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Abstract
Fruit detection and segmentation will be essential for future agronomic management, with 
applications in yield estimation, growth monitoring, intelligent picking, disease detection 
and etc. In order to more accurately and efficiently realize the recognition and segmentation 
of apples in natural orchards, a robust segmentation net framework specially developed for 
fruit production is proposed. This model was improved for the more challenging problem 
which segments the overlapped apples from the monochromatic background regardless of 
various corruptions. The method extends Mask R-CNN by embedding an attention mecha-
nism for focusing more on the informative pixels but also suppressing the noise caused by 
adverse factors (occlusions, overlaps, etc.), which could be more suitable and robust for 
operating in complex natural environment. Specifically, the Gaussian non-local attention 
mechanism is transplanted into Mask R-CNN for refining the semantic features generated 
continuously by residual network and feature pyramid network, then the model forward 
processing based on the balanced feature levels and finally segments the regions where the 
apples are located. Experimental results verify the hypothesis of current work and show 
that the proposed method outperforms other start-of-the-art detection and segmentation 
models, the AP box and AP mask metric values have reached 85.6% and 86.2% in a reason-
able run time, respectively, which can meet the precision and robustness of vision system 
in agronomic management.

Keywords Robust segmentation · Overlapped apples · Mask R-CNN · RS-Net

Abbreviations
AP  Average precision %

 * Weikuan Jia 
 jwk_1982@163.com

 * Sujuan Hou 
 hsj1985@126.com

1 School of Information Science and Engineering, Shandong Normal University, Jinan 250358, 
China

2 Key Laboratory of Facility Agriculture Measurement and Control Technology and Equipment 
of Machinery Industry, Zhenjiang 212013, China

3 School of Engineering, Cardiff University, Cardiff CF24 3AA, UK
4 Shandong Provincial Key Laboratory for Novel Distributed Computer Software Technology, 

Shandong Normal University, Jinan 250358, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s11119-021-09846-3&domain=pdf


493Precision Agriculture (2022) 23:492–513 

1 3

AR  Average recall %
BFP  Balanced feature pyramid
CHT  Circular hough transform
CNN  Convolutional neural networks
FCN  Fully convolution network
FN  False negative
FPN  Feature pyramid network
IoU  Intersection of union
MLP  Multiscale multilayered perceptron
NMS  Non-maximum suppression
R-CNN  Region-based convolutional network
ResNet  Residual network
RoI  Region of interests
RPN  Region proposal network
RS-Net  Robust segmentation net
TP  True positive
WS  Watershed segmentation

Introduction

To supply the nutrition and health needs of the growing population around the world, a 
major challenge in agricultural communities is to find innovative ways to increase the 
production of fruits and vegetables (Siegel et  al., 2014), especially in the context of ris-
ing farming costs and the shortage of skilled labor. Efficient and sustainable agronomic 
management is one of the effective ways to alleviate this situation, which is required to 
reduce economic and environmental costs while increasing orchard productivity. Recently, 
advances in technologies such as robotics and computers provide farmers with means to 
increase agricultural production in an efficient and sustainable way (Underwood et  al., 
2016). In addition, these new technologies has been widely applied in the optimization of 
processes in agronomic management such as irrigation, fertilization, pruning, thinning and 
deinsectization (Bargoti & Underwood, 2017b; Cheein & Carelli, 2013), through the detec-
tion and quantification of fruit distribution in canopy, farmers can obtain valuable informa-
tion and provide reference for optimizing these processes, which will significantly facilitate 
the spatial and temporal management of agricultural production.

Among the many links to realize efficient and sustainable agronomic management, 
vision system as the most fundamental yet important section, used to parse the specified 
targets from the complex and diverse scenes, has been widely used in many practical appli-
cations, such as crop yield estimation (Koirala et al., 2019a), growth monitoring (Fu et al., 
2020b), intelligent picking (Bac et al., 2015), disease detection (Zhang et al., 2019), and so 
on. Design of vision system with the goal of rapid positioning and accurate segmentation 
will significantly affect the real-time and reliability of these intelligent agriculture appli-
cations. However, there are many different types of interference under natural conditions, 
such as various scales, occlusions, overlaps, illuminations, etc., especially in the mono-
chromatic background, which are all unfavorable to visual system and need to be taken 
these factors into consideration. Therefore, how to enhance the discriminative ability of 
vision system regardless of the above interference is crucial and necessary. In this paper, 
a robust segmentation net framework is specifically designed to segment the overlapped 
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apples from the monochromatic background, which will be more challenging than previous 
works (Jia et al., 2020b; Zhang et al., 2016).

In recent years, many researchers have been attracted and proposed different methods 
for the improvement and robustness of detection model in complex orchard scenes. Some 
methods for detecting used colorspace transformations where the objects of interest stand 
out, or extraction of features such as shape and texture (Gongal et  al., 2015; Jia et  al., 
2015; Kapach et al., 2012; Liu et al., 2016b; Zhou et al., 2012). In most of these solutions 
based on hand-crafted features, the discriminative information depends partly on develop-
ers, not entirely on algorithms themselves, which may not enough to deal with the level of 
variability and complexity which commonly appear in natural orchards. In addition, some 
scholars proposed computer vision solutions based on deep learning network architecture 
(Chen et al., 2017; Fu et al., 2020a; Jia et al., 2020a; Li et al., 2021; Vasconez et al., 2020). 
Although these methods can deeply mine the characteristics of targets by themselves, some 
inconspicuous targets are easily disturbed by dominated salient objects and cause wrong 
judgments. This situation is sharper when recognizing overlapped fruits at monochromatic 
background, which still cannot meet the needs of real-world application.

