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Abstract
Accurate maize plant counting plays an essential role in prediction of leaf area index (LAI), 
aboveground biomass (AGB) and yield. Plant counting of maize inbred lines at early 
growth stage will result in counting bias caused by death and growth of small seedlings. 
Therefore, the estimation of LAI and AGB might be negatively affected by plant count-
ing bias at early growth stage. In this study, morphologic discrimination model (MDM) 
and interpolation discriminant model (IDM) were proposed for plant counting of maize 
inbred lines at second to fourth (V2–V4) leaf and fourth to sixth (V4–V6) leaf stages with 
different uncrewed aerial vehicles (UAV) flight heights. Automatic optimum angle calcula-
tion of each row, location-based plant cluster segmentation and mosaic method were pre-
sented to improve the estimation accuracy of plant counting. Then, the impact of accurate 
plant counting was evaluated in LAI and AGB prediction at the two growth stages. The 
results indicated that germination rate difference of some inbred lines could reach up to 
38% between V2–V4 and V4–V6 leaf stages. The proposed method accurately estimated 
the plant counting in the UAV images during V2–V4 leaf stage (R2 = 0.98, RMSE = 7.7, 
rRMSE = 2.6%) and V4–V6 leaf stage (R2 = 0.86, RMSE = 2.0, rRMSE = 5.5%). The esti-
mated LAI and AGB with plant numbers calculated at V4–V6 leaf stage correlated bet-
ter with the field measurements (R2 = 0.85 and R2 = 0.9, respectively) compared with those 
estimated at V2–V4 leaf stage (R2 = 0.8 and R2 = 0.86, respectively). This research indi-
cates that better estimation of LAI and AGB in the field were obtained by accurate plant 
counting in the late growth stage using UAV images and provides valuable insight for more 
accurate prediction of yield and crop management and breeding.
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Introduction

Maize (Zea mays L.) is one of the main grain crops widely cultivated around the world. 
Effective calculation of maize seedling numbers can not only assess the quality of the 
machine sowing, but also evaluate the seedling emergence rate and distribution characteris-
tics of row and plant spacing (Findura et al., 2018; Font et al., 2014; Ormond et al., 2018). 
Maize plant counting by visual detection is labour-intensive and time-consuming. To 
address this issue, recent researches have investigated the potential of plant counting using 
machine learning approach implemented to images obtained from different sensors of crop 
phenotyping platform (Aharon et  al., 2020; Bendig et  al., 2015; Herrmann et  al., 2019; 
Virlet et  al., 2017;  Varela et  al., 2018). Ground fixed and moving platform were found 
effectively at high-resolution and high-quality data collection, but were destructive to the 
experimental sites and limited to the sampled areas. Increased costs were also needed for 
large-scale experiments.

Recent technological advances have led to a boom in high-throughput phenotypic stud-
ies using uncrewed aerial vehicles (UAV) mounted on multiple low-cost portable sensors 
(Maimaitijiang et al., 2020). UAV has the advantages of high-resolution, real-time image 
acquisition and easy operation. Images obtained from UAV were used to calculate the 
seedling number (Feng et  al., 2020; Osco et  al., 2020), seedling distance (Gnädinger & 
Schmidhalter, 2017), plant density (Thorp et al., 2008), plants detection and classification 
(Guo et al., 2021), plant height (Hu et al., 2018), tassel number (Liu et al., 2020), biomass 
(Togeiro de Alckmin et al., 2021; Yu et al., 2016), LAI (Che et al., 2020; Lei et al., 2019) 
and yield (Herrmann et al., 2020). Different machine vision-learning approaches like ran-
dom forest classifier (Li, Li, et al., 2019; Li, Xu, et al., 2019), support vector machine (Jin 
et al., 2017) and deep learning (Fan et al., 2018; Feng et al., 2020) were applied for plant 
counting. Deep learning can obtain higher estimation accuracy, but needs a larger quantity 
of sampled data, longer training time and higher cost in order to classify all of the plants 
(Finizola et al., 2019; Kamath et al., 2018; Shinde & Shah, 2018).

Current studies on the plant counting have been focused on the second to fourth 
(V2–V4) leaf stage with two or four fully developed leaves (Feng et al., 2020; Li, Li, et al., 
2019; Li, Xu, et  al., 2019). Maize inbred lines have different germination rates, differ-
ent weak seedling ratios and the survival of the seedlings varies between them (Hu et al., 
2017; Zhang et  al., 2020). Ground-measured LAI and AGB per square meter were cal-
culated using the plant numbers per square meter multiplied by the average leaf area and 
average biomass of plant samples, respectively (Bendig et al., 2015; Gong et al., 2021; Li 
et  al., 2020). Bias will occur for LAI and AGB per square meter calculations when the 
plant counting was inaccurate. LAI and AGB per square meter from UAV were extracted 
using UAV-estimated leaf area and biomass of the plant sample divided by the area of each 
plot. Leaf area and biomass estimation model were built using spectral (Dong et al., 2019; 
Li et al., 2020), texture (Maimaitijiang et al., 2020; Zheng et al., 2019) and structure (Che 
et al., 2020; Jimenez-Berni et al., 2018; Lei et al., 2019) information extracted from UAV 
images. The quantitative analysis of LAI and AGB during the growth stage is of great 
significance for crop growth monitoring, yield estimation and crop breeding (Dong et al., 
2019; Houborg & McCabe, 2018; Xie et al., 2018). Therefore, the effect of late-stage accu-
rate maize plant counting on LAI and AGB estimation will be evaluated in this study.

