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Abstract
Using a literature pool spanning 23 years, this meta-analysis quantifies the effect of fac-
tors underlying the adoption of precision agriculture. Unlike statistical significance, which 
demonstrates how likely adoption is due to chance, effect size indicates the importance of a 
factor to adoption. This meta-analysis finds that perceived profitability, consultants and use 
of a computer factors have a moderate effect. However, the findings should not be regarded 
as definitive because of issues of sample size and heterogeneity embedded in a number of 
the reference studies. This latter point is re-enforced by observation of other factors that 
had a negligible effect on adoption. Whether future studies will provide meaningful policy 
implications depend on a careful understanding and selection of factors, models, and statis-
tical treatment in relation to decision-making paths and their context.
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Introduction

Given growing investment in research, development and the importance of precision agri-
culture, a pool of learned investigations has been published since the late 1990s. This paper 
conducts a meta-analysis to identify the drivers underlying the adoption of precision agri-
culture. Previous narrative reviews in this research area are traced; highlighting their meth-
odological merits and limitations. In doing so, a knowledge gap remains: to understand 
the overall effect of the determinants of technological adoption (as identified by separate 
studies undertaken in the precision agriculture realm). In innovation diffusion studies, 
effect size quantifies the influence of factors leading to adoptive decisions. Based on such 
quantitative understanding, policy interventions can be targeted towards influential factors. 
Baumgart-Getz et al.’s (2012) meta-analysis of the adoption literature on best management 
practices in the United States provides a useful example. Their meta-analysis identifies 
‘labor’ as having a large impact, but its high variability dampens any recommendation for 
expansion in the farm labor market. In exploring policy options, such a combination of 
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effect size with its variance band allows scientists and policymakers to move from the ‘Is 
this factor important?’ question to the more insightful question ‘How critical is this factor 
within a range of possibilities?’. Answering that question is more useful to augment the 
implementation of precision agriculture.

The emergence of precision agriculture over the last two decades has been documented 
(Lee et al., 2021). The overall goal of precision agriculture is to help farm operators opti-
mize input management according to agronomic need. Such need increases with world’s 
growing demand for agricultural products. At the same time, supply challenges loom, 
in terms of reduced arable land, higher input costs, and climate change. According to 
Nowak’s (2021) review, intra-field diagnosis tools (crop sensing, soil mapping, yield moni-
toring, and geo-referenced field scouting), automatic variable-rate treatments (for fertilizer 
application, crop protection, and other purposes), and Global Navigation Satellite Systems 
(GNSS) (guidance system and automatic section control) have emerged for meeting both 
production and environmental goals.

A new branch of the technological developments related to precision agriculture aims to 
support farmers to cope with the declining availability of labor. Drones are one example. 
Their use began as a labor input reduction innovation, but they are now increasingly used 
for mapping, monitoring, analytics, and precise application purposes. Similarly, smart-
phone applications simplify data collection and the data processing required to guide tar-
geted agricultural practices. Attempts are underway to integrate precision agriculture with 
artificial intelligence and predictive analytics (e.g., Lee et al., 2020). While these develop-
ments suggest that precision agriculture is not strictly confined to any pre-definable suite 
of technologies, they are conceptualized as offering a means for an agri-tech revolution 
known as ‘Agriculture 4.0’, ‘Smart Agriculture’, and ‘Digital Farming’ (Santos Valle & 
Kienzle, 2020).

Some precision agricultural technologies have achieved greater adoption rates than oth-
ers. Robertson et  al. (2016) report that 90% of Australian grain farms utilize auto-steer 
and guidance. Steele’s (2017) producer survey in western Canada finds that over 80% of 
respondents self-managed farm data and had yield monitoring, more than 75% used guid-
ance systems, and nearly half used variable-rate applications. In the USA, USDA (2019) 
reports that, among its field crops, corn farms recorded the greatest jump in agricultural 
technology usage: yield mapping, guidance systems, and variable-rate technology grew 
from less than 10% of corn farms in 2001–2002 to over 40% by 2016. European countries 
had lower adoption rates, e.g., the European Parliament (2016) determines a technologies 
usage rate of 25% (including those under the umbrella of precision agriculture). The adop-
tion rates of precision agricultural practices in developing countries remain undocumented.

A mix of socio-economic, economic, institutional, and technical barriers has limited the 
adoption of precision agriculture. A lack of skills necessary to operate precision agricul-
tural technologies represents a fundamental barrier (Robert, 2002). While learning is pos-
sible, farm operators, with pressure to generate farm incomes and to meet their financial 
obligations, are pressured to prioritize their efforts (Mitchell et  al., 2020). The time and 
effort required at both the implementation and maintenance levels for precision agricul-
ture is relatively complex and these are also important considerations. ‘Know-how’ sup-
port is scarce (Pedersen & Lind, 2017). Another consideration stems from the uncertainty 
of benefits vis-à-vis the capital outlays and the alteration of existing agricultural practices 
(Thompson et al., 2019). Fragmented organizational structures in agriculture also slow dif-
fusion (Balogh et al., 2021). Other barriers are discussed in Wiebold et al. (1998).

Mixed attainment achievements and barriers have kindled dialogue over (1) how adop-
ters differ from the non-adopters; and (2) based on their differences, how to facilitate 
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advocacy policies that accelerate adoption. It becomes important to ensure that policymak-
ing is evidence based and represents the best option in any circumstance. Meta-analysis 
aids policymaking through enabling both an aggregation of disparate studies and quantifi-
cation of the influence of factors that appear to affect a farmer’s decision to adopt a particu-
lar technology. In this study, following the National Research Council’s (1997) definition, 
the term ‘precision agriculture’ is conceptualized as a unifying label for several related 
technologies whose implementation involves data collection, data analysis and decision 
making, and/or variable rate control. As suggested by Knowler and Bradshaw (2007), such 
an aggregation of both scope and findings can help quantify the state of existing knowledge 
and improve its advocacy as a package of practices.