Through the analysis of the above problems, the objective of this study linking image 
processing with agronomic management was to develop a model architecture with strong 
robustness to segment apples regardless of interference caused by sensors and natural 
orchard elements. The whole network framework can be divided into three parts: (1) Feature 
Acquisition, (2) RoIs (Region of Interests) Generation and (3) Results Prediction. Firstly, the 
pipeline of ‘Feature Acquisition’ also consists of three steps: extraction, fusion and refining, 
which are respectively performed by residual network (ResNet) (Targ et al., 2016), feature 
pyramid network (FPN) (Kim et al., 2018) and balanced feature pyramid (BFP) (Pang et al., 
2019). The features of each image were extracted by ResNet and fused by FPN successively, 
which can make different scales caused by diverse factors (occlusion, camera distance and 
angle, etc.) be all well perceived. Sequentially, BFP strengthen the features from FPN with 
the embedding of Gaussian non-local attention mechanism, which can retain more seman-
tic information of inconspicuous object by selectively integrating the similar features rather 
than simple contextual embedding. Then, at the stage of ‘RoIs Generation’, the region pro-
posal network (RPN) (Ren et al., 2017) takes the features refined by BFP as input and out-
puts a set of rectangular object proposals on original images, each with a score that belongs 
to the foreground. Afterwards, the RoI Align layer convert the features inside any valid 
region of interest into a small feature map with a fixed spatial extent of H ×W , where H and 
W represent the height and width of RoIs respectively. The RoIs with same size are trans-
ported into three branches of ‘Results Prediction’ for class probability, bounding box (bbox) 
regression and mask generation respectively. Finally, based on the results generated by three 
branches and combine with them, the model will get the final segmentation results.

It should be noted that the method is more effective and flexible than previous methods 
which also based on network architecture when dealing with complex and diverse scenes. 
Specifically, some fruits are inconspicuous or incomplete due to lighting and occlusion. If 
simple contextual embedding is explored, the semantic information from dominated sali-
ent object (e.g. leaves, branches) would harm those inconspicuous objects labeling near 
the edge. By contrast, the embedding Gaussian non-local attention module selectively 
aggregates the similar features of inconspicuous objects to highlight their feature represen-
tations and avoid the influence of salient objects. In addition, through the way that explic-
itly take spatial relationships into account, so that images understanding for segmentation 
could benefit from the whole building long-range dependency. Compared with previous 
published work, the current work contributes to the development of a solution for vision 
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system in agronomic management by examining the hypothesis that Gaussian non-local 
attention mechanism can be easily embedded into deep learning based vision model and 
effectively improve the accuracy and robustness of fruit detection by aggregating the simi-
lar features of inconspicuous objects through the image. In general, this study offers at least 
the following contribution as:

 (I) Gaussian non-local attention mechanism is embedded to focus on the informative 
pixels but also suppress the noise.

 (II) The proposed methods outperform the start-of-the-art models in terms of both 
accuracy and robustness, which could be more suitable for detecting fruits in com-
plex scenes.

 (III) Provide valuable reference for practical application of other fruit detection and 
segmentation methods.

The rest of this paper is organized as follows: Firstly, Sect. 2 briefly outlines the break-
through of related works and unresolved issues. Next, Sect. 3 introduces image acquisition 
and related dataset processing and annotations. The detailed improvement of model archi-
tecture and whole network’s pipeline will be illustrated in Sect. 4. In Sect. 5, the experi-
ment is shown to validate that the method outperforms others from different perspectives 
including precision, recall and robustness. Finally, Sect. 6 summarizes the characteristics 
of the proposed method and elaborates the other unsolved problems in this field, which will 
be the future research directions.

Related work

Design of vision system with the goal of rapid positioning and accurate segmentation is a 
very challenging task. This is due to various complicated and changeable situations in nat-
ural orchards. For example, occlusions and overlaps will lead to incomplete shape features, 
angle and intensity of illuminations will lead to the indistinct texture features, etc. In the 
domain of agriculture, earlier work about this used “classical” machine vision techniques, 
involving detection, classification and segmentation tasks based on hand-crafted features. 
For example, Ji used SVM classifier to classify and recognize apples, and the recognition 
rate of bagged apples reached 89%, however, it took 352 ms to recognize an image, the rec-
ognition efficiency was not enough high and could not meet the real-time requirements (Ji 
et al., 2012). Tian proposed an optimized graph-based recognition algorithm by utilizing 
depth images and paired RGB images without extra manual labeling, which achieves both 
accuracy and speed improvement, but there were obvious defects in the segmentation of 
overlapping and clustered apples (Tian et al., 2019a). Liu proposed a recognition method 
for bagged apples based on block classification, watershed algorithm was employed to seg-
ment original images into irregular block, and then SVM divided these blocks into fruit 
blocks and non-fruit blocks, which can restrain the interference of light efficiently (Liu 
et al., 2018). Rakun used to recognize apples by combining texture and color features, but 
the bags and drops on the apples would weaken or even change the features and make it 
difficult to recognize them (Rakun et al., 2011). Bargoti and Underwood proposed a pipe-
line for mango and apple detection and counting. They used a general-purpose image seg-
mentation approach with two feature learning algorithms—convolutional neural networks 
(CNN) and multiscale multilayered perceptrons (MLP). Their approaches were designed to 
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include contextual information about how the image data were captured. Circular Hough 
transform (CHT) and watershed segmentation (WS) algorithms were used to detect and 
count individual fruits from the pixel-wise fruit segmentation (Bargoti & Underwood, 
2017a, 2017b). Linker proposed a yield prediction model specifically for night-time apple 
images. In addition, the classifier trained with images from one dataset was successfully 
applied to the second dataset, and the same prediction effect as the previous work was 
achieved (Linker, 2018). Hung demonstrated a generalised multi-scale feature learning 
approach to multi-class segmentation of tree crops. The segmentation results were applied 
to the problem of fruit counting and compared against manual counting, which shows a 
squared correlation coefficient of  R2 = 0.81 between the two (Hung et al., 2015). Similarly, 
there are other methods to realize fruit detection by combining color, texture, shape and 
other features (Aggelopoulou et al., 2011; Kurtulmus et al., 2011; Wang et al., 2013), these 
‘classical’ machine vision based methods rely heavily on hand-crafted features to refine 
discriminative information, so that they could not yet comprehensively consider more 
aspects into account, which will be eliminated in complex real-world environment.