A key question in this respect is whether plant counting of maize inbred lines with 
extensive genetic diversity in the later growth stage might avoid bias caused by death and 
growth of small seedlings. And whether plant counting of maize inbred lines in the later 
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growth stage as compared with early growth stage might contribute to higher estimation 
accuracy in LAI and AGB. The aims of this study were to (1) identify the better growth 
stage for plant counting of maize inbred lines with extensive genetic diversity; (2) propose 
the optimal plant discrimination models for more accurate plant counting of maize inbred 
lines in the better growth stage; (3) evaluate the importance of accurate plant counting in 
predicting LAI and AGB.

Materials and methods

Field experiments and images acquisition by UAV

Field experiments were conducted at four experimental farms in Jilin (43° 16′ 45″ N, 
124° 26′ 10″ E), Hebei (39° 27′ 37″ N, 115° 50′ 50″ E), Henan (36° 04′ 32″ N, 114° 
31′ 41″ E) and Hainan (18° 23′ 06″ N, 109° 10′ 57″ E) in 2018 (Fig. 1). The soil types 
in Henan and Hebei are similar, composed of tidal soil and brown soil. The main soil 

Fig. 1   Sample diagram of the study sites. The grey points are geographical location of the study area. The 
white rectangles are four experimental farms in Jilin (a), Hebei (b), Henan (c) and Hainan (d)
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types of Hainan and Jilin are black land and yellowish red soil, respectively. Before 
sowing, basal chemical fertilizers were applied in all plots at a rate of 60 kg P ha−1 and 
80 kg K ha−1. Water management was conducted according to natural rainfall.

The experiments were set with three replicates. There were 30 maize inbred lines 
with extensive genetic diversity in each replicate. The plot size was 5 m × 1.2 m with 
two rows and 42 evenly sown maize seeds (Fig.  2). The distance between rows was 
60  cm and the distance between plants was 25  cm. Destructive sampling area was 
1.2  m × 1.2  m distributed on the left side of each plot. The total plant number were 
90 for destructive sampling with 30 plants from each replicate. Three plants from ten 
inbred lines (Sample 10) were sampled to measure leaf area and dry biomass on 50 and 
65 days after emergence. The ten inbred lines with different genetic backgrounds were 
screened from four subpopulations by breeders to ensure there were a range of LAI and 
AGB. Leaf area was measured with a LI-3000C Portable Leaf Area Meter (LI-COR 
Biosciences, Lincoln, U.S.A.). Dry biomass was obtained after the fresh samples with-
out roots and dried at 60  °C until their weights stabilized. The LAI per square meter 
and AGB per square meter were calculated using the plant numbers per square meter 
multiplied by the average LAI and average biomass of plant samples, respectively. Plant 
counting of all 180 plots were completed by visual recognition with the image of 35 and 
50 days after emergence corresponding to V2–V4 and V4–V6 leaf stage. The rest of the 
other 20 inbred lines (Rest 20) were not sampled for LAI and AGB measurement.

PHANTOM 4 (DJI, Shenzhen, China) was used for image acquisition. The imaging 
sensor was a 1-inch CMOS with 20 million pixels. DJI GS Pro (DJI, Shenzhen, China) 
was used to determine the target aerial photography area on a satellite map and to plan 
the aerial photography route by inputting relative flight and camera parameters. Autono-
mous flight plans were used to have an 80% overlap between adjacent images with a 
2 s interval. RGB images were collected at two to six leaf stages with flight heights of 
10 m, 15 m and 30 m at Jilin and Henan and 30 m at Hebei and Hainan. The ground 
sample distances were 2.73 mm for 10 m flight height, 4.10 mm for 15 m flight height 
and 8.21 mm for 30 m flight height. UAV and ground sampling were synchronized and 

Fig. 2   Experiment layout of the study sites
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completed under low wind speed and clear sky conditions on 36, 48 and 60 days after 
emergence (Table 1).

Point cloud and digital orthophoto map generation

UAV images were processed by the Agisoft Metashape (Agisoft, Russia) to generate 
point clouds and Digital Orthophoto Map (DOM) of the flight area. Scale Invariant Fea-
ture Transform algorithm (Lowe, 2004) was used to extract and describe the information 
of feature points. Structure From Motion (SFM) algorithm was used to perform a bundle 
adjustment based on matching features between the images. Ground control points were 
evenly distributed in the field, recorded by RTK (CHCNAV-T8, Shanghai, China) and then 
used for geometry correction. Finally, the DOM is exported in.tiff image format and point 
clouds data in.txt file format. Images randomly clipped from DOM with a size of 1500 
pixel × 1500 pixel were used to verify model accuracy for maize plant counting. Images 
and point clouds of each individual plots were segmented for LAI and biomass estimation 
according to their positions in the experimental design layout and assigned with a unique 
ID based on their geographical location.