Conceptual framework

Agricultural innovation literature posits that the binary choice—to adopt or not to adopt—
is based on the perceived utility that may be derived from the innovation. Following the 
seminal work of Rahm and Huffman (1984), it has been established that profit is not the 
only form of utility. Since farmers and enterprises choose according to their own prefer-
ences, adoption is undertaken when a farm enterprise forms the expectation that its utility 
exceeds its opportunity costs. This is categorized as “random utility maximization behav-
ior”. A central component of this approach is the identification of the factors directing a 
decision, based on the aspects of investigation, i.e., how the attributes of a technology are 
perceived, and the identification of their relationship with its adoption (Adesina & Zinnah, 
1993).

Hence, the random utility maximization approach is a relevant framework for under-
standing the desired action, which is an indication that precision agriculture satisfies the 
expected utility of users within their respective constraints. It can, therefore, facilitate an 
understanding of the drivers underlying the adoption of precision agriculture, i.e., what 
factors are important in driving its adoption. Such significant factors explain adoption 
and carry policy implications since they can help to facilitate reaching the desired target. 
Accordingly, a branch of research has applied this approach to understanding the direction 
and the strength of the correlation between explanatory factors and the adoption of preci-
sion agriculture.

There are at least three ways through which a review can be conducted for the purpose 
of synthesis. Recent review studies have employed two of them. Pierpaoli et  al. (2013), 
Antolini et al. (2015), and Pathak et al. (2019) perform literature reviews, then summarize 
the results. They indicate that the adoption of precision agriculture is affected by a wide 
range of factors. Tey and Brindal’s (2012) vote count review find that no single variable 
could universally explain the adoption of precision agriculture. The synthesis approach 
analyses the frequency at which a variable is positively and negatively significant. The out-
put summary may be useful to hypothesize the likelihood of any association between the 
two variables.

While narrative review approaches have their own merits, the absence of objective and 
systematic selection criteria culminates in methodological shortcomings that skew results 
and policy implications (Pae, 2015). For example, previous narrative reviews engage in 
unit-of-analysis error by accounting multiple investigations that employed the same data-
set as separate studies. Furthermore, the interpretation of significant findings in narrative 
reviews is based on equal weight (irrespective of the sample size) included across statistical 
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analyses (Popay et al., 2006). Narrative studies, thus, have low inference power. Against 
the limitations of these narrative review approaches, a third approach involves a systematic 
selection and quantification of the impact of influential variables via meta-analysis.

In meta-analysis, the quantification of effect size enhances researchers’ understanding 
of factors underlying the uptake of precision agriculture. In medical science, effect size 
helps to identify the effectiveness of an intervention. Effect size is pivotal in providing 
a standard measure for different studies; through combining their findings into an overall 
summary, with consideration given to their sample sizes (Sullivan & Feinn, 2012). The 
magnitude of an effect size indicates the strength of a factor in association with the desired 
action. Resource allocation is undermined when policy consideration is limited to know-
ing whether a factor affects adoption (Kline, 2004). Policymakers would have difficulty in 
differentiating interventions and thereby split their scarce resources across every statisti-
cally significant factor. Conversely, effect size enables policymakers to consider how much 
factors affect adoption and concentrate on the influential ones, thus increasing the odds of 
success.

The drivers synthesized in this study can be discussed in relation to the characteris-
tics distinguishing precision agriculture from other agricultural innovations. In America, 
Baumgart-Getz et al. (2012) identify three groups of factors: capacity, attitude, and envi-
ronmental awareness as leading to the adoption of best management practices. Effect size, 
as estimated by Guo et  al. (2020) for research undertaken in Southern Africa, points to 
the importance of socio-economic and institutional factors in driving the use of sustain-
able intensification practices. Xie and Huang’s (2021) find that the positive effect of farm 
income, policy awareness, and land transfer on the adoption of pro-environmental agri-
cultural technologies is noteworthy in China. Importantly, Ruzzante et al.’s (2021) wider 
scope meta-analysis uncovered varying effects with no variable being a universal predictor 
for the adoption of all agricultural innovations. Given such heterogeneous meta-analytic 
findings across agricultural innovations, this study is compelled to focus on those influen-
tial factors that guide the diffusion of precision agriculture.

Methodology

This study used Shamseer et al.’s (2015) preferred reporting items for systematic review 
and meta-analysis protocols (PRISMA-P) to prepare a dataset. Meta-analysis was con-
ducted to estimate effect size of factors.

Materials

From the outset, this study considered only peer-reviewed journal articles that quantita-
tively investigate the drivers of the adoption of precision agriculture. Studies reporting 
insufficient data for computing effect size were excluded. Qualitative studies were also 
excluded. Studies that focused on ex-ante scenarios such as ‘willingness or likeliness to 
adopt’ were deemed ineligible.

Searches were performed using the Google Scholar, SCOPUS, and Web of Science 
databases. Reverse citation searches were also conducted. Such a combination of databases 
and search strategies ensures adequate and efficient coverage (Bramer et  al., 2017). The 
searches used the following keywords:
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•	 ‘drivers’, ‘determinants’, ‘factors’, ‘enablers’, and ‘motivations’;
•	 ‘adoption’, ‘use’, ‘uptake’, and ‘implementation’;
•	 ‘precision agriculture’, ‘remote sensing’, ‘imagery’, ‘georeferenced soil sampling’, 

‘yield monitoring’, ‘soil mapping’, ‘variable-rate’, ‘guidance system’, ‘autosteer sys-
tem’, ‘drone’, and ‘smartphone’.