With the gradual maturity of deep learning, it has become prevalent to migrate this 
novel revolution to various professions for better results. This also has stimulated the devel-
opment of vision system in precision agricultural field. More recent works draw support 
from deep learning due to its various flavors and strong adaptability. Gené-Mola used 
RGB-D cameras to collect geometrical information with color data and adapted Faster 
R-CNN model for use with five channels input images including color (RGB), depth 
(D) and range-corrected intensity signal (S). Results show an improvement of 4.46% in 
F1-score when adding depth and range-corrected intensity channels, which can be con-
cluded that the RGB-D sensors give valuable information for fruit detection (Gené-Mola 
et  al., 2019). Li optimized U-Net with gated and atrous convolution to make the model 
more suitable for small apple segmentation in monochromatic background, and the rec-
ognition time is 0.39 s. However, the optimized U-Net still belongs to semantic segmen-
tation model, which can only achieve pixel-level classification instead of instance-level. 
This results in overlapping and clustered fruits being divided into an area, which is not 
suitable for fruit counting and picking (Li et al., 2021). Koirala compared six existing deep 
learning architectures for the task of mango detection, and developed a new architecture 
named MangoYOLO based on features of YOLOv3 and YOLOv2(tiny) on the design crite-
ria of accuracy and speed. The MangoYOLO achieves a F1 score of 0.968 with a detection 
speed of 8 ms, which realizes a good trade-off between speed and accuracy (Koirala et al., 
2019b). Tian employed the improved YOLOv3 architecture to detect apples during differ-
ent growth stages. Images of young apples, expanding apples and ripe apples were initially 
collected and subsequently augmented. These augmented images were sent into DenseNet 
for feature extraction.(Tian et al., 2019b). Sa adapted an object detector by using a Faster 
R-CNN through transfer learning with images obtained from two modalities—color (RGB) 
and Near-Infrared (NIR). However, this model used vgg16 as the backbone of the whole 
model pipeline to extract features, the large capacity (more than 500 megabytes) of the 
model may make it difficult to deploy the model to mobile agriculture devices (Sa et al., 
2016). Rahnemoonfar and Sheppard trained a CNN using features on multiple scales based 
on an Inception-ResNet architecture. The model was trained with synthetic images and 
tested on real images of tomato plants, reaching 91% of accuracy. However, such network 
was tested using 128 × 128 pixel images, which may not take into account important fea-
tures from the fruit due to the low resolution (Rahnemoonfar & Sheppard, 2017). Vasconez 
tested the effect of two most common CNN detectors (Faster-RCNN with Inception and 
SSD with MobileNet) in fruits detection, and compared the results of the two models on 
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three fruits datasets (avocado, apple and lemon). Extensive experiments provide insight-
ful analysis of the usability of such technique in fruit counting tasks in groves, which can 
lead to further improve the decision making process in agricultural practices (Vasconez 
et al., 2020). Though improved network enhanced the feature propagation and reusability, 
research data shows that the algorithm would still easily affected by occluded objects.

Although many researches in this field have made breaks through various ways, the 
above methods could only realize one of the functions between detection and segmenta-
tion, Mask R-CNN (He et al., 2017; Wei et al., 2018) provides a framework for prediction 
of both the bounding box and pixel mask for each object with only adding a mask branch 
on Faster R-CNN (Ren et  al., 2017), which can efficiently eliminate interference caused 
by overlaps and occlusions. Considerable amount of researches about Mask R-CNN based 
methods are under study and gain some progress. Jia improved the backbone of Mask 
R-CNN by combining ResNet with DenseNet, which greatly reduce input parameters and 
efficiently strengthen feature extraction (Jia et  al., 2020b). Yu applied Mask R-CNN for 
detecting strawberries and get ideal effect in terms of both robustness and universality, par-
ticularly for inconspicuous fruits (Yu et al., 2019). Otherwise, many works about attention 
mechanism (Chen et al., 2016; Fu et al., 2019a, 2019b; Wang et al., 2018) also make great 
breakthroughs, which can provide references for detecting overlapped apple from mono-
chromatic background. Inspired by these two innovations and combined with the goal of 
segmenting occluded apples in monochromatic background, the current work proposed an 
improved model based on Mask R-CNN by embedding the Gaussian non-local attention 
mechanism for better focusing on the informative pixels but also suppressing the noise.

Dateset generation

Images acquisition

The images were acquired at the Longwangshan apple production base in Fushan District, 
Yantai City, Shandong Province (agricultural information technology experimental base 
of Shandong Normal University) with 6000 × 4000 pixel resolution. Generally, the perfor-
mance of models based on deep learning relies heavily on datasets, in order to satisfy the 
diversity of overlapped fruit recognition and minimize variability in lighting conditions 
due to direct sunlight or cloud cover, images was taken at multiple directions and multiple 
time interval (morning, noon and evening). Totally, 268 apple images with different illumi-
nation and different amounts were collected. Otherwise, considering that the detection of 
overlapped apple in the monochromatic background is taken as the research object of this 
paper, these collected images contains a large proportion of apples occluded by leaves and 
branches or overlapped by another fruits. Specifically illustrated in the first two rows of 
Fig. 1.