Row detection and plant identification

Excess green index (EXG; Meyer and Neto, 2008), Lab colour space (Liu, Baret, et  al., 
2017), excess green minus excess red index (EXGR; Upendar et al., 2021), green leaf index 
(GLI; Blancon et al., 2019) and support vector machine (SVM; Jin et al., 2017) were pro-
posed in previous research for well identification of the green pixels. EXG (Eq. 1), EXGR 
(Eq.  2), GLI (Eq.  3) was calculated for each pixel using the three colours [R, G, B] of 
the RGB image. Lab colour space were transformed from RGB, to enhance its sensitiv-
ity to variations in greenness. Otsu automatic thresholding method (Otsu, 1979) was used 
to separate the green plants from the background pixels. Binary images were thus trans-
formed using threshold value and assigning 1 to the green pixels and 0 to the background. 
For SVM, the image classification model was trained on image fragments (vegetation or 
background) from five UAV images and applied to all other UAV images to obtain binary 
images. Binary image was then processed using morphological opening operation to 
remove the weeds in smaller area, to break narrow strips and to smooth the contour objects 
(Abid Hasan & Ko, 2016).

where R, G and B are three colour components of the RGB image.
The skeleton of the plant obtained using parallel thinning algorithm (Zhang & Suen, 

1984) had numerous isolated points. The neighbourhood threshold method was used to 
determine the outliers of the skeleton of the plants with a threshold (N; Eq. 4). The isolated 
points were then removed. The value of threshold was set to 1 to determine the abnormal 
skeletons, as there were no pixels of the plant around the isolated points. The final skeleton 
diagram is obtained after several iterations of the above process.

(1)EXG = 2 ⋅ G − R − B

(2)EXGR = 3 ⋅ G − 2.4 ⋅ R − B

(3)GLI = (2 ⋅ G − R − B)∕(2 ⋅ G + R + B)
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where A is a binary image. The image size is c*r. sn is sliding neighbourhood.
After removing the abnormal skeletons, the plant row was detected with Hough trans-

form (Hough, 1962) and the angle of plant row was calculated with swing adjustment 
method. Then, row positions can be calculated with regular and uniformly distributed 
plant pixel peaks. The number of plant pixels covered by these lines with a slope of K1 
and intercepts from zero to (r*tanK1 + c) was calculated (Fig. 3a, bottom). The x coor-
dinates of the pixel number distribution curve in the row orientation were separately 
extracted from y = 0 to the maximum of peaks (blue points in Fig. 3a). Major peak spac-
ing was calculated by the distance between P points (red points in Fig. 3a) obtained by 
the medium of adjacent blue points. The crop row positions can be identified by the 
minimum standard deviation of the major peak spacing.

Finally, the optimum slope (K2) of different rows was automatically calculated by 
swing adjustment method. The plant pixels were counted by these lines with the angle 
varied from ( tan−1K1 − Δ ) to ( tan−1K1 + Δ ) and the sowing angle ( Δ ) was set to 2°. The 
slope (K2) of the maximum peak was the optimum angle of each row (Fig. 3b; Eq. 5). 
The width of the row layout (L’) was calculated according to the size of plants (Fig. 3c; 
Eq. 6). Only the regions in these row layouts were analysed, and any weeds between the 
rows were effectively excluded.

(4)N =

c−2∑
i=0

r−2∑
j=0

A(i ∶ i + 2, j ∶ j + 2) ⋅ sn

Fig. 3   The process of row detection and plant identification. a An example of determining the position of 
evenly spaced plant pixel peaks slicing along the Y axis. b Pixel number distribution in the row direction. c 
The process of angle adjustment by swing adjustment method. d The difference in angle of each row. e The 
position of the row layout, and f flow of separating the individual plants from each other by the location-
based plant cluster segmentation and mosaic (LSM) method
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where Δ is 2°. (xm, ym ) are the coordinates of a known point. A is a binary image. The 
image size is c*r. K1 is the slope of the skeleton detected by the Hough transform.

where L is the position of each row and w is mean of the plants size.
The overlapping of plant seedlings is inevitable in the obtained images. A location-

based plant cluster segmentation and mosaic (LSM) method were proposed to separate the 
individual plants from each other (Fig.  3f). Plant clusters (P) were firstly separated into 
several regions based on plant spacing. When there were two connected domains in one 
region, marked as large area part P(t) and small area part P(t′). P(t′) was used as a custom 
sliding neighbourhood and connected to P(t+1). The minimum difference between the last 
line of P(t’) and the first line of P(t+1) was calculated to identify the optimum mosaic posi-
tion (P′; Eq. 7). The inaccurately segmented leaves and plants were then mosaiced together 
to obtain a more complete plant morphology.

where P is the binary image of a plant cluster. Total number of parts in the image was 
represented with n, and t denotes one part of n ( t ∈ [1, n] ). The image size of P(t+1) is 
c(t+1)*r(t+1). K1 is the slope of the skeleton detected by the Hough transform.

