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Abstract
Precision nitrogen fertilizer application depends on accurate estimation of plant nitrogen 
content. However, the assessment of plant nitrogen content at early growth stages of paddy 
rice through remote sensed images is complicated by the compound effects of backgrounds 
(e.g. flood water, bare soil, algae, etc.) on the band reflectance. The rapid changing of 
plant nitrogen content during the vegetative phase makes the development of an opera-
tional prediction model very difficult. In this study, aerial images acquired by a quadcopter 
unmanned aerial vehicle (UAV) equipped with a multispectral sensor were used to estimate 
plant nitrogen content at vegetative phase of rice crops. The experiments were conducted 
at the experimental farm of Taiwan Agricultural Research Institute (TARI) from 2018 to 
2020. A variable, N-index (ratio between N content of plants to be evaluated and plants 
not receiving N fertilizers), was introduced to resolve the issues related to rapid changing 
of plant N content during the vegetative phase. After removing the interference on band 
reflectance by background from the aerial images, the most appropriate vegetation indices 
and period that can capture the variations of N-index of rice plants were identified. It was 
found that a normalized difference red edge index (NDRI) and red edge chlorophyll index 
(RECI) based model correlated well with the N-index values from c.a. 30 days after trans-
planting (DAT) to 55 DAT (i.e., the most crucial period for rice yield and grain quality). 
The developed model was then used to display the spatial and temporal heterogeneity in 
plant nitrogen status within an experimental field as an example to illustrate how to use the 
model. In the example, soil plant analysis development (SPAD) meter values at locations 
of various levels of estimated N-index were collected as surrogates of plant nitrogen con-
tent at various DATs to build relationships for converting N-index maps to SPAD maps for 
potential variable rate fertilizer application management.
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Introduction

Nitrogen (N) is vital to promote rapid rice plant growth and improve yield and grain qual-
ity, especially in intensive agricultural systems. (Lee et  al., 2011; Wang et  al., 2016; Ye 
et  al., 2013). However, environmental and ecological conditions are severely affected by 
the excess reactive N caused by over and/or improper application of nitrogenous fertiliz-
ers (Buresh et al., 1993; Galloway & Cowling, 2002; Ju et al., 2006). Matching fertilizer N 
supply with actual crop demand, thus maximizing crop N uptake and reducing N losses to 
the environment, is one of the strategic goals of site-specific nutrient management or preci-
sion agriculture (Cassman et al., 2002; Raun et al., 2002). Therefore, the ability to provide 
timely information regarding spatial distribution of crop N status within the field is one of 
the key factors in implementing precision agriculture (Lee et al., 2008).

Various methods can be used to measure plant N content (Muñoz-Huerta et al., 2013). 
For example, Kjeldahl-digestion method (Kalra, 1998) is based on laboratory analysis and 
considered a method of reference for biological sample nitrogen estimation, but it is also 
laborious, time-consuming, and destructive. Soil plant analyses development meter (SPAD 
meter) is an instrument commonly used for determination of plant N status on site in fields 
(e.g. Cabangon et al., 2011; Lin et al., 2010). SPAD meter measures chlorophyll content, 
which highly correlates with N content in leaves. It is non-destructive but still time-con-
suming because a SPAD meter only measures leaf N content one leaf at a time. Other than 
the leaf selected for measurement and measuring positions on the leaf, SPAD meter read-
ings can also be affected by plant growth stage, cultivars, soil water and deficiency of nutri-
ents other than N (Cabangon et al., 2011; Lin et al., 2010). Remote sensing-based solutions 
have also been used to monitor N status of rice plants (Lee et al., 2008; Stroppiana et al., 
2009; Zhu et al., 2008). Determining plant N status by remote sensing techniques is much 
more appealing than the traditional destructive chemical analyses considering the cost and 
time required. This technique is also better than using SPAD meters because there is no 
need to attach the sensor on the leaf and it can reduce variability of the measurements by 
adjusting the band reflectance sampling area. In addition, while SPAD measurements are 
usually taken only on a few plants near the edges of a field, remote sensed images can pro-
vide spatial information regarding plant N status of entire field.