Figure  1 presents the PRISMA-P flow diagram used for preparing the dataset in this 
study. It began with searches that returned a total of 1,367 articles in the literature. Because 
multiple databases were used, 627 articles were identified as duplicates and they were 
excluded. Subsequently, the title and the abstract of each of the remaining 740 articles were 
read. This led to the exclusion of 663 articles and the shortlisting of 77 articles.

The shortlisted articles then underwent an evaluation against the eligibility criteria (as 
previously defined). Skimming that focused on the main contents identified 37 irrelevant 
articles (including ex-ante articles and articles investigating intensity, and the time of adop-
tion) and 11 qualitative articles. These articles were excluded.

As a result, a total of 29 articles qualified for qualitative synthesis in this study. Among 
these, six articles did not report sufficient information for effect size estimation. E-mails 
seeking more information were not replied to. Consequently, six further articles were 
excluded. The dataset of this study thus comprises 23 articles.

Qualitative synthesis

When conducting the in-depth analysis for qualitative synthesis, as mentioned, six articles 
were identified as failing to provide sufficient information to enable meta-analysis: Roberts 
et al. (2004); Aubert et al. (2012), Robertson et al. (2012), Lambert et al. (2014), Lambert 
et al. (2015), and Barnes et al. (2019) were, therefore, omitted.

Table  1 provides basic information about the 23 eligible articles. Two-third of 
the articles were conducted in the United States, and focused, largely, on cotton and 
corn farming. About one-third were in European countries, covering various agricul-
tural crops. Only one article examined the adoption of precision agriculture in Brazil. 
Their investigation encompasses the field from general precision agriculture to specific 

Fig. 1   PRISMA-P flow diagram towards preparing the dataset of this study



358	 Precision Agriculture (2022) 23:353–372

1 3

Ta
bl

e 
1  

O
ve

rv
ie

w
 o

f 2
3 

el
ig

ib
le

 a
rti

cl
es

 in
 th

is
 re

vi
ew

N
o

A
ut

ho
r(

s)
 (Y

ea
r)

C
ou

nt
ry

Se
ct

or
Ty

pe
s o

f p
re

ci
si

on
 a

gr
ic

ul
tu

re
 (a

do
pt

io
n 

ra
te

)
Sa

m
pl

e

1
A

sa
re

 a
nd

 S
eg

ar
ra

 (2
01

8)
U

ni
te

d 
St

at
es

C
ot

to
n

G
eo

re
fe

re
nc

ed
 g

rid
 so

il 
sa

m
pl

in
g

13
44

2
B

an
er

je
e 

et
 a

l. 
(2

00
8)

^
U

ni
te

d 
St

at
es

C
ot

to
n

G
lo

ba
l p

os
iti

on
in

g 
gu

id
an

ce
 sy

ste
m

 (2
5.

8%
)

87
9

3
D

’A
nt

on
i e

t a
l. 

(2
01

2)
^^

, *
*

U
ni

te
d 

St
at

es
C

ot
to

n
A

ut
os

te
er

 te
ch

no
lo

gy
 (4

4.
7%

) a
nd

lig
ht

ba
r G

PS
 te

ch
no

lo
gy

 (2
1.

1%
)

16
92

4
D

ab
er

ko
w

 a
nd

 M
cB

rid
e 

(1
99

8)
U

ni
te

d 
St

at
es

C
or

n
Pr

ec
is

io
n 

ag
ric

ul
tu

re
95

0
5

D
ab

er
ko

w
 a

nd
 M

cB
rid

e 
(2

00
3)

U
ni

te
d 

St
at

es
C

ot
to

n
Pr

ec
is

io
n 

ag
ric

ul
tu

re
 (2

0.
2%

)
38

83
6

G
ar

de
zi

 a
nd

 B
ro

ns
on

 (2
01

9)
U

ni
te

d 
St

at
es

C
or

n
Pr

ec
is

io
n 

ag
ric

ul
tu

re
 (5

6%
)

35
74

7
G

ro
he

r e
t a

l. 
(2

02
0)

*,
 *

*
Sw

itz
er

la
nd

A
ra

bl
e 

cr
op

s, 
fo

dd
er

 c
ro

ps
, v

eg
et

ab
le

s, 
gr

ap
es

, 
fr

ui
ts

, a
nd

 st
ra

w
be

rr
ie

s
Pr

ec
is

io
n 

ag
ric

ul
tu

re
 (4

1;
8%

), 
dr

iv
er

 
as

si
st

an
ce

 sy
ste

m
 (3

6.
5%

), 
an

d 
el

ec
tro

ni
c 

m
ea

su
rin

g 
sy

ste
m

 (1
6.

8%
)

82
7

8
Is

gi
n 

et
 a

l. 
(2

00
8)

*
U

ni
te

d 
St

at
es

C
or

n
Pr

ec
is

io
n 

ag
ric

ul
tu

re
 (3

6.
0%

)
49

1
9

K
ha

nn
a 

(2
00

1)
**

U
ni

te
d 

St
at

es
C

or
n

So
il 

te
st 

(1
4.

2%
) a

nd
 v

ar
ia

bl
e-

ra
te

 a
pp

lic
at

io
n 

te
ch

no
lo

gy
 (4

2.
7%

)
56

9

10
K

ol
ad

y 
et

 a
l. 

(2
02

1)
 *

, *
*

U
ni

te
d 

St
at

es
C

or
n,

 so
yb

ea
ns

, a
nd

 o
th

er
 c

ro
ps

Em
bo

di
ed

-k
no

w
le

dg
e 

(7
2%

) a
nd

 in
fo

rm
at

io
n-

in
te

ns
iv

e 
(6

6%
) p

re
ci

si
on

 a
gr

ic
ul

tu
ra

l 
te

ch
no

lo
gi

es

19
8

11
La

rs
on

 e
t a

l. 
(2

00
8)

^
U

ni
te

d 
St

at
es

C
ot

to
n

Re
m

ot
e 

se
ns

ed
 im

ag
in

ar
y 

fo
r s

ite
-s

pe
ci

fic
 

m
an

ag
em

en
t (

8%
)

94
1

12
M

ic
he

ls
 e

t a
l. 