Images annotation and dataset production

Although the aforementioned factors have benn taken into account when collecting pho-
tos, some literatures (Dodge and Karam, 2016; Michaelis et  al., 2019) have proved that 
most standard detection and segmentation models encounter a serious detection loss when 
images getting corrupted (down to 30–60% of the original), which are inevitable caused by 
sensor degradation or poor weather and extremely unfavorable for real-world applications 
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of agronomic management. For example, the state-of-the-art segmentation algorithm such 
as Mask R-CNN failed to segment partial apples when the fog gets thicker (as shown in the 
third row of Fig. 1), even though the apples are still clearly visible to human eyes, which 
means that the vision system will be a bad alternative of manual labor if the robustness 
of models cannot get improved. Considering that the ability of the model to detect apples 
regardless of image distortions is also crucial for real-world application of agronomic 
management, several data augmentation modes were employed to mitigate the severe 
performance degradation which usually caused by hardware-degraded or poor whether 
environment in actual application. Otherwise, in order to increase the networks capabil-
ity of generalizing and reduce the probability of overfitting, the training set was corrupted 
with six image distortions, each spanning three levels of severity, as data augmentation 
(as shown in the last row of Fig. 1). In addition, in order to adapt the trained algorithm 
to target recognition at low resolution more, the original images were cropped to the size 
of 4000 × 4000 pixels and further downscaled to 512 × 512 pixels. Finally, after filtering 
and cropping, 268 images were manually annotated using the labelme annotation tool. And 
without any additional labelling costs or architecture changes. 2813 images containing 
5831 apples were totally generated for model training and 1000 images containing 2142 

Fig. 1  a–d represent the images taken in different time intervals and different illumination angles; e and f 
show different types of occlusion (inter-fruits overlapped, leaves occlusion, branches occlusion and their 
combination); i is the ground truth corresponding to this image, and j–l are both segmented by Mask 
R-CNN which equipped with same weights and configurations. Apparently, as the fog gets thicker, the seg-
mentation effect gets worse, which commonly appears in most segmentation methods. m–p show four of six 
corruption types (gaussian noise, impulse noise, brightness, fog, snow and contrast) with middle severity
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apples were totally generated for model evaluation. More detailed data set information is 
shown in Table  1. Otherwise, it should be noted that the training process drew support 
from transfer learning by migrating the pretrained model weights to RS-Net architecture 
before formal training, in which the pretrained weights were obtained by extracting the 
1586 images containing 5851 apples from MS COCO (Lin et al., 2014) and then trained 
on RS-Net model. Through pre-training on these extracted images, model could accelerate 
convergence speed and get better performance.

RS‑Net

Mask R-CNN is a start-of-the-art instance segmentation algorithm which extends many 
previous excellent researches works (Shelhamer et  al., 2017). This approach efficiently 
detects objects while simultaneously generating a high-quality segmentation mask for each 
instance in an image. In this paper, RS-Net is extended by original Mask R-CNN and make 
it more suitable for the segmentation of overlapped fruits in complex scenes. The overall 
pipeline of RS-Net is shown in Fig. 2, It consists of three-part: (1) Feature Acquisition, (2) 
RoIs Generation, and (3) Results Prediction. Firstly, the pipeline of ‘Feature Acquisition’ 
consists of three steps: extraction, fusion and refining, which are respectively performed 
by ResNet, FPN and BFP (specifically in Fig. 3). Then, based on the features generated 
by BFP, RPN produces abundant anchors on original images and outputs a set of object 

Table 1  Image acquisition and data set division

Specific envi-
ronment 
场景
division

Training images / 
instances

Validation images / 
instances

Total images/instances Pretraing 
setimages / 
instances

Day 1581 / 2936 646 / 1153 2227 / 4089 - / -
Night 1232 / 2895 354 / 989 1586 / 3884 - / -
Total 2813 / 5831 1000 / 2142 3813 / 7973 2586 / 5851

Fig. 2  Overview of the improved Mask R-CNN:an overall pipeline design for apple segmentation consists 
of three parts:(1) Feature Acquisition, (2) RoIs Generation, and (3) Results Prediction



500 Precision Agriculture (2022) 23:492–513

1 3

proposals that have been initially filtering. Finally, the mask is generated by FCN to indi-
cate the detailed area where the apples are located.

The goal of RS-Net is to focus on the informative pixels but also suppress the noise 
by selectively aggregating the similar features of inconspicuous fruits, thus exploiting 
the potential of the proposed model architectures for applying on vision system of agro-
nomic management as much as possible. All components will be detailed in the following 
sections.

Feature acquisition (ResNet + FPN + BFP)

The overall pipeline of ‘Feature Acquisition’ is shown in Fig.  3. This section can be 
divided into three parts: extraction, fusion and refining, which are respectively performed 
by ResNet, FPN and BFP. Specifically, the combination of ResNet and FPN has been 
widely applied in many detection and segmentation architectures due to its excellent effect 
of feature representation, which also fits with the research goal of this paper. Generally, 
the depth of the network is crucial for learning the features with stronger representation 
ability, but with network depth increasing, it will bring about the problems such as gradi-
ent vanishing and explosion, which will lead to model degradation. In case the problems 
aforementioned, ResNet effectively solves this contradictory phenomenon by explicitly let 
shallower layers and deeper layers fit a residual mapping, thus improving the discrimina-
tive ability of the networks with deeper layers. According to the efficient feature extraction 
ability of ResNet, RS-Net could better mean and represent the image features on the basis 
of labeling information.