In Taiwan, rice seedlings grown in a mat nursery are generally transplanted into pud-
dled and leveled fields 12 to 15 days after seeding, primarily for better weed control. After 
recovering from the transplanting shock, leaves continue to develop at the rate of one 
every 3–4  days during the early vegetative phase. The late vegetative phase starts from 
the appearance of the first tiller. The stem begins to lengthen late in the tillering stage and 
stops growing in height just before panicle initiation, which also signals the end of the veg-
etative phase. The number of days that the entire vegetative phase takes varies depending 
on the variety of rice and crop season, but is typically between 55 and 85 days.

Generally, 25% to 40% of nitrogen fertilizer is applied during the field preparation 
stage as basal fertilizer, and the rest is split into 2 to 3 portions and top dressed during 
the vegetative phase with the last portion applied just before panicle initiation. Wang 
et al. (2012) and Wang and Shen (2015) were able to delineate management zones for 
site-specific basal fertilizer application through identifying limiting soil factors of each 
paddy rice field within studied regions. Lee et  al. (2008) were able to assess N con-
centration of rice plants at panicle initiation stage by an inexpensive imaging system 
mounted on a helicopter (Lee et al., 2007). Techniques to determine rice plant N con-
centration during vegetative phase are lacking for top dressing N fertilizers in a more 
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precise manner. However, in the vegetative phase, nitrogen content of rice plants usu-
ally varies between 1 and 4% depending mainly on the growth stages and also the time 
of top dressing the N fertilizers. Therefore, the ability to provide timely information 
regarding the spatial distribution and temporal changes of plant N content in the field 
is very important in designing a feasible variable rate N fertilizer application strategy.

During the entire vegetative phase, paddy fields are not fully covered by rice plants 
until they reach the maximum tillering stage. The compound effects of rice plants and 
backgrounds (such as water, soil, and sometimes algae) on measured canopy reflec-
tance spectrum result in a commonly observed rapid increase of NDVI values from 
transplanting and gradually level off near maximum tillering stage (Chang et al., 2005; 
Wang et  al., 2010). Therefore, it is important to be able to remove the interferences 
of backgrounds from band reflectance of remote sensed images in order to correctly 
estimate the plant nitrogen content. Linear mixture model (LMM) approaches are com-
monly used to decompose the band reflectance to reflectance of each composing land 
surface type (Keshava & Mustard, 2002). The principal assumption of LMM is that 
the measured reflectance of a pixel is the linear sum of the reflectance of the mix-
ture components, also called endmembers, that make up that pixel. It is also assumed 
that each endmember has a relatively constant reflectance across the whole scene. The 
implication is that this approach assumes all the rice plants have the same reflectance 
spectrum and disregards the spatial heterogeneity of plant nitrogen contents within 
the field and the corresponding morphological changes. Therefore, the linear mixture 
model approach may not be suitable from the stand point of implementing variable rate 
fertilization on site.

Flying at low altitude, unmanned aerial systems (UAS) can acquire images with 
spatial resolution high enough to separate rice plants from backgrounds. UAS can also 
provide timely images at very low cost compared with airborne and satellite sensors. 
Zheng et al. (2018) evaluated the potential of RGB and multispectral cameras on board 
an eight-rotor UAV to measure N status of rice plants from tillering to booting stages. 
However, only images on 1 day were used in their study and they used averaged band 
reflectance values over entire small plots of different treatments to build prediction 
models without separating rice plants from the backgrounds.

In order to better apply UAS to precision agriculture, the objectives of the study 
were to (1) extract band reflectance of rice plants only from images obtained from a 
multispectral camera mounted on a drone, (2) analyze relationships between various 
vegetation indices and ground truth data to determine the period best for assessment 
of N status through UAS, (3) develop a N status estimation model for the best period 
determined, and (4) demonstrate how to use the developed model through an actual 
case study.

Materials and methods

This study is divided into two parts, as shown in Fig.  1. In the first part, a model 
suitable for estimating plant nitrogen status in the vegetative phase was developed. 
In the second part of the study, SPAD value distribution maps at several DATs of an 
experimental field for fertilizer trials were generated as an example to illustrate how to 
employ the developed N estimation model.
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Study site and experimental layout

Field experiments were conducted from 2018 to 2020 at the experimental farm of Tai-
wan Agricultural Research Institute (TARI) located at 24° 02ʹ N latitude and 120° 41ʹ 
E longitude at an altitude of 73 m above mean sea level. The climate of the study site is 
classified as Cwa by the Köppen system.