(2
02

0a
)^

^^
G

er
m

an
y

A
ra

bl
e 

cr
op

s
Sm

ar
tp

ho
ne

 a
pp

lic
at

io
ns

 fo
r c

ro
p 

pr
ot

ec
tio

n 
(7

1%
)

20
7

13
M

ic
he

ls
 e

t a
l. 

(2
02

0b
)^

^^
G

er
m

an
y

A
ra

bl
e 

cr
op

s
Sm

ar
tp

ho
ne

 fo
r a

gr
ic

ul
tu

ra
l p

ur
po

se
s (

50
.2

%
)

81
7

14
M

ic
he

ls
 e

t a
l. 

(2
02

1)
G

er
m

an
y

A
gr

ic
ul

tu
re

D
ro

ne
s (

22
%

)
16

7
15

N
ai

r e
t a

l. 
(2

01
1)

^^
, *

, *
*

U
ni

te
d 

St
at

es
C

ot
to

n
Pl

an
t a

nd
 so

il-
ba

se
d 

va
ria

bl
e 

de
te

ct
io

n 
te

ch
-

no
lo

gy
 (2

4.
6%

) a
nd

 v
ar

ia
bl

e 
ra

te
 a

pp
lic

at
io

n 
te

ch
no

lo
gy

 (6
7.

6%
)

14
72

16
Pa

us
tia

n 
an

d 
Th

eu
vs

en
 (2

01
7)

G
er

m
an

y
W

he
at

, b
ar

le
y,

 ry
e,

 o
ils

ee
d 

ra
pe

/c
an

ol
a,

 su
ga

r 
be

et
, c

or
n,

 p
ot

at
o,

 a
nd

 fe
ed

in
g 

cr
op

s
Pr

ec
is

io
n 

ag
ric

ul
tu

re
 (3

0.
0%

)
22

7



359Precision Agriculture (2022) 23:353–372	

1 3

^,
 ^

^,
 a

nd
 ^

^^
 m

ul
tip

le
 a

rti
cl

es
 th

at
 u

se
d 

th
e 

sa
m

e 
re

sp
ec

tiv
e 

da
ta

se
t. 

Ea
ch

 g
ro

up
 (e

.g
., 

^)
 w

as
 c

on
si

de
re

d 
as

 a
 s

tu
dy

; *
 o

nl
y 

th
e 

be
st 

m
od

el
 (a

m
on

g 
m

ul
tip

le
 s

ta
tis

tic
al

 a
na

ly
-

se
s)

 is
 re

vi
ew

ed
; *

* 
se

pa
ra

te
 st

at
ist

ic
al

 a
na

ly
se

s c
on

ce
rn

in
g 

di
ffe

re
nt

 ty
pe

s/
co

m
bi

na
tio

ns
 o

f p
re

ci
si

on
 a

gr
ic

ul
tu

re
 w

er
e 

co
ns

id
er

ed
 a

s a
 st

ud
y

Ta
bl

e 
1  

(c
on

tin
ue

d)

N
o

A
ut

ho
r(

s)
 (Y

ea
r)

C
ou

nt
ry

Se
ct

or
Ty

pe
s o

f p
re

ci
si

on
 a

gr
ic

ul
tu

re
 (a

do
pt

io
n 

ra
te

)
Sa

m
pl

e

17
Pi

vo
to

 e
t a

l. 
(2

01
9)

**
B

ra
zi

l
So

yb
ea

n,
 w

he
at

, c
or

n,
 ri

ce
, a

nd
 o

at
So

il 
ge

or
ef

er
en

ce
d 

sa
m

pl
in

g 
(6

4.
9%

), 
va

ria
-

bl
e-

ra
te

 fe
rti

liz
er

 a
nd

 c
or

re
ct

iv
e 

ap
pl

ic
at

io
ns

 
(5

6.
3%

), 
au

to
-p

ilo
t s

pr
ay

in
g 

(5
6.

8%
), 

an
d 

m
an

ag
em

en
t s

pr
ay

in
g 

(5
0.

8%
)

11
9

18
Ro

be
rts

 e
t a

l. 
(2

00
2)

**
U

ni
te

d 
St

at
es

H
ig

h 
va

lu
ed

 c
ro

ps
, i

.e
., 

to
ba

cc
o,

 n
ur

se
ry

 
cr

op
s, 

fr
ui

ts
 a

nd
, v

eg
et

ab
le

s
Y

ie
ld

 m
on

ito
r w

ith
 G

PS
 (2

2%
) a

nd
 w

ith
ou

t 
G

PS
 (2

5%
), 

gr
id

 so
il 

sa
m

pl
in

g 
(2

9%
), 

va
ria

bl
e-

ra
te

 a
pp

lic
at

io
n 

te
ch

no
lo

gy
 (1

9%
), 

an
d 

an
y 

pr
ec

is
io

n 
ag

ric
ul

tu
ra

l t
ec

hn
ol

og
y 

(3
9%

)

10
27

19
Sc

hi
m

m
el

pf
en

ni
g 

an
d 

Eb
el

 (2
01

6)
 *

*
U

ni
te

d 
St

at
es

C
or

n
Y

ie
ld

 m
on

ito
r (

43
.0

%
), 

yi
el

d 
m

ap
pi

ng
 

(2
2.

0%
), 

va
ria

bl
e-

ra
te

 a
pp

lic
at

io
n 

te
ch

no
l-

og
y 

(1
9.

0%
), 

G
PS

 (1
7.

0%
)

15
07

20
Ta

m
ira

t e
t a

l. 
(2

01
8)

D
en

m
ar

k 
an

d 
G

er
m

an
y

N
ot

 sp
ec

ifi
ed

Pr
ec

is
io

n 
ag

ric
ul

tu
re

26
0

21
Ve

cc
hi

o 
et

 a
l. 