Generally, the output of last layer of ResNet has been provided sufficient semantic infor-
mation, but also with the cost of missing detailed information related to object boundaries 
and resolution due to the consecutive down sampling operations (convolution and pooling), 
this will make the semantic information of smaller objects seriously diluted and finally 
cause the detection to fail. Considering that the design of vision system in agronomic man-
agement also needs to accurately recognize smaller area apples in an image due to the dis-
tance between sensors and objects, FPN is introduced to RS-Net architecture Typically, 
deep high-level features in backbones are with more semantic meanings while the shallow 
low-level features are more content descriptive. In other words, low level and high-level 
information is complementary in terms of semantic meanings and content details. Based 

Fig. 3  Overall pipeline of ‘Feature Acquisition’ section. Images will be processed continuously as above to 
get the final finer feature maps (P2–P5) for the next steps. In this figure, feature maps are indicate by differ-
ent color outlines, and thicker outlines denote semantically stronger features. Detailed pipeline of ‘Attention 
Module’ is illustrated in Fig. 4
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on this point, FPN develops a top-down architecture with lateral connections for building 
high-level semantic feature maps at all scales, so as to improve the final accuracy on small 
area objects in this way. The details are shown in the left of Fig. 3. Specifically, FPN uses 
the feature activations produced by each stage’s last residual block of ResNet, and denotes 
the outputs of these last residual blocks as 

{

F2,F3,F4,F5

}

 for conv2, conv3, conv4 and 
conv5 stages. The set of feature maps integrated by FPN is called 

{

A2,A3,A4,A5

}

 , corre-
sponding to 

{

F2,F3,F4,F5

}

 that are respectively of the same spatial sizes.
Normally, the features via ResNet and FPN can be enough served as the basis for detec-

tion and segmentation, but considering two important factors, BFP module is introduced to 
the architecture for further refining the extracted features. The first point is that a large per-
centage of apples in collected images are inconspicuous or incomplete due to adverse fac-
tors such as lighting, occlusions, overlaps, etc., this will make the semantic information of 
inconspicuous fruits easily be disturbed by dominated salient object (e.g. leaves, branches) 
and diluted by consecutive down sampling operations. The second point is that some stud-
ies reveals that the best integrated features methods should possess balanced information 
from each resolution. But the sequential manner in FPN methods will make integrated 
features focus more on adjacent resolution but less on others. The semantic information 
contained in non-adjacent levels would be diluted once per fusion during the information 
flow. Therefore, in order to relieve the two aforementioned dilemmas simultaneously, BFP 
module is introduced the model architecture, which is illustrated in the right of Fig. 3 and 
detailed in Fig. 4.

Features at level l and the number of features generated by FPN are respectively denoted 
as Al and L. The indexes of involved smallest and biggest levels are denoted as lmin and lmax . 
In Fig. 3, A2 has the biggest resolution. BFP first rescales the features 

{

A2,A3,A4,A5

}

 to 
an intermediate size A4 , with interpolation or adaptive max-pooling operation respectively. 
Finally, the balanced semantic features are obtained by simply averaging as:

Through this simple procedure as Eq. (1) shown, each feature level contains equal infor-
mation from others by resizing and averaging operations without any extra parameters. 
Next, the balanced semantic feature A will be further refined to get more discriminative by 
embedded Gaussian non-local operation, Firstly, a general formula for non-local operation 
is defined as Eq. (2):

A =
1

L

lmax
∑

l=lmin

Al

Fig. 4  Detailed description of attention module which illustrated in the BFP section of Fig. 3



502 Precision Agriculture (2022) 23:492–513

1 3

Here A ∈ RC×H×W is the balanced semantic feature map and i denotes the position index 
whose similarity map will be computed, j denotes the index that enumerates all positions 
of A . f  is the pairwise function to compute a scalar that represent the relationship between 
i and all j . E is the output signal of point i and with the same spatial size of A . The unary 
function g computes a representation of A at the position j , for simplicity, only consider g 
in the form of a linear embedding:g(Aj) = Dj = WgAj , where Wg is a weight matrix to be 
learned and implemented with 1 × 1 convolution. As for pairwise function, BFP employs 
embedding Gaussian function to compute the similarity.

Specifically, non-local operation first feeds A into 1 × 1 convolution layers(� and � ) 
to generate two new feature maps B and C , respectively, where{B , C}∈ RC×H×W . Then it 
reshapes them to RC×N , where N = H ×W is the number of pixels. After that BFP per-
forms a matrix multiplication between the transpose of B and C , and applies a softmax 
layer to calculate the correlation intensity matrix between any two points S ∈ RN×N:

where sij measures the relationship between ith position and jth position. The more simi-
lar feature representations of the two positions contributes to greater correlation between 
them.

Meanwhile, non-local operation also feeds feature A into another convolution layer g to 
generate a new feature map D ∈ RC×H×W and reshapes it to RC×N . Then non-local operation 
performs a matrix multiplication between D and the transpose of S and reshapes the result 
to RC×H×W . Finally, non-local operation performs a element-wise sum operation with the 
features A to obtain the final output E ∈ RC×H×W as follows:

It can be inferred from Eq. (4) that the resulting feature E at each position is a weighted 
sum of the features across all positions and original features. Therefore, it has a global 
contextual view and selectively aggregates contexts according to the correlation intensity 
matrix S . The similar semantic features achieve mutual gains, thus improving semantic 
similar information but also suppressing noises.