In Fig. 1, the part 1 of the study was conducted at field #80 at the vegetative phase of 
rice (Oryza sativa, L. cultivar TNG71) during the second crop season of 2018 and the 
first crop season of 2019. The field, 0.5 ha in size, was divided into eight 25 m × 25 m 
blocks. Four nitrogen application rates (0, 45, 90, 180 kg N ha−1) with 2 replicates were 
assigned to each of these 8 blocks (Fig. 2a). Rice seedlings at three- to four-leaf stage 
were machine-transplanted, 3–5 plants per hill, at row spacing of 0.3 m and hill distance 
of 0.2  m. The transplanting dates were on July 23, 2018 and March 6, 2019, respec-
tively. The nitrogen fertilizer applied was split into three doses; 55% of each amount 
was distributed as pre-planting basal 5 days before transplanting; 27% as the first top 
dressing applied 3 weeks (second crop) or 4 weeks (first crop) after transplanting; and 
the remaining 18% was added 20 days before heading. For all N treatments, adequate 
phosphate (146  kg P2O5 ha−1) and potassium (90  kg K2O ha−1) fertilizers were also 
applied based on local recommendation; herbicides and pesticides were sprayed during 
rice growth as needed.

Fig. 1   Flow chart illustrates important steps employed in this study
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In Fig. 1, the part 2 of the study was conducted at field #50 at the vegetative phase of 
rice (Oryza sativa, L. cultivar TN11) during the first crop season of 2020. The field was 
divided into six equal-area blocks (15 m wide and 50 m long) laid out side-by-side to test 
the performance of two organic compound fertilizers (OCF #1 and #2) against the ammo-
nium sulfate (AS). The three types of nitrogen fertilizers with 2 replicates were assigned 
to each of these 6 blocks (Fig. 2b). Rice seedlings at three- to four-leaf stage were trans-
planted on 24 February, 2020, 3–5 plants per hill, at row spacing of 0.3 m and hill distance 
of 0.2 m. All the nitrogen fertilizers, at the same rate of 180 kg N ha−1, were split into four 
doses; 25% as pre-planting basal 5 days before transplanting; 20% as the first top dressing 
applied on DAT 15; 30% as the second top dressing applied on DAT 30; and the remaining 
25% was added on DAT 45. Calcium superphosphate and potassium chloride, at rate of 
175 kg P2O5 ha−1 and 100 kg K2O ha−1, respectively, were also applied in the ammonium 
sulfate plots as basal and top dressing in order to match the time and amount of phosphate 
and potassium added by OCF #1 and #2. Herbicides and pesticides were also sprayed dur-
ing rice growth as needed.

UAV images acquisition and processing

A multispectral camera (RedEdge-M, MicaSense Inc., Seattle, WA, USA) mounted on a 
quadcopter UAV (Matrice 100, DJI Science and Technology Co., Ltd., Shenzhen, China) 
was used to collect the aerial images. The UAV flight operation was carried out between 
10:00 to 11:00 local time and at an altitude of 50 m, which gave a ground sampling dis-
tance (GSD) of 14 mm. The UAV images were scheduled to be acquired on a weekly basis 
when the sky was clear and on DAT 30, DAT 45 and DAT 52 for part 1 and part 2 of this 
study, respectively.