(2
02

0)
Ita

ly
N

ot
 sp

ec
ifi

ed
Pr

ec
is

io
n 

ag
ric

ul
tu

re
 (2

8.
7%

)
17

4
22

W
al

to
n 

et
 a

l. 
(2

00
8)

^,
 *

U
ni

te
d 

St
at

es
C

ot
to

n
Pr

ec
is

io
n 

so
il 

sa
m

pl
in

g 
(4

0.
5%

)
82

7
23

W
al

to
n 

et
 a

l. 
(2

01
0)

^
U

ni
te

d 
St

at
es

C
ot

to
n

Po
rta

bl
e/

ha
nd

he
ld

 G
PS

 d
ev

ic
e 

(1
1.

4%
)

76
5



360	 Precision Agriculture (2022) 23:353–372

1 3

technologies (e.g., smartphone applications and drones recently). They report variable 
adoption rates, and that can be attributed to differed sampling designs (e.g., random 
and convenient samplings; regional and small-scale surveys; face-to-face and mail inter-
views), varying years of data collection, and the data cleaning procedures across inves-
tigations. The latter occurs in articles (e.g., D’Antoni et al., 2012; Nair et al., 2011) that 
utilized the same dataset (e.g., the 2009 Southern Cotton Precision Farming Survey in 
the United States).

This study follows Higgins et  al.’s (2019) Cochrane handbook that recommends han-
dling multiple groups from one study. Multiple articles that used the same dataset were 
combined as one study. The same approach was taken for separate statistical analyses con-
cerning different types/combinations of precision agriculture that were reported in an arti-
cle. Where multiple statistical models were analyzed for a type/combination of precision 
agriculture, only the best model was considered as the unit of study. As a result, the dataset 
for this study consists of 18 studies.

Based on those 18 studies, factors that are conceptually compatible were grouped 
through a coding-and-counting procedure. This coding exercise was guided by categories 
identified in the previous review of Tey and Brindal (2012) (which are also applied by 
Antolini et al. (2015)). Agreement for common factor parameters was reached through dis-
cussion and consensus. The coding and counting outcomes were then compared to seek 
inter-coder reliability. In cases where a different outcome was obtained for a factor, the cor-
responding literature was referred to. The 13 common factors revealed in the 18 studies are 
summarized in Table 2.

Traits involving human capital have long been considered an important condition in 
adopting the technologies of precision agriculture. Age was included in 7 studies, hypoth-
esized on the supposition that younger farm operators have a longer career horizon and, 
therefore, an aptitude to learn new technologies (Roberts et al., 2004). Education was com-
mon to 13 of the studies. Larson et al. (2008) propose that higher education level attainment 
enables a greater capacity for meeting the analytical requirements of precision technology. 
Farming experience was investigated by four studies. Greater experience in agriculture, it 
was considered, may reduce the need for supplementary input (Isgin et al., 2008). Full-time 
farmer is used as a measure distinguishing the employment status of farm operators. Full-
time operators are posited to be more inclined to advance farm operations through innova-
tion adoption. Four studies used higher farm income; hypothesizing that it enables greater 
financial capacity that farmers purchase and use precision agricultural technologies.

Farm endowments are considered important influences on a farm operator’s decision 
to adopt precision agriculture. Cropped farm size was explored in 13 studies. While it is 
typically regarded as a proxy for capital, land size has also been used as a measure for 
economies of scale from both the cost and risk distribution perspectives. Larger farms also 
exhibit greater capacity and should, therefore, have a greater tendency to adopt precision 
agriculture (Robertson et  al., 2012). Land tenure is used to distinguish ownership types 
in respect to farmland. Because owner-operators directly benefit from their farm’s perfor-
mance, they have a greater incentive to improve farm management practices through adop-
tion (Tey & Brindal, 2012). Yield is used as a proxy for soil and environmental quality.

Extension services are the institutional support of government and/or macro groupings 
such as universities and industry bodies provide to farm operators. They are measured 
according to the frequency with which farm operators have access to extension service and 
the number of occasions on which an operator received extension visits/training. Extension 
services are hypothesized as elevating the capacity of farm operators to adopt precision 
agriculture (Larson et al., 2008).
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Input suppliers/dealers and consultants provide additional support. Their complemen-
tary/paid inputs may come in the forms of information dissemination and/or technical 
assistance. The latter is particularly helpful in overcoming the technical barriers to data 
collection, analysis, interpretation, and recommendations (Robertson et  al., 2012). Farm 
operators who engage input suppliers/dealers and consultants are hence more likely to 
adopt the technologies of precision agriculture.

Technological literacy has been specifically emphasized as an important precursor to 
encouraging the implementation of precision agricultural practices. Knowing how to use a 
computer is thought to demonstrate an ability to handle the complexities of the innovation 
(Banerjee et al., 2008). Therefore, experience in using a computer (required for precision 
agriculture in farm management) is believed to lead to the adoption of new and/or other 
types of precision technology.

Perceived profitability has been explored since it is thought to reflect farm operators’ 
perception towards the economic benefits of precision agriculture. Favorable perceptions 
mean that the innovation in question is believed to generate desirable change (Tamirat 
et al., 2018).

Quantitative synthesis

The meta-analysis in this study began with the estimation of Hedge’s d (a measure of effect 
size). Baumgart-Getz et al.’s (2012) specifications of d-effect size and variance are sum-
marized in Table 3. A d-effect size is the standardized mean difference, assuming that the 
standard deviations of the two groups (e.g., adopters and adopters in this study) are similar.

