyll content in plants, play a vital role in maintaining plant vigor, 
particularly during the reproductive stage. Jia et al., (2021) reported that nitrogen is one 
of the most important elements in chlorophyll and plant enzymes, and nitrogen deficiency 
can decrease photosynthetic assimilation and crop yields. During the rapid growth stage 
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of coffee berries, large quantities of carbohydrates are diverted and more than 95% of the 
total nitrogen absorbed is consumed, causing symptoms of nitrogen deficiency in the leaves 
and limiting vegetative growth (Amaral et al., 2001). During fruit set, the displacement of 
nutrients such as nitrogen from the leaves to the berries causes greater foliar deficiency 
(Salamanca-Jimenez et al., 2017).

Evidence on spatial distribution of physiological parameters.
Analysis of the maps shows the effects on the physiological parameters after treatments. 

For plant height (m), number of branches, branch length (north-facing), branch length 
(south-facing) (m), number of nodes (north-facing) (m), number of nodes (south-facing) (m) 
and canopy diameter (m), there was a significant increase in vegetative growth during the 
experiment. Two factors may explain this positive coffee plant growth under the conditions 
of this experiment: rainfall starting in October, which allows plants to overcome the stress 
naturally imposed by the phenological stages of flowering and fruit set, and the efficiency of 
treatments in reducing the nematode population in the area, especially those based on Bacil-
lus spp. Bacillus spp. species are efficient antagonists against nematodes, colonizing the 
root system of coffee plants, thereby changing the composition of root exudates, decreasing 
juvenile and adult penetration of different nematode species and producing nematicide sub-
stances, that is, killing individuals of species that attack the coffee crop and producing root 
growth-promoting substances (Liu et al., 2013; Marin-Bruzos & Grayston, 2019; Mhatre et 
al., 2019). It is important to note that drip irrigation (irrigation system implemented in the 
experimental area of this study) only provides enough water to maintain plants turgid with 
a metabolism sufficient to withstand these stress phases.

Among the factors that limit the growth and production process of coffee plant, species 
of Meloidogyne stand out. Economic losses due to root knot nematodes vary considerably 
depending on the species involved and their distribution (Boisseau et al., 2009; Ferraz, 
2008). Species from the genus Meloidogyne are considered sedentary parasites and spend 
most of their life cycle in the same place, feeding on the cells of coffee roots. Once para-
sitism has begun, plant metabolism changes, causing the formation of nutritive (or nurse) 
cells in the root galls (Muniz et al., 2008). Species from the genus Pratylenchus are classi-
fied as migratory endoparasites. These nematodes destroy plants cells during migration and 
feeding, damaging root tissue. The symptoms of parasitism by nematodes of these genera 
include reduced growth in parasitized plants, physiological imbalance and macro and/or 
micronutrient deficiencies, changes in agronomic characteristics and a progressive decline 
in yield (Inomoto et al., 2007).

The present study showed the greater efficiency of treatments in reducing the nema-
tode populations of branches (Meloidogyne sp.) than those that damage roots (Pratylenchus 
sp.) One of the mechanisms by which rhizobacteria can act against nematodes consists of 
the production of nematocidal substances (Chitwood, 2002). These substances may exhibit 
specificity in relation to the target (s) and might have a nematostatic or nematocidal effect 
on one or more nematode species and no effect on others. For example, Pseudomonas 
fluorescens and Pseudomonas putida can reduce the population of Meloidogyne spp. and 
Radopholus similis in tomato and banana plants (Aalten et al., 1998). The production of 
2,4-diacetylphloroglucinol by P. fluorescens can control Globodera rostochiensis in potato 
plants (Cronin et al., 1997). B. cereus and B. subtilis can reduce the population of root-knot 
nematodes (Meloidogyne spp.) in plant roots (Xiao et al., 2012). Several symptoms were 
observed in the experimental area during the first assessment, prior to chemical and biologi-
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cal treatment for nematodes, as shown in Fig. 17. These symptoms include leaf yellowing 
and dropping (Fig. 17a), dry branches (Fig. 17b) and the presence of galls on the roots of 
plants parasitized by Meloidogyne exigua (Fig. 17c).

In the third assessment (Fig. 18), after two treatments for nematode management, there 
was a notable increase in vegetative growth (Fig. 18a), plagiotropic branch emergence 
(Fig. 18b) and fruit growth (Fig. 18c). In this respect, measures are needed to manage plant-
parasitic nematodes in order to significantly reduce populations of this pathogen. Fungi and 
bacteria are widely available for this purpose. As biological control agents, rhizobacteria 
promote vegetative growth, antibiosis, competition and systemic resistance in plants, in 
addition to protecting against pathogens such as nematodes, among others (Hashem et al., 
2019; Tolardo et al., 2019).

Additionally, chemical products have been used to manage plant-parasitic nematodes, 
with significant results in infested areas. Chemical control is an effective tool when a rapid 
response is expected for population control and the desired damage level has not been 
reached; however, the use of products with low residual power is necessary to prevent health 
risks and environmental damage, ensuring sustainability and a better- quality product.

Fig. 17 Symptoms observed on the plants during the first assessment period. (a) leaf yellowing and dropping; 
(b) dry branches; and (c) the presence of root galls on plants parasitized by Meloidogyne exigua
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Conclusions

The method applied was appropriate for areas containing coffee crops with high treatment 
variability. Both the orbital images and those obtained by drones in aerial surveys proved to 
be potential tools to estimate agronomic parameters under conditions of high physiological 
variability. The machine learning algorithms were capable of supporting the models used 
to estimate the agronomic parameters. Due to the high variability of the coffee crop studied 
and the efficacy of the method, it is suggested that the techniques used here can be success-
fully applied to other regions, since the environmental and management conditions can 
occur in other planting areas.

The main conclusions of the article are highlighted below:

 ● The results indicated that machine learning methods could significantly improve the 
estimation of agronomic parameters of yield in coffee crops. The SVM algorithm, G 
band and TGI index derived from RPA images used as predictor variables can be applied 
to more accurately estimate coffee plant parameters: height, branch length and number 

Fig. 18 Increased plant vigor during the third assessment period. (a) vegetative growth; (b) growth of plagio-
tropic branches; and (c) rapid fruit growth
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of branches and nodes. For the same sensor, the RF algorithm and MPRI, VARI and TGI 
indices can be used to more accurately estimate total chlorophyll.

 ● Based on the four original bands of Planet orbital images, the SVM algorithm can more 
accurately estimate the coffee plant canopy.

 ● The physiological parameter growth maps of coffee plants present the spatial distribu-
tion of agricultural yields based on treatments to manage nematode infestation.
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