Plant characterization and classification

Morphological features were divided into four categories: area (A), roundness (R), skel-
eton (S) and position (P). The details of the morphological features were described in 
Table 2. Area and roundness characteristics were obtained using the ‘regionprops’ func-
tion of MATLAB (version R2019b, MathWorks, USA). Range of ‘extent’, ‘solidity’ and 
‘eccentricity’ were 0–1. Higher ‘extent’ and ‘solidity’ meant more spatial area of objects 
within bounding box and convex hull. ‘Eccentricity’ was calculated by ratio of focal length 
to length of major axis. A circle had ‘eccentricity’ equal to 0, and a longer ellipse had 
‘eccentricity’ close to 1.

(5)K2 =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

max

⎛⎜⎜⎝

tan−1 K1+Δ�
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r�
j=o

A
�
tan i ⋅

�
j − xm

�
+ ym, j

�⎞⎟⎟⎠
, ��K1

�� ∈ [0, 1]

max

⎛⎜⎜⎝

tan−1 K1+Δ�
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c�
j=0

A
�
j,
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�
∕ tan i + xm

�⎞⎟⎟⎠
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The contour point was the endpoint for the skeleton if it satisfied the following condi-
tions: the centre point of the computed matrix was 1, and N = 2 (Eq. 2; Fig. 4b). Only con-
dition N ≥ 4 was changed in the calculation of the cross-point for the skeleton, and the rest 
remained the same (Fig. 4c). Lengthskelet, Numend and Numbranch were both calculated 
using skeleton. Offset and distanceup represent position information of the target plant.

Plant discrimination models

Four types of morphological characteristics were combined and trained by SVM to relate 
to the number of plants and weeds inside each image using morphologic discrimination 
model (MDM). The total dataset consists of 1120 images, which were divided into three 
parts: training (60%), validation (20%) and test (20%) set. The training and the validation 
set were used to train the internal parameters of MDM, and adjust the hyperparameters for 
MDM with the best classification performance respectively. Test set without participating 
in any modelling or preparation was treated as new, unknown data. Commonly used indica-
tors, such as precision, recall and F1-score were used to evaluate the degree to which the 
measured values conformed to the estimated values, and to evaluate the generalization abil-
ity of MDM. The detail information of precision, recall and F1-score will be outlined in the 
following section.

Classification model produces four types of outcomes: correctly recognized maize (true 
positives), correctly recognized weeds (true negatives), incorrectly recognized maize (false 

Fig. 4   Detailed illustration of the skeleton characteristics of the plants. a The skeleton of plants, b he end-
point of the skeleton, and c the ‘crosspoint’ of the skeleton
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positives) and incorrectly recognized weeds (false negatives). Retrieved features are the 
total number of true positives and false positives. Relevant features are the total number 
of true maize and false recognized weed. |{relevant features} ∩ {retrieved features}| means 
instances of true positives. As proposed in Osco et al (2020), precision (Eq. 8) is defined 
as the fraction of correctly recognized maize among all retrieved features. Recall (Eq. 9) is 
the fraction of true positives among all relevant features and is the measure of a classifier 
effectively to identify true positives. F1-score (Eq. 10) is a way of combining the precision 
and recall of the model, and is defined as the harmonic mean of the model’s precision and 
recall. Precision, recall and F1-score of a perfect classifier equal to one.

Therefore, interpolation discriminant model (IDM) was further proposed to estimate the 
plant counting at V4–V6 leaf stage due to serious overlapping of plant seedlings. The steps 
were: (1) MDM was first used to obtain the plant positions in images of V2–V4 leaf stage. 
Plant positions in the images of V4–V6 leaf stage were first registered with that of V2–V4 
leaf stage by perspective transformation. (2) Positions without seedling was calculated with 
IDM by equidistance interpolation. Region of interest (ROI) was established at the loca-
tion without seedling. (3) The plant pixel ratio in ROI (Eq. 11) were calculated and com-
pared with the threshold of plant discrimination. The presence of plants in ROI was judged 
according to whether the plant pixel ratio exceeds the threshold. The thresholds were range 
from 0 to 0.3, with an interval of 0.01.

The number of plants was estimated using different thresholds and compared with the 
measured values. The minimum RMSE proportion was selected as the best threshold of 
plant discrimination.

where PPR is plant pixel ratio. Aplant is the area of plant within ROI and AROI is the area of 
ROI.