However, as noted by adoption rates in Table 1, the groups included in the 18 eligible 
studies are dissimilar in size. Pooling two such differing groups violates the homogeneity 
of the variance assumption (Ellis, 2010). Hedges (1981) recommends that each group’s 
standard deviation be weighted by its sample size in the calculation of Hedges’ g. In the 
same seminal work, the g-effect size is also recommended through a correction factor, J, to 
correct the upward bias inherent when a small sample size (i.e., below 20 studies) is used 
for meta-analysis.

As this meta-analysis involved a small sample (18 studies), an approximation of J 
that is commonly used by researchers, and as expressed by Borenstein et al. (2009), was 
estimated:

Table 3   Formulas converting 
statistical measures to Hedges’ d 

n
1
 is the sample size of the control group, n

2
 is the sample size of the 

treatment group, Y
1
 and Y

2
 are the sample means in the two groups, S

1
 

and S
2
 are the standard deviations in the two groups, d is the d-effect 

size, t is t-value, df is the degree of freedom, and se is the standard 
error

Statistical method To d-effect size To variance of d-effect size
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1
−Y

2
√
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2
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2
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2

n
1
n
2

+
d
2

2(n
1
+n

2
)

t-test 2t
√
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2
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1
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2(n
1
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√
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where df is the degree of freedom. Then Hedges’ (1981) g was calculated through:

where J is the correction factor and d is the Hedges’ d effect size. The variance of Hedges’ 
g ( Vg) was estimated through:

where J is the correction factor and Vd is the variance of Hedges’ d. Standard error of 
Hedges’ g ( SEg) was obtained through:

After converting all statistical measures to the Hedges’ g effect size, a random-effects 
model was implemented. This is because the 18 studies involve a mixture of farm operators 
producing various agricultural products. They also differed both in terms of the types of 
precision agriculture adopted and the study areas. Nevertheless, they shared sufficient com-
monality in their adoption of precision agriculture for a plausible synthesis to be under-
taken. Such is the assumption of the random-effects meta-analysis model and Borenstein 
et al. (2010) reason that “there is generally no reason to assume that they (past studies) are 
‘identical’ in the sense that all studies share the same true effect size.”

The cumulative effect size for each factor, Ej , was estimated as follows:

where wij is the weight of ith study in the ith group. The weight was estimated using:

where v is the variance as defined in Table  3 and �2

pooled
 for categorical variables was 

defined as:

and �2

pooled
 for continuous variables was defined as:

where n denotes the number of analyses, m is the number of groups, kj is the number of 
studies investigated in the jth group, QE is the residual error heterogeneity, and QT is the 
total heterogeneity.

The cumulative effect size for each factor ( Ej) quantifies the strength of the relation-
ship between that factor and the adoption of precision agriculture. According to Ellis 

(1)J = 1 −
3

4df − 1

(2)g = J × d

(3)Vg = J2 × Vd

(4)SEg =
√

Vd

(5)Ej,=

∑kj
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wijEij
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(2010), an effect size of 0.2 indicates a weak effect, 0.5 a medium effect, and 0.8 a 
large effect. As innovation adoption is a social issue, the absolute effect of most fac-
tors is likely to be small. The sign of an effect size indicates the direction of the effect. 
In this study, a positive (negative) effect size shows a positive (negative) impact on 
adoption.

Understanding of the overall effect size needs to assess the consistency of results 
across studies. The I2 measure describes the percentage of variance that is due to het-
erogeneity rather than chance. Higgins et  al. (2003) suggest that an I2 of 0%, 25%, 
50%, or 75% generally reflects zero, low, moderate, or high heterogeneity whilst the 
acceptable threshold is higher (up to 75%) in certain fields. A reasonable rule is that a 
smaller I2 value is always desirable. For avoiding a potential bias of I2 that may arise 
from a small meta-analysis, the confidence intervals of effect size are also considered 
(von Hippel, 2015).

As recommended by Higgins and Green (2011), this review attempts to reduce the 
effects of heterogeneity by including a control variable. Following Baumgart-Getz 
et  al. (2012), attempted control variables were region (North America, Europe, and 
South America), crop type (corn, cotton, and others), category of precision agricul-
tural technologies (intra-field diagnosis tools, automatic variable-rate treatments, and 
GNSS), and statistical models (logit, probit, t-test, and independent groups). Amongst 
these, region control variable resulted in the lowest estimate of heterogeneity for land 
tenure, consultants, and use a computer factors.

Given there is heterogeneity between studies, statistical power for the random 
effects overall effect was estimated to assess the probability that an effect is detected. 
In other words, it informs the reliability of an effect size. In this review, the power test 
followed that of Valentine et al. (2010). It begins with the estimation of the variance of 
the overall effect size, v:

where nT + nC is the average sample size of respondents across studies and E is the effect 
size. The �2 is represented by 0, 0.33, 1.0, and 3.0 values for zero, small, moderate, and 
large degrees of heterogeneity (as defined by I2), respectively. When the overall effect is 
statistically significant different from zero, the Z-statistic has a normal distribution with a 
mean (�) equal to:

where E is the effect size, v is the effect size variance, and k is the number of studies. The 
random effects power of an overall effect size is estimated through:

where ∅(x) is the standard normal cumulative distribution function and ca is the critical 
value for the standard normal distribution ( ca = 1.96 at a = 0.05 for a two-tailed test). Gen-
erally, power decreases if there is high heterogeneity between studies. This is indicative 
that more studies are needed to reliably detect an effect.

(9)v =

(

nT + nC

nTnC

)

+
E
2

2(nT + nC)
) + �

2

(10)� =
(E − 0)
√

v

k

(11)p = 1 − ∅(ca − �)
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Findings

The statistical outcomes of the meta-analysis for the previously identified factors are pre-
sented in Table 4. The effect size, the significance of that effect size, and the 95% confi-
dence interval for that effect size, and the estimate of heterogeneity (I2) between studies are 
reported. Additionally, the random effects power of an overall effect size is also reported in 
the final column.