RoIs generation

For each feature map Pi in {P2, P3, P4, P5} generated by last stage, it will be input into the 
RPN (Fig. 5) to generate abundant anchors of different shapes, which are mapped to differ-
ent apple shapes caused by overlaps and occlusions as possible. Then RPN initially filters 
the generated anchors given the probability of being a foreground. The architecture of RPN 
just consists of one 3*3 convolutional layer and followed by two 1*1 convolutional layers 
(for regression\classification, and denoted as reg\cls respectively), which is nearly cost-free 
given detection network computation. Concretely, 3*3 convlutional layer could be seen as 
a sliding-window to traverse all points at Pi, at each sliding-window center location, RPN 

Ei =
1

C(x)

∑

∀j

f (Ai,Aj)g(Aj)

sij =
exp(Bi ∙ Cj)

∑N

j=1
exp(Bi ∙ Cj)

Ei =

N
∑

j=1

(

sij ⋅ Dj

)

+ Ai
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simultaneously predicts multiple region anchors at original images. Considering that FPN 
has been adopted to alleviate scale variation, thus RPN only employs single area scale 8*8 
with three aspect ratios (1:2, 1:1, 2:1) for each feature map level. For a convolutional fea-
ture map of a size W*H, there are 3*W*H anchors in total. Sequentially, cls is responsible 
for predicting the probability of each anchor being an foreground and reg is responsible 
for predicting a 4-D vector representing the 4 parameterized coordinates of the predicted 
bounding box for each anchor. Finally, Non-Maximum Suppression (NMS) is applied to 
filter out partial anchors based on the confidence scores predicted by cls and bbox offsets 
predicted by reg. The remaining anchors are the outputs of RPN, which are called ‘propos-
als’. The embedding of RPN just makes the extra cost of two convolutional layers but act 
an important role in the while network structure.

Due to the proposals were generated at original images, model should map them into 
corresponding level to get features inside proposals, which are called Regions of Inter-
est (RoIs). Since there are multiple feature maps owing to FPN, RoI Align layer needs to 
assign proposals of different scales to the certain pyramid level. Formally, the correspond-
ing relationship between proposal (with width w and height h) to the level Pk of feature 
pyramid by:

Here 512 is the uniform image size, and k0 is the target level on which a proposal with 
w × h = 512 × 512 should be mapped into. Intuitively, Eq.  (5) means that if the area of 
proposal become bigger, it should be mapped into a coarser-resolution level. Next, RoIs are 
fed into RoI Align layer improved from spatial pyramid pooling (SPP) for stretching them 
to same scale, which removed the harsh quantization of RoIPool and will play a key role in 
the next mask prediction.

Results prediction

A RS-Net has three sibling output branches with different tasks for final predictions. The 
first outputs a probability distribution (per RoI) of being an apple. Although in the task 
of current work, only one category needs to be identified, the comprehensive evaluation 

k =
�

k0 + log2

�
√

wh∕512
��

Fig. 5  Detailed description of RPN. 256-D represents a 256 dimensional vector after 3*3 convolution at 
each spatial location in feature map
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metric AP which will be explained next needs the probability value to calculate preci-
sion and recall over each intersection of union (IoU) threshold, thus the model retains this 
branch for model evaluation and intuitive comparison with other methods. The second sib-
ling layer outputs bounding-box regression offsets for adjusting proposals. Finally, the third 
branch employs Fully Convolution Network (FCN) at each RoI to achieving instance seg-
mentation task. Specifically, this branch predicts a m*m mask from each RoI using an FCN 
without collapsing it into a vector representation that lacks spatial dimensions and make a 
pixel-wise prediction for each point in RoI through up- and down-sampling continuously. 
By combining the prediction results of three sibling branches, the final segmentation tar-
gets are obtained.

Implementation details

Since a lot of hyper-parameters are needed in the implementation process, and the results 
are sensitive to the setting of these elements, thus these hyper-parameters are found for bet-
ter segmentation performance by trial and error empirically.

In the training phase, the whole architecture can be trained end-to-end by stochastic 
gradient descent (SGD) and back propagation. Images first normalized with mean = [0.50, 
0.42, 0.34]and std = [0.28, 0.27, 0.28] which are calculated from training dataset. ResNet50 
is used as the main backbone to reduce the running time and publicly available. For 
each iteration, employ 2 images as a batch and BN (batch normalization) while updating 
weights. Initial learning rate, momentum and weight decay is set to 0. 0025, 0. 9 and 0. 
0001 respectively, decrease it by 0. 1 after 8 and 11 epochs respectively if not specifically 
noted. Set base anchor scales and aspect ratios as 8 and [0. 5, 1, 2] while training RPN. 
As for loss function, the overall could be mainly divided into two parts: the losses of clas-
sification and offset regression from RPN section, and the multi-task losses from ‘Results 
Prediction’ section which includes classification branch, coordinate regression branch and 
mask segmentation branch. As shown in below:

Here Lfinal denotes the final loss which will use for back propagation, LRPN consists of 
Lcls1, Lreg1 and LResults−Prediction consists of Lcls2, Lreg2 and Lmask represent losses from RPN 
section and Results Prediction section respectively. Specifically, model employs cross 
entropy loss function for Lcls1 , Lcls2 and Lmask , and L1 loss function for Lreg1 and Lreg2 . For 
each feature level generated by BFP, 256 anchors are randomly sampled as a mini-batch 
for computing LRPN , where sampled negative anchors and positive anchors with a 1:1 ratio. 
Replace the batch with negative ones if there are fewer than 128 positive samples in the 
original image.

Experiments

Evaluation metric

In order to evaluate the detection performance more comprehensively and strictly, AP
(average precision) is employed as main evaluation metric which averages the precision 

Lfinal = LRPN + LResults−Prediction

= Lcls1 + Lreg1 + Lcls2 + Lreg2 + Lmask
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values calculated over IoUs from 0.5 to 0.95 with an interval of 0.05. Firstly, define I as a 
set of equally spaced IoUs thresholds levels [0.5, 0.55, …, 0.95]. For each threshold i in I , 
if the IoU between predicted bbox and the matched ground truth exceeds i , this example 
is defined as true positive (TP) example, else, as false positive (FP), and the ground truth 
which are not detected successfully by detector is defined as false negative (FN). Then, at 
most the top 100 predicted bboxes given confidence scores are selected and then used to 
calculate the precision (P) and recall (R) (Eq. 7) pair corresponding to sorted confidence 
thresholds in turn, thus the precision/recall pairs over a specific IoU threshold and multiple 
confidence thresholds are calculated.