Pseudo code of interpolation discriminant model were shown below:

(8)Precision =
|{Relevant features} ∩ {retrieved features}|

|{Retrieved features}|

(9)Recall =
|{Relevant features} ∩ {retrieved features}|

|{Relevant features}|

(10)F1 = 2 ⋅
Precision ⋅ recall

Precision + recall

(11)PPR =
Aplant

AROI
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LAI and AGB estimations

A best plant classification model with the best classification performance was firstly 
selected from these models built by EXG (Eq. 1), Lab colour space, EXGR (Eq. 2), GLI 
(Eq. 3) and SVM classification model (Fig. 5a). In order to construct these classification 
models based different vegetation indices, EXG, Lab colour space, EXGR, GLI were cal-
culated using the colour information of point clouds. Point clouds of maize inbred lines 

Fig. 5   The flowchart for building LAI and AGB estimations model. a Classification of maize inbred lines 
point clouds, b process for down-sampling of point clouds based on voxel grid, and establish of LAI and 
AGB estimation models
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were then well identified by filtering out soil background based on Otsu automatic thresh-
olding method (Fig. 5a). Another plant classification model was SVM classification model 
trained by image fragments (vegetation or background) from five UAV images. The com-
ponents of background and noises of original point clouds were picked out using SVM 
classification model (Fig. 5a). And then point clouds structure information of maize inbred 
lines were down sampling based on voxel grid to improve computing efficiency as fol-
lows: (1) Point clouds of the canopy were summarized into voxels with equal dimensions 
of 0.2–20 cm, at intervals of 0.1 cm (Fig. 5b). (2) The point cloud numbers were calculated 
within each voxel. Voxels with point cloud numbers < 3 were regarded as abnormal voxels 
and removed accordingly (Fig. 5b). (3) Optimal voxel size was determined according to the 
comparisons between measured and calculated LAI and AGB estimation models. Finally, 
LAI and AGB estimation models were built using point clouds of maize inbred lines after 
voxelization (Fig. 5). LAI and AGB were estimated using the plant counting with MDM 
and IDM by Eqs. 12 and 15. Image processing was conducted using MATLAB (code avail-
able on request from the corresponding author).

where ni is the number of 3D grids with point clouds in the ith layer and nt i is the total 
number of 3D grids in the ith layer. NMDM and NIDM were the plant numbers obtained with 
MDM and IDM. Optimal voxel size was calculated with 0.09 m and 0.19 m for best esti-
mation of LAI and AGB respectively. The unit of AGB is kg/m2.

Statistical analyses

The coefficients of determination (R2; Eq.  16), root mean square error (RMSE; Eq.  17) 
and relative root mean square error (rRMSE; Eq. 18) were used to assess the coincidence 
degree between the measured and calculated values. Significant analysis of germination 
rate (Eq. 19) difference between two different growth stages was evaluated using ANOVA 
with Student’s t-Test (α = 0.05). The dispersion degree of data was calculated by Inter-
Quartile Range (IQR). Range of germination rate was calculated subtracting the maximum 
number from the minimum number. 75% quartile was subtracted from 25% quartile for 
IQR calculation to ignore outliers. Quantitative statistics and graphical statistics were pro-
cessed using tidyverse, stats and ggplot2 packages in R (R Development Core Team).

(12)LAIMDM =
1.41

NMDM

×

n∑
i=1

ni

nti

(13)LAIIDM =
1.47

NIDM

×

n∑
i=1

ni

nti

(14)AGBMDM =
0.59

NMDM

×

n∑
i=1

ni

nti

(15)AGBIDM =
0.61

NIDM

×

n∑
i=1

ni

nti
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where Nplant is the actual plant numbers, and Nseed is the plant number sowed within each 
plot.

Results

Separations of the green plants from the background and the classification accuracies were 
compared and shown in Fig. 6. Green leaf index (GLI) and support vector machine pro-
vided a better identification of the green pixels as compared to other methods. The classi-
fier training by support vector machine needs more time to build train dataset and optimize 
model hyperparameters than GLI. Therefore, GLI was selected to separate the green pixels 
from the background here.

Examples of phenotypic parameters of maize seedlings are shown in Fig. 7, including 
convex hulls (Fig. 7a), bounding boxes (Fig. 7c), the distance between adjacent plant cen-
tres (Fig. 7e; L1), deviation of the target plant relative to the position of the row (Fig. 7e; 
L2), projection areas (Fig. 7b and Fig. 7d), skeletons and their intersection points (Fig. 7f). 
L1 is the distance between adjacent plants (Fig. 7c).

(16)R2 =

∑n

i=1

�
xi − x

�2�
yi − y

�2

n
∑n

i=1

�
xi − x

�2 ∑n

i=1

�
yi − y

�2

(17)RMSE =

√√√√1

n

n∑
i=1

(
yi − xi

)2

(18)rRMSE =
RMSE

x

(19)Germination rate =
Nplant

Nsow

Fig. 6   Five methods were used to separate the foreground from the background. a1 and a2 Original image; 
b1 and b2 excess green index; c1 and c2 Lab colour space; d1 and d2 excess green minus excess red index; 
e1 and e2 green leaf index; f1 and f2 support vector machine
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The prediction accuracy were compared between the measured and estimated plant 
counting at the V2–V4 leaf stage for different flight heights at two locations (Fig. 8). Mor-
phologic discrimination model (MDM) exhibited higher accuracy for plant counting at the 
flight heights of 15 m with the R2 of 0.99 and averaged rRMSE of 1.95%. Performance of 
MDM built at the flight heights of 30 m was the averaged R2 value of 0.98 and averaged 
rRMSE of 2.55%. Plant counting at the flight heights of 10 m yielded slighter lower perfor-
mance with R2 = 0.93 and rRMSE = 5.55% (Fig. 8).