All socio-economic factors had a negligible effect size (< 0.1) and high heterogeneity 
(> 85%). Age, full-time farmer, and farming experience had a variance of effect size that 
ranged from negative to positive. A low statistical power was also found for these fac-
tors. Consequently, interpretation of their effect on the adoption of precision agriculture is 
fallacious.

Education and farm income were two significant factors. However, only the effect size 
of education was found to possess a reasonable statistical power. While this suggests an 
association between formal education and the capacity of farm operators, its high variance 
(that is underpinned by a relatively large sample size) necessitated a sensitivity analysis to 
explore the impact of variable definition on results (which will be discussed in Sect. 4.2). 
For example, higher education may imply that farm operators have a greater capacity to 
manage data and to understand the resultant insights generated by precision agriculture 
adoption (e.g., McBride and Daberkow, 2003).

In the farm and agro-ecological aspect, all factors had a negligible effect size (< 0.1) and 
high heterogeneity (> 99%). This remained the case when their respective variance in effect 
size was considered. Coupled with low statistical power (< 10%), the effect size of statisti-
cally significant cropped farm size and yield is not interpreted.

The effect size of external supports to farm operators was variable. Extension ser-
vices and input suppliers/dealers had high heterogeneity (> 95%) and low statistical 

Table 4   Meta-analytical results of factors underlying the adoption of precision agriculture

CI confidence interval, I2 I-square, df degree of freedom, asf the average sample size of studies
***, **Significance at 1% level and 5% level respectively

Category Factor Control Effect size 95% CI I2 Df Asf Power

Socio-economic Age None − 0.006 − 0.016 to 0.003 99.98 6 633 1.74
Education None 0.080*** 0.010 to 0.061 99.91 12 617 74.76
Farming experi-

ence
None 0.005 − 0.020 to 0.03 99.96 3 282 2.86

Full-time farmer None − 0.006 − 0.168 to 0.156 85.62 3 239 2.12
Farm income None 0.005*** 0.004 to 0.006 99.99 3 862 3.20

Farm and agro-
ecological

Cropped farm size None 0.008*** 0.008 to 0.009 99.99 13 429 4.18
Land tenure Region − 0.044 − 0.143 to 0.059 99.86 6 828 0.10
Yield None 0.026** 0.012 to 0.040 99.99 4 272 5.21

Institutional Extension services None − 0.028 − 0.135 to 0.080 97.46 3 577 0.75
Informational Input suppliers/

dealers
None 0.072 − 0.183 to 0.326 95.35 4 426 21.37

Consultants Region 0.440*** 0.282 to 0.599 68.39 3 500 99.99
Technological Use a computer Region 0.379*** 0.284 to 0.473 67.32 5 685 99.99

Perceived profit-
ability

None 0.559*** 0.264 to 0.855 82.24 3 329 99.99
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power (< 25%), with a range of individual effect sizes spanning from a negative to 
a positive value. Consequently, interpretation of their individual overall effect size is 
inhibited.

In contrast, consultants engagement had a marginally medium effect (0.44) on the 
adoption of precision agriculture. Its positive effect was statistically significant, and it 
had an acceptable heterogeneity measure (68%) and a high statistical power (99.99%). 
This finding suggests that consultancies facilitate adoption through targeted sup-
port. For example, the users of precision agriculture studied by Larson et  al. (2008) 
employed a crop consultant to help them generate map-based input prescription. Exter-
nal assistance like this helps farm operators to overcome their personal limitations and 
aids their utilization of precision agriculture.

The use of a computer had a marginally medium effect (0.38), with an acceptable 
heterogeneity level (67%) and a high statistical power (99.99%). It was statistically 
significant. Irrespective of whether a desktop or a laptop is used, computer literacy is 
essential to make productive use of the complex information collected for and analyzed 
by the technology. Computers are also an integral component of certain precision agri-
cultural technologies. They are essential in generating evidence-based prescriptions for 
input applications and machine automation.

The perceived profitability of precision agriculture was a significant predictor, with 
a medium effect (0.56) on adoption. Its heterogeneity was approximately 82% and sta-
tistical power was 99.99%. This finding suggests that the degree to which precision 
agriculture is perceived as more economically advantageous by potential users than its 
alternatives profoundly influence their decisions.

Towards this point, as per Table 4, the overall effects that constrained by high het-
erogeneity and low statistical power raised some issues concerning the robustness of 
the results. Interpretation of variance from negative into positive territory and low sta-
tistical power can lack efficacy when synthesized. Those factors (consultants, use of a 
computer, and perceived profitability) that exhibited a significant moderate effect were 
based on a small number of studies. Such results should not, then, be overinterpreted.

Publication bias

Borenstein (2005) suggests the use of funnel plots to look for evidence of publica-
tion bias. Publication bias arises since studies with statistically significant or positive 
results are more likely to be published than those reporting statistically insignificant 
or negative results. The two common statistical alternatives (rank correlation test and 
Egger’s regression) require a range of study sizes (Sterne & Egger, 2005). Given the 
small sample size in this study, funnel plots were used. Sterne et al. (2005) recommend 
the use of the standard error to facilitate bias detection.

Figure 2 presents funnel plots with standard error on the vertical axis as a function 
of effect size on the horizontal axis. In general, large studies appear toward the top of 
the plots, and they are clustered near the mean effect size; smaller studies are posi-
tioned toward the bottom of the plot and dispersed further from the mean effect size. 
Because no concentration of small studies was detected on one side of the mean, an 
absence of publication bias is indicated.
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Sensitivity analysis

While there was no evidence of publication bias, it is apparent that heterogeneity rises with 
sample size. As this may influence the decisions concerning categorization, a sensitivity 
analysis was conducted to explore the impact of different decisions on the effect size of 
education and cropped farm size. These factors appear within at least half of the samples 
and are shared by a variety of data type. Education was captured as years of education 
(a continuous variable) and received at least college education (a categorical variable); 
cropped farm size as planted hectarage (a continuous variable) and large farm size (a cat-
egorical variable).