AP over a specific IoU threshold i could be seen as the approximate area under the pre-
cision/recall curve ( AUC ), and is defined as the mean precision at a set of 101 equally 
spaced recall levels R : [0, 0. 01,..., 1]:

The precision at each recall level r is interpolated by taking the maximum precision 
measured from which the corresponding recall exceeds r:

where p(r̃) is the measured precision at recall r̃ . Similarly, all APIoU=i(i ∈ I) could get by 
following the above steps and the final evaluation metric AP could be formulated as:

The factor “10” corresponds to the number of the IoUs thresholds tested in set I. Intui-
tively, AP evaluates the result over different IoU thresholds, confidence scores, precisions 
and recalls, thus can measure RS-Net accurately and comprehensively. Both box AP and 
mask AP are evaluated. In addition, AR (average recall) is also used as an evaluation met-
ric, which is obtained by taking the average value of ARIoU=is over 10 IoU thresholds tested 
given the top 100 predicted bboxes at most. Since the task of the model only needs to iden-
tify one category, ARIoU=i under a specific threshold is equal to R in Eq. (7). More informa-
tion about evaluation metrics please refer to MS COCO for detailed explanation.

Model training

Totally, 2813 images containing 5831 apples are used for training process. RS-Net is 
trained with 12 epochs and a total of 16,884 iterations (2 images/iteration). In addition, 
despite dataset is extended over different corruptions, due to that there is only one category, 
which makes the training process easier to overfitting. To eliminate this hidden trouble and 
accelerate network convergence, RS-Net is pretrained over 1586 images which extracted 
from MS COCO dateset without extra annotation works and then loads the pretrained 
weights into model architecture as initialization parameters for formal training. Intuitively, 

P =
TP

TP + FP
R =

TP

TP + FN

APIoU=i =
1

101

∑

r∈R

pinterp(r)

pinterp(r) = max
r̃∶r̃≥r

p(r̃)
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1
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∑

i∈I
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the loss value curve changes with iterations on the above two situations are illustrated in 
Fig. 6.

Obviously, thicker curve begins at a remarkably smaller value than thinner one and the 
loss value is about 0.1 smaller when the end of two curves tend to be stable. It can be 
inferred from this figure that the formal training of model can get benefit from 1586 images 
used for pre-training, which makes the model learn more distinguishing features and less 
risk of over-fitting. Comparing the obvious gap between two results, the pre-training way is 
adopted to carry out the following processes for better performance.

Ablation experiments

For fair comparisons in ablation experiments and validate the effect of attention module, 
experiment employs original Mask R-CNN built on MMDetection v2.0 (Chen et al., 2018) 
as baseline and both same hyper-parameters as RS-Net except section of BFP. Since Mask 
R-CNN and RS-Net both have a relatively good segmentation effect, thus experiment 
directly employs IoU = 0. 90 as strict threshold for defining a bbox as TP or FP to measure 
the high-quality effect gap between the baseline and RS-Net. Table 2 lists the specific com-
parison results of two methods.

As shown in Table 1, except for average precision, RS-Net can also enhance the average 
recall of predicted bboxes. The embedding of attention module brings 3.7 points higher 

Fig. 6  Loss value curve changes with iterations. Thicker curve represents training process equipped with 
pretained weights and thinner curve represents no pre-training

Table 2  Specific comparison 
results of two methods

Method AP
box

90
/% AR

box

90
/% AP

mask

90
/% AR

mask

90
/%

Baseline 78.8 80.0 80.8 80.7
RS-Net 82.6 82.7 81.1 84.6
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ARbox
90

 and 2.9 points higher ARmask
90

 compared with baseline method. This phenomenon 
is due to that BFP could make the similar semantic features achieve mutual gains across 
inconspicuous and salient apples, the heavily inconspicuous apples caused by overlapped, 
occlusion and illumination could get help from salient apples, thus the proportion of boxes 
judged as TP in the whole ground truth will rise and AR metrics will be significantly 
improved. Several images containing heavily incomplete apples are visualized for intui-
tively feeling the gap between the two in Fig. 7.

As shown in the above figure, two methods both have good segmentation effect when 
detecting conspicuous apples, However, due to the attention mechanism employed in RS-
Net, severely occluded apples can also be well segmented by drawing information from 
salient parts, which even includes the severely occluded apples that are not labeled as 
ground truth. This is also the reason why RS-Net get higher metric values. Therefore, RS-
Net is better in segmenting overlapped apples in the same color background and more suit-
able for deploying on vision system of harvesting robot.

Comparison with state‑of‑the‑arts methods

For further validation of the improved Mask R-CNN, experiments compare the proposed 
model with the state-of-the-art detection and instance segmentation methods with identi-
cal experimental configuration. It should be noted that all experiments reported in current 
work are tested on the same environment equipped with Tesla V100 GPU, CUDA V10.0, 
and Pytorch 1.4 for studies.