MDM based on area information such as ‘originalarea’ and ‘convexarea’ presented 
the better performance in plant counting prediction with averaged precision = 0.95, 
recall = 0.95 and F1 = 0.95 than other models constructed separately using area, round-
ness and skeleton information. Classification accuracy of MDM built by combination of 
area (averaged precision = 0.93), roundness (averaged precision = 0.93) and skeleton (aver-
aged precision = 0.92) information with position information was improved as compared to 
MDM built by position information with relatively low averaged precision of 0.90. Estima-
tion accuracy of MDM based on the combination of individual plant area, roundness and 
position (A + R + P) was better than the other models, with the plant density estimation 
of precision > 0.94, recall > 0.98 and F1 > 0.96 (Table 3). Maize (Fig. 9, grey) and weeds 
(Fig. 9, white box) were separated accurately using MDM built by groups A, R and P.

The differences in the morphological characteristics of plants and weeds are presented 
in Fig. 10. The distribution of ‘originalarea’ and ‘convexarea’ of plants and weeds was pos-
itively right-skewed. The ‘extent’ (marked with a red quadrangle) and ‘solidity’ (marked 
with a yellow polygon) of weeds were larger than those of the plants. The ‘extent’ mode of 
the plants was 0.35 (Fig. 10c) and that of the weeds was 0.55 (Fig. 10g). The ‘solidity’ of 
the plant is similar to a normal distribution, but that of weeds is positively right-skewed.

The area of weeds is smaller than that of maize (Fig.  10e). Narrow strips and thin 
leaf tips of weeds were eliminated after morphological opening operation (the pictures 

Fig. 7   Schematic diagram for 
calculating the phenotypic 
parameters of maize seedlings. 
a Convex hull. b The area of the 
plants. c A minimum bound-
ing box. d The ‘filledarea’ of 
the plants. e Seedling position 
information. L1 is the distance 
between adjacent plant centres. 
L2 is the deviation of the target 
plant relative to the mid-row 
position. f Outline skeleton and 
cross-point of the skeleton
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in Fig.  10p). The ellipse built by small weeds tend to be round as shown in the last 
group picture in Fig. 10p. The ellipse eccentricity of the plants and weeds had a nega-
tively left-skewed distribution, and the other morphological characteristics of roundness 
were positively right-skewed distributions. The eccentricity of the weeds was closer to 1 
than that of the plants indicating the longer axis of ellipse by weeds (Fig. 10l vs p).

The distance distribution between adjacent plants was a double wave crest. The sec-
ond peak along X-axis (green arrow in Fig. 10s) was 50 cm and that of the first peak was 
25 cm. The deviation distribution of the plants and weeds were positively right-skewed 
relative to mid-row. Maize was concentrated within 10 cm of plant row (Fig. 10q). The 
distribution of weeds was relatively scattered (Fig. 10r).

The distance distribution between adjacent plants (Fig. 10, Position) and plant area 
distribution (Fig. 10, Area) indicated the seedling deficiency and seedling weakness at 
V2–V4 leaf stages. The maize position of some inbred lines such as Sy1032, 647 and 
CML473 was only detected at V4–V6 leaf stages due to inconsistent germination time 
(Fig. 11). Germination rate of 30 inbred lines including Sample 10 and Rest 20 was then 
compared at V2–V4 leaf and V4–V6 leaf stages (Fig. 12). Germination rate difference 
(hollow bar in Fig. 12) between two leaf stages were highest for Shen5003 with the dif-
ference > 30%. Germination rate of GEMS9 and huangC at V2–V4 leaf stage was higher 
than that at V4–V6 leaf stage (Fig. 12a), which means seedlings of these materials died 
at V4–V6 leaf stage. No significant differences between V2–V4 leaf and V4–V6 leaf 
stages were found in germination rate for Sample 10, but germination rate for Rest 20 
was significantly different (Fig.  12d). Sample 10 group (Mean = 5%, Range = 21%) 
had lower germination rate difference, dispersion and variability than Rest 20 group 
(Mean = 12%, Range = 38%; Table 4).

Fig. 8   The estimated and measured plant counting were compared using maize images of V2–V4 leaf stage 
at the flight heights of 10 m (a and b), 15 m (c and d) and 30 m (e and f) at two locations (Jilin and Henan). 
One point stand for maize plant counting from randomly clipped DOM within a size of 1500 pixel × 1500 
pixel
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IDM was constructed to address the unpredictable errors caused by the above germina-
tion differences in Fig. 11. The estimated plant number has a better correlation with the 
measured value than the other threshold when the plant discrimination threshold is 0.07, 
with R2 = 0.86, rRMSE = 5.5% (Fig. 13). The agreement between the measured and esti-
mated plant counting using different models was presented in Fig.  14. The plant count-
ing estimated using the images of V2–V4 leaf stage has lower correlation with R2 = 0.78 
(Fig. 14a). There were still some materials that germinate or die in the late growth stage 
leading to inaccurate prediction of seedling number. The plant counting at V4–V6 leaf 
stage estimated by IDM was better than that by MDM, with R2 = 0.79 for MDM (Fig. 14b) 
and R2 = 0.86 for IDM (Fig. 14c).