Fig. 2   Field experiment layout 
for A N-index model develop-
ment and B N-index model 
application in this study
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A photogrammetry software (Pix4Dmapper, Pix4D Inc., San Francisco, CA, USA) was 
used to convert data from raw images to ortho-mosaic band reflectance maps by select-
ing the camera and sun irradiance option. Prior to other image analysis, pixels of the con-
verted images were first classified into one of the five classes (i.e. rice plants, water, soil, 
algae, and others) by ISODATA method (ENVI, Harris Geospatial Solutions, Broomfield, 
CO, USA) based on the reflectance of the blue (B), green (G), red (R), red edge (RE) and 
near infrared (NIR) bands collected by the multispectral camera. The accuracy of classify-
ing a pixel to rice plants was evaluated through visual inspection by comparing randomly 
selected 100 pixels classified as rice plants against the ortho-mosaic image. The accuracies 
in classifying the rice plants were higher than 90% for all images collected at various DATs 
and increased as the growth and development of rice plants became more apparent. A mask 
for rice plants was then built by assigning a value of 1 to pixels classified as rice plants and 
0 to all other classes. Average band reflectance maps, at 1 m × 1 m grid, of rice plants only 
were obtained by multiplying the band reflectance maps by the rice plant mask and resam-
pled by cubic spline method using functions provided by ENVI.

Field data collection

Plant sampling locations and sequence for part 1 of this study are shown in Fig. 3. In 
each of the eight blocks (4 N treatments × 2 replicates), there were six subdivided areas 

Fig. 3   Schematics showing the locations and sequence of plant sampling used in part 1 of this study. The 
six rectangles within each N treatment block illustrated the locations of the six subareas used for N-index 
model development (#1−#12) and validation (#21−#32)
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and with number coded 1 m × 1 m grids in each sub-area. For model development, rice 
plant samples were taken from the three sub-areas (# 1 to #12) every week after trans-
planting in sequence from right to left. For example, plant samples were taken from the 
four #1 coded grids in the left sub-area for week 1 after transplanting, the four #2 coded 
grids in the center sub-area were sampled for week 2, and the four #4 coded grids in the 
left sub-area were sampled for week 4. The three sub-areas (# 21 to #32) in each block 
were for validation test and were sampled every 2 weeks after transplanting in a similar 
sequence as described above. During each sampling, five plants from the center and four 
corners of the 1 m × 1 m grid were collected to form the sample representing that grid.

Plant samples dried at 60  °C for 72  h were milled and passed through a 0.1  mm 
mesh to determine the total N content of the plants using the modified Kjeldahl method 
(Bremner, 1996). In order to resolve the problem of rapid changes in plant N content 
during the vegetative phase, N-index were calculated for each batch of plant samples 
using Eq. (1).

where N% and N% ref are N content of plants to be evaluated and plants not receiving N 
fertilizers, respectively.

For part 2 of this study, after each flight operation and N-index map derivation (to 
be described below), SPAD measurements (SPAD-502, Konica Minolta Inc., Osaka, 
Japan) were conducted at about 15 locations (composed of low to high N-index values) 
around the field to establish relations between estimated N-index and SPAD values. For 
each location, 10 SPAD readings were taken on the second uppermost fully expanded 
leaves, midway between the leaf base and tip. All readings were then averaged to repre-
sent that grid.

Model development and validation

Vegetation indices (VIs) examined for the development of N-index estimation models 
are listed in Table 1. Correlation analysis indicated that NDRI, RECI, MSAVI, CCVI, 
GNDVI and NDVI (in the order of decreasing values of correlation coefficients) had 
better Pearson’s correlation coefficient (│r│ > 0.1) with the N-index values than the 
rest of the VIs when polling all the data of 2018 and 2019 together (data not shown). 
Therefore, correlation coefficients between the observed N-index values against each 
of these six VIs were further computed for different period combinations through con-
tinuous removal of dates starting from the earliest DAT or the latest DAT. The widest 
period that had│r│ ≥ 0.5 was determined as the best period suitable for developing a 
N-index estimation model. Data pairs of N-index and VIs within the determined best 
period were then used to find independent variables for the required N-index estimation 
model through stepwise regression analysis with F to enter and F to remove set as 1 and 
0, respectively (STATISTICA, TIBCO Software Inc., Palo Alto, CA, USA). To avoid 
overfitting problem of the stepwise regression method, various linear models based on 
different combinations of the selected VIs were tested against the validation dataset col-
lected as described in the field data collection section. Root mean square error (RMSE) 
and mean bias error (MBE) were used as the basis to determine the best model for 
N-index estimation. The RMSE and MBE are defined as

(1)N-index = N%∕N%
ref
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where O and P represent observed and predicted values, and N is the total number of 
observations. The RMSE summarizes the mean difference in the units of observed and pre-
dicted values, with the zero indicating good and positive infinity considered as poor model 
performance. The MBE gives an idea of the degree of overestimating or underestimating 
of the model.