When compared with the aggregated analysis, the sensitivity analysis presented in 
Table 5 gives two important insights. First, nearly all disaggregated factors (except planted 
hectarage) had inconsistent results in relation to their corresponding aggregator. Secondly, 
nearly all disaggregated factors (except years of education) had higher statistical power. 

Fig. 2   Funnel plot (standard error by Hedges’ g) of 13 factors investigated in this review

Table 5   Disaggregated results of two commonly assessed factors, controlling for data type

CI confidence interval, I2 I-square, df degree of freedom
***Significances at 1% level

Factor Data type Effect size 95% CI I2 Df Power

Education As a group 0.0803*** 0.0098 to 0.0611 99.91 12 74.76
 Years of education Continuous 0.0453*** 0.0239 to 0.0667 99.95 6 40.90

  > College education Categorical 0.1434*** 0.0564 to 0.2304 96.61 5 91.72
Cropped farm size As a group 0.0086*** 0.0082 to 0.0089 99.99 13 4.18
 Planted hectarage Continuous 0.0086*** 0.0083 to 0.0090 99.99 9 4.89
 Large farm size Categorical 0.0259 –0.3620 to 0.4138 99.64 3 8.39
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These are indicators that the overall results of this meta-analysis need to be interpreted 
with care.

Discussion

The 18 studies included in this meta-analysis pay little attention to the importance of tran-
sition paths from short-run to long-run equilibria. While perceived profitability has a mod-
erate effect on the adoption of precision agriculture, Lowenberg-DeBoer (1996) points that 
the initial investment costs are often underestimated to a level that poses a hurdle to gener-
ating short-term profits. Economies of scale can accelerate the payback period (Shockley 
et al., 2011). Importantly, continued improvement in management capacity is a necessary 
condition for precision agriculture to be perceived as profitable in the longer term. Consult-
ants and the use of a computer are factors that revealed a moderate effect. This leads to the 
obvious conclusion that targeted external support and computer literacy are important con-
sideration in enabling farmers to handle the complexities of precision agriculture.

However, the above conclusions should be treated with care given that the three factors 
were based on a small sample size and that heterogeneity generally rises with the number 
of studies. First, in common with most factors, each of the three was examined by less than 
half of the 18 eligible studies. Such representation is an inadequate base to deduce robust 
understanding. Secondly, heterogeneity implies that there is a unique context to be consid-
ered in every adoption issue. Contextual differences span socio-geography to generic/spe-
cific technologies, and they are blended within the various studies. In particular, the varied 
selection of factors across studies may have contributed to the lack of convergence. Differ-
ing data types/definitions compound this issue. Under these circumstances, the factors may 
have been poorly defined or understood. Any attempt to identify a universally facilitative 
opportunity in respect to adopting precision agriculture remains challenging. Such qualifi-
cations point to a need for further studies to be undertaken.

Even if there are more future studies, statistical powers found in this review suggest that 
there is little likelihood of obtaining a more reliable result. Smaller average sample sizes 
across studies and a low number of studies had power to detect only medium effect sizes. 
Weak effect sizes were undetected even when more studies and greater sample sizes were 
included. These findings imply that greater attention is required to improve study designs 
of primary research.

In future studies, statistical models should strive to represent the reality in at least two 
aspects. Firstly, the consideration of innovation adoption is not limited to a dichotomous 
choice (use or do not use). De Oca Munguia et al. (2021) show that adoption involves het-
erogenous flows, with individual farmers following different pathways ((non-)awareness, 
no adoption, trial, use, increased/constant/decreased use, and/or dis-adoption) in the adop-
tion process over time. While future research is encouraged to address such complexities, 
Glover et  al. (2019) propose an alternative framework to view the process of adoption 
as propositions, encounters, dispositions, and responses. Secondly, models attempting to 
explain the one-way relationships between factors and a single desired behavior (i.e., adop-
tion), which, in turn, are likely to influence their antecedent predictors, face methodologi-
cal limitations (Cary & Wilkinson, 1997). For example, perceptions of profitability and the 
capacity of farm operators are modified by experience. Fountas et al. (2005) note a change 
in farm management practices due to precision agriculture. The complementary nature of 
precision agricultural technologies and prior education in their use enable their sequential 
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adoption (DeLay et al., 2020). Lowenberg-DeBoer (2021) recently finds that the economic 
outcome of certain technologies changes with public rules and regulations.

Self-selection bias presents another potential modelling challenge. Because new preci-
sion agricultural technologies continue to be developed, adopters may not be a random 
representation of farm operators. Those who volunteer to adopt may share characteristics 
(i.e., awareness of that innovation) that differentiates them from non-adopters. Daberkow 
and McBride (1998), whose study is the earliest adoption study in this review, have noted 
the need to minimize self-selection bias. However, most studies covered in this review did 
not address the issue. Consequently, their research may thus have influenced the reliability 
of the findings of this meta-analysis.

Conclusion

Scientific attempts have been made to identify factors that can lead to the adoption of pre-
cision agriculture. Complementing previous narrative reviews, the novelty of this meta-
analytical paper involves quantification of the effect of the drivers underlying that desired 
behavior. The findings suggest that perceived profitability, consultants, and the use of a 
computer factors had a moderate effect. However, the efficacy of their conclusions is con-
strained by the small sample size and with the heterogeneity issues that arose with a num-
ber of the studies. This latter point is supported by other factors that had a negligible effect 
size. Instead, this review identifies study designs and statistical methodologies as areas of 
concern. To produce results that are meaningful and of practical use to local management, 
further investigation into the influence of (an expanded list of) drivers on the motivation for 
the adoption of precision agriculture is encouraged.
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