The plant counting estimated by IDM at V4–V6 leaf stage was better for predicting LAI 
and AGB than that estimated by MDM at V2–V4 leaf stage (Fig.  15). The agreements 
between calculated and measured LAI and AGB are presented in Fig. 15. R2 of LAI esti-
mated by MDM was lower than that by IDM (0.8 vs. 0.85). R2 of AGB estimated by MDM 
was 0.86 lower than that by IDM (R2 = 0.9).

Discussion

Application of UAV technologies in plant counting and plant identification

Plant counting was an important reference index for evaluating the quality of maize seed 
and machine planting, and also helpful for making up the yield losses by reseeding and 
transplanting in time (Assefa et al., 2018; Li et al., 2018; Ranđelović et al., 2020). Ground 
fixed and moving platform was found effective at high-resolution and high-quality data col-
lection. Herrmann et al., (2019) evaluated soybean plant population with R2 of 0.51–0.69 at 
early developmental stages using a ground moving platform, which was destructive to the 
experimental sites and limited to the sampled areas. Increased costs were also needed for 
large-scale experiments. UAV have the advantages with the merits of fast image acquisi-
tion, automation and easy operation (Feng et al., 2020; Jin et al., 2017; Koh et al., 2019). 
Varela et al. (2018) used UAV to automatically scout fields with an overall crop classifica-
tion accuracy of 0.96. Feng et al. (2020) captured high-resolution image frames by UAV to 
evaluate plant seedling number using a pretrained deep learning model with high accuracy 

Fig. 9   Visualization of maize 
(grey) and weeds (white box) 
identified by morphologic dis-
crimination model
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(R2 = 0.95). Plant counting calculated with UAV images provides important application 
prospects in grain yield maximization with modern agricultural production.

A complex field environment presents many challenges. The robustness in crop rows 
estimation is a crucial precondition, especially for automatically performing weeding/fer-
tilizing operations in future farming systems. The methods detected crop rows, including 
blob analysis (Ahmed et al., 2019), linear regression (Montalvo et al., 2012), and Hough 
transform (Ji & Qi, 2011; Liu, Zhou, et al., 2017). A pipeline for the automatic calculation 
of the optimum angle for each row was presented to avoid non-parallelism of rows caused 
by initial plantation (Fig. 3). Location-based plant cluster segmentation and mosaic method 

Fig. 10   Empirical histogram of different morphological characteristics of plants (marked with green circles) 
and weeds (marked with yellow triangles). These morphological characteristics belong to area, roundness 
and position. ‘Extent’, ‘solidity’ and ‘eccentricity’ of plant and weed were marked with a red quadrangle, a 
yellow polygon and a green ellipse
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can effectively segment complete individual plants at different test sites (Figs.  3f & 8). 
However, the current application of the method is limited to plant counting under the con-
dition of uniform planting in the field (Fig. 9).

Challenge and improvements of current plant discrimination models based 
on morphological characteristics

Liu, Baret, et al. (2017) proposed that there was redundancy between morphological fea-
tures, which may confuse the training of the discriminative model. The morphological 
characteristics of maize seedlings were compared here with weeds and the contribution of 
various morphological characteristics were then assessed to improve the accuracy of the 
discriminative model at V2–V4 leaf stage (Table 2). The best model was obtained using 
the combinations of individual plant area, roundness and position with the plant density 
estimation of mean precision, recall and F1 above 0.95 (Table 3). Performance of the mor-
phologic discrimination model was in accordance with the results of Varela et al., (2018), 
which provides a precision of 0.96–0.97 and recall of 0.95–0.97 between crop and weed 
objects detection. Therefore, the groups A, R and P were taken as the optimal training 
samples for morphologic discrimination model to separate maize and weed, which will 
improve the estimation accuracy and training efficiency. In some cases, the weeds distrib-
uted within maize rows were misidentified as maize because they had same shape and col-
our. This denotes the importance to the further usage of other deep morphological charac-
teristics of maize for better classification results.

Currently, most studies suggest that the V2–V4 leaf stage was the best growth stage to 
estimate plant emergence in high estimation accuracy with UAV images (Feng et al., 2020; 
Jin et al., 2017; Li, Li, et al., 2019; Li, Xu, et al., 2019; Osco et al., 2021). However, germi-
nation time and growth status of maize inbred lines are different (Figs. 11, 12 and Table 4). 
It was necessary to use images of late growth stage for more accurate plant counting due to 
different germination rate and senescence of maize inbred lines (Fig. 14). The overlapping 
of plant seedlings at V4–V6 leaf stage is inevitable in the obtained images. IDM was there-
fore proposed for plant counting at V4–V6 leaf stage. The accuracy obtained with IDM 
(R2 = 0.86) was better than MDM (R2 = 0.79).

Fig. 11   The construction process of the interpolation discriminant model (IDM). Plant position of V4–V6 
leaf stage was detected based on plant position of V2–V4 leaf stage obtained by MDM and then calculated 
using IDM for isometric interpolation. Red points and blue points were the plant positions obtained using 
MDM and IDM
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Fig. 12   Comparisons of germination rate for different maize inbred lines at V2–V4 and V4–V6 leaf stages. 
a–c The plant germination rate differences of each material, d the plant germination rate differences of all 
materials with two groups. Sample 10 means ten materials were sampled to measure LAI and AGB. And 
the rest of the other 20 inbred lines were not sampled and named as Rest 20. Plant counting of Sample 10 
and Rest 20 were visually identified at V2–V4 and V4–V6 leaf stages. Lines in boxplots means standard 
deviation of germination rate for different maize inbred lines. ANOVA was carried out, and ‘**’ on the bars 
indicates significant differences at the .01 level, ‘#’ means significant differences at the .05 level

Table 4   Germination rate 
differences between Sample 10 
and Rest 20 at V2–V4 leaf and 
V4–V6 leaf stage

Sample 10 means ten materials were sampled to measure LAI and 
AGB. And the rest of the other 20 inbred lines were not sampled for 
LAI and AGB and named as Rest 20. However, plant counting of 
Sample 10 and Rest 20 were obtained by visual identification method. 
IQR were interquartile range

Name Mean (%) Max (%) Range (%) IQR (%)

Sample10 5 21 21 6
Rest 20 12 38 38 16
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The impact of plant counting on the estimation accuracy of LAI and AGB

The effect of accurate plant counting were demonstrated on improving the model perfor-
mance in LAI and AGB estimation. The results showed that LAI (R2 = 0.8 vs. R2 = 0.85) 
and AGB (R2 = 0.86 vs. R2 = 0.9) can be more accurately estimated only when precise 
plant counting is obtained (Fig. 15). There were significant differences between V2–V4 
leaf and V4–V6 leaf stages in germination rate for Rest 20, but no significant differences 
were found for Sample10. Sample10 (Mean = 5%, Range = 21%) had lower germination 
rate difference, dispersion and variability than Rest 20 (Mean = 12%, Range = 38%). The 
inaccuracy for LAI and AGB prediction using the plant counting at V2–V4 leaf stage 
would be greater if all materials were sampled due to the greater variation of Rest 20. It 
should be emphasized that ten materials in Sample10 group were used to measure LAI 

Fig. 13   The histogram of R2 and 
rRMSE for the comparison of the 
accuracy between estimated and 
measured plant number among 
different plant discrimination 
thresholds (plant pixel area/area 
of region of interest) required for 
the Interpolation Discriminant 
Model

Fig. 14   Morphological discriminant model (MDM, a and b) and interpolation discriminant model (IDM, c) 
were used to compare the estimated and measured plant counting. The measured value was the plant count-
ing at V4–V6 leaf stage. a Based on the maize images of V2–V4 leaf stage, b and c based on the maize 
images of V4–V6 leaf stage. One point represents the number of maize plants in each plot of 5 × 1.2 m
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and AGB. The rest of the other 20 inbred lines in Rest 20 were not sampled for LAI and 
AGB measurement due to the heavy workload. LAI and AGB of Rest 20 will be meas-
ured in a later study in order to further verify the results. This study focused on provid-
ing the application potential of precision agriculture on maize inbred lines with exten-
sive genetic diversity, but lowered the contribution to LAI and biomass prediction as it 
is done in the late growth stage. In the future, the exact time of accurate plant count-
ing from UAV images of maize inbred lines at different leaf stage will be detected to 
improve its contribution to effective fertilization management and crop yield prediction.

Fig. 15   Comparison of estimated and measured leaf area index (LAI) and aboveground biomass (AGB) 
using Morphological Discriminant Model (MDM, a and b) at V2–V4 leaf stage and Interpolation Discri-
minant Model (IDM, c and d) at V4–V6 leaf stage. One point stand for leaf area index and aboveground 
biomass of each maize inbred line
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Conclusion

In this study, plant counting at V4–V6 leaf stage was better than that at V2–V4 leaf 
stage for maize inbred lines with extensive genetic diversity, as plant counting at V4–V6 
leaf stage can efficiently prevent bias counting caused by death and growth of small 
seedlings. The designed IDM considered the time differences of germination in maize 
inbred lines, thus plant counting by IDM was closer to the field measurements com-
pared with that of MDM. Performance of LAI and AGB estimation model based on the 
accurate maize plant counting of maize inbred lines in V4–V6 leaf stage was superior 
to that based on V2–V4 leaf stage. Therefore, accurate plant counting in later leaf stage 
can improve the estimation accuracy of LAI and AGB for maize inbred lines with exten-
sive genetic diversity. In the future, the exact leaf stage for accurate plant counting will 
be further refined to improve the application potential of precision agriculture on maize 
management and breeding.
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