Results and discussion

Variations of plant nitrogen content with days after transplanting (DAT)

The variation of plant nitrogen content with DAT for different N treatments of two rice 
crop seasons are shown in Fig.  4. It started from approximately 2% after transplanting, 
increasing to approximately 4%, then decreasing to about 1% at the end of the vegeta-
tive phase. Plant nitrogen content increased with nitrogen fertilizer application rates. The 
observed pattern of changes in plant nitrogen content is the compound result of uptake 
of nitrogen released from soil and fertilizers and the amount of dry matter accumulated 
through photosynthesis. At the beginning of the vegetative phase, when the photosynthetic 

(2)RMSE =

√

√

√

√
1

N

N
∑

i=1

(
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i
− O

i

)2

(3)MBE =
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(

P
i
− O

i

)

Fig. 4   Variations of plant 
nitrogen content with days after 
transplanting for A the second 
crop season of 2018, B the first 
crop season of 2019. The legends 
indicate nitrogen fertilizer appli-
cation rates (kg N ha−1)
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capacity is small, absorbed nitrogen resulted in an increase of plant nitrogen content. After 
recovery from transplanting shock, the leaf area index increased rapidly and resulted in a 
decrease of plant nitrogen content. However, the time that plant nitrogen content reached 
its peak varied with the crop season. Nitrogen uptake was reduced by the low temperatures 
at beginning of the first crop season (generally from end of February to June, i.e. from cool 
to warm environment), which resulted in reaching the peak earlier than the second crop 
season (generally from end of July to November, i.e. from warm to cool environment). Lee 
et al. (2011) also indicated that the nitrogen uptake was faster in plants grown during the 
second cropping season than during the first cropping season.

Variations of band reflectance of rice plants with nitrogen treatments and DAT

Leaf chlorophyll content altered the leaf transmittance and reflectance in the visible 
region (Blackmer et al., 1994). The increase in chlorophyll content as result of increas-
ing in leaf area index with DAT tended to absorb more strongly in the visible region, 
which resulted in a decrease of reflectance at blue, green and red bands (Fig.  5). 

Fig. 5   Changes of band reflectance of rice plants with nitrogen treatments and days after transplanting 
(DAT) for A the second crop season of 2018 and B the first crop season of 2019. The band code B, G, R, 
RE and NIR represents blue, green, red, red edge, and near infrared band, respectively. The legends indicate 
nitrogen fertilizer application rates (kg N ha−1)
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However, there were only slight differences between N treatments, making it difficult 
to distinguish with the naked eye.

Reflectance in the near-infrared region is related to the diffraction at air–liquid 
interface within the leaves, and is thus affected by internal leaf structure and canopy 
architecture, as well as increases in plant biomass (Guyot, 1990). Accordingly, the 
thicker and more turgid leaves of plants, due to higher N content, would reflect more 
strongly in the near infrared band (Fig. 5).

The increased absorption by chlorophyll and the reflection by thicker, flatter and 
more turgid leaves would result in a steeper slope of the reflectance spectrum in tran-
sition region between the red to near-infrared region. Therefore, Lee et  al. (2008) 
used the derivative of reflectance between 730 and 740 nm, dR/dλ|735, to account for 
changes in plant N content. The red edge band of the multispectral camera (RedEdge-
M, MicaSense) measured averaged reflectance of a band that had a bandwidth of 10 nm 
and centered at 717 nm, which was not equal to the slope of the reflectance spectrum 
in the transition region between the red to near-infrared region. Thus, no significant 
differences in reflectance were observed between N treatments in the red edge band. In 
this regard, a hyperspectral imager may be a better sensor for plant N assessment.

Relationships among N‑index, vegetation indices and DAT

To develop a linear regression model based on representative indices, a correlation 
matrix was developed between the N-index values and the six selected VIs at various 
time periods. Figure 6 shows the correlation levels between the N-index and each VI 
at the time period selected. For most VIs, except NDVI, data pairs in between DAT 30 
and DAT 55 of the two rice cropping seasons showed modest (r ≥ 0.5) linear relation-
ships with N-index. This period covers the latter half of the vegetative phase, which is 
also the most important period to top dress the nitrogen fertilizers for better yield and 
grain quality (Nguyen & Lee, 2006).

At early stage of the vegetative phase (e.g. DAT 8 and 15), the poor correlation 
may be due to image classification errors because the rice plants were rather small 
and could not be easily separated from the background at the spatial resolution used. 
As growth stages reached the transition period from vegetative phase to reproductive 
phase (e.g. DAT 59 and 66), band reflectance of leaves may be over-weighted by using 
the rice mask due to overlapping of leaves as the percent cover reaches nearly 100%. 
To correct for the structural influences, hyperspectral reflectance spectra in the interval 
710–790 nm are needed in order to generate corresponding directional area scattering 
factor (DASF) values (Knyazikhin et  al., 2013). However, in this study, DASF could 
not be obtained due to limited bands of the multispectral camera used.

All six of the selected indices involve near infrared band which is related more to 
internal leaf structure and canopy architecture than leaf color. This is probably due 
to the fact that only minor differences were observed in the visible band and canopy 
structural parameters (e.g. LAI and biomass) are affected by the amount of N available, 
which corresponds with the findings in other studies (Lee et  al., 2008; Zheng et  al., 
2018). Therefore, although an RGB camera usually comes with the UAV, it may be 
better to use a multispectral camera for plant nitrogen status monitoring.
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Development of regression model for N‑index assessment

Five vegetation indices, NDRI, RECI, MSAVI, CCVI and GNDVI, were picked by the 
stepwise multiple regression analysis as independent variables to build the N-index esti-
mation model. To avoid over-fitting the model, tests of the validation dataset against 
various combinations of these five vegetation indices indicated that a linear model based 
on NDRI and RECI (Eq. 4) gave the lowest RMSE (= 0.061) compared with other com-
binations and overestimated only slightly (MBE = 0.004).

Figure 7 shows the scatterplot between estimated and measure N-index values. It can be 
seen from the validation results that the developed regression model performed well to 

(4)N-Index = 1.188 + 0.356 RECI −1.586 NDRI R
2 = 0.49

Fig. 6   Results of determining the best period for developing N-index estimation model. The top row of the 
legends is for the second crop season of 2018 and the bottom row is for the first crop season of 2019. Num-
bers indicates DAT and the filled legends represent dates included in the correlation coefficients (r) analysis
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estimate the N-index values. Most of the estimated N-index values are within the range 
of ± 10% deviation from the 1:1 line.

Mapping nitrogen distribution in field

In part 2 of this study, UAV images of an experimental field at DAT 30, 45 and 52 of the 
first cropping season of 2020 were used to explore the spatial and temporal changes of 
plant nitrogen status in the field. Using the same scheme as in part 1, all the aerial raw 
images were converted to ortho-mosaic band reflectance maps by Pix4Dmapper (Pix4D 
Inc.) and classified into five classes (i.e. rice plants, water, soil, algae and others) by ISO-
DATA method and with averaged band reflectance maps of rice plants at 1 m × 1 m gener-
ated by ENVI (Harris Geospatial Solutions).

Spatial maps of estimated N-index were then generated based on Eq. 4 using the band 
math function of ENVI, relationships between N-index and SPAD values for the three 
DATs studied and distribution maps of the SPAD values converted from the relations are 
shown in Fig.  8. Spatial and temporal heterogeneity was clearly observable in the field. 
In Fig. 8A and C, somewhat apparent linear streaks appeared in the N–S direction of the 
field at all three dates, which could be the result of manually top dressing the fertilizers 
in that direction, while the relatively lower N-index at the south end of the field could be 
due to the dilution of the applied fertilizers by irrigation water (irrigation water flows into 
each treatment plot from south end). In Fig. 8C, the decrease of SPAD values on DAT 45 
compared with those on DAT 30 indicated gradual depletion of nitrogen nutrients in the 
field due to uptake by rice plants. After top dressing the nitrogen fertilizer on DAT 45, the 
SPAD values of rice plants increased again on DAT 52.

The SPAD maps