Fig. 7  Visualization of comparison results over two methods. Ellipses represent apples that were labeled as 
ground truth, and the baseline method did not detect it successfully but RS-Net did. Circles represent apple 
that were not labeled as ground truth due to severe occlusion, but RS-Net still detected it
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Detection effect

Since the main body of RS-Net is extended on the detector architecture by adding a mask 
branch, and the mask segmentation is operated based on the predicted boxes, in other 
words, the detection effect of the model directly affects the segmentation effect, thus exper-
iments first compare the detection effect of RS-Net with the start-of-the-art detectors. As 
for evaluation metrics, in addition to using the box Average Precision (AP box) metric which 
averages APs across IoU thresholds from 0.5 to 0.95 with an interval of 0.05, APbox

50
 and 

APbox
90

 (AP at different IoU thresholds) are reported as loose and strict boundaries, respec-
tively. The specific comparison results are shown in Table 3.

Intuitively, the detection effect of original Mask R-CNN outperforms the other advanced 
detectors with the same extraction capability of backbone while detecting on test set. It 
achieves 7.4%, 1.1% and 3.9% APbox gains compared with SSD (Liu et al., 2016a), Faster 
R-CNN, RetinaNet (Lin et  al., 2020) respectively. By adding attention module to naive 
Mask R-CNN, the improved Mask R-CNN obtains further performance which brings 1.1%, 
1.6% and 3.8% gains in terms of APbox, APbox

50
 and APbox

90
 . Comprehensively, from the above 

analysis, RS-Net achieves better detection effect, which could be more suitable and robust 
for deploying on vision system of apple harvesting robots.

Segmentation effect

Due to the aim of this paper is to explore the ability of the model to segment overlapped 
fruits in the same color background, thus in-depth comparative experiments with start-of-
the-art instance segmentation methods are carried out and experimental results of them 
are analyzed to validate the effectiveness of RS-Net. The specific comparison results are 
shown in Table 4.

Table 3  Comparison with state-
of-the-art detection methods on 
validation dateset

Bold indicates that the metric shows the best effect in the comparison 
of other models

Method Backbone AP box/% AP
box

50
/% AP

box

90
/%

SSD512 VGG16 78.2 88.5 70.9
Faster R-CNN R-50-FPN 83.4 89.0 77.5
RetinaNet R-50-FPN 80.6 88.4 73.6
Mask R-CNN R-50-FPN 84.5 88.4 78.8
RS-Net R-50-FPN-BFP 85.6 90.0 82.6

Table 4  Comparison with state-
of-the-art instance segmentation 
methods on validation dateset

Bold indicates that the metric shows the best effect in the comparison 
of other models

Method AP box/% AP mask/% AP
mask

50
/% AP

mask

90
/%

YOLACT 67.4 75.6 89.1 69.8
YOLACT +  + 78.0 78.8 89.1 76.3
RetinaMask 82.8 83.6 88.8 82.2
RS-Net 85.6 86.2 90.0 84.1
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All models employed ResNet50 as feature extractor for fair comparison. In contrast, RS-
Net achieves the best results in terms of both box AP and mask AP metrics. In particu-
lar, compared to RetinaMask (Fu CY et al., 2019) which has similar architecture (detec-
tor + mask branch), RS-Net achieves 2.8% APbox gain and 2.6% APmask gain respectively. 
Otherwise, it should be noted that the gap between APmask, APmask

50
 and APmask

90
 is smaller 

than YOLACT (Bolya et  al., 2019), YOLACT +  + (Bolya et  al., 2020) and RetinaMask, 
which means that the most masks segmented by RS-Net are concentrated in high quality 
area (higher IoU with ground truth). In order to more intuitively feel the effect of RS-Net, 
several representative images which containing different numbers of apples are selected 
and used different methods to segment. The visualization results are shown in Fig. 8. Obvi-
ously, the effect of the proposed method is much better than other methods in terms of both 
recognition accuracy and segmentation effect. In addition, since RS-Net introduces atten-
tion module into architecture, most heavily overlapped apples are also well segmented, 
including some are not even labeled as ground truth.

Conclusion

In order to effectively detect overlapped fruits in natural environment, RS-Net architecture 
which extends Mask R-CNN by adding an embedding Gaussian attention module is pro-
posed, thus make the similar semantic features achieve mutual gains and reduce the impact 
of adverse factors such as occlusion, illumination, overlapped, etc. The experimental result 
shows that the proposed RS-Net outperforms other start-of-the-art deep learning-based 
methods when applying on vision system of harvesting robot, and achieve both higher 
accuracy and stronger robustness, which could be more suitable for operating in real-world 
scene for harvesting robot’s vision system.

Although RS-Net has achieved relatively ideal experimental results, there are still some 
aspects and rooms that need to be improved continuously in architecture. For example, the 
average segmentation time of each image with size 512 × 512 on GPU is 65.79 ms, while 
the fastest model in experiments (YOLACT + +) only needs 20.43 ms. The shortest infer-
ence times of other researches which also reported on 512*512 resolutions in fruit detec-
tion and segmentation field need 15 ms (Koirala et al., 2019b) and 390 ms (Li et al., 2021) 

Fig. 8  Visualization results of different test images segmented by RS-Net, RetinaMask, YOLACT and 
YOLACT +  + respectively
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respectively. In contrast, the inference time of RS-Net is in a lower middle position. Though 
this has been able to meet the real-time needs of practical deployment, it is still a little 
longer than other methods in terms of time-consuming. This phenomenon is suspected to 
be caused by two reasons: (1) The Faster R-CNN which Mask R-CNN extends is a two-
stage architecture for better accuracy, which will inevitably lead to bigger consumption of 
computation and time than other one-stage methods. (2) The RS-Net is anchor-based for 
achieving a higher recall rate, which will require the model to densely place anchor boxes 
on the original images, it also leads to more time-consuming. Based on this defect, extend-
ing mask branch to other one-stage or anchor-based detection methods is considered to 
strike the better trade-off between speed and accuracy simultaneously in the future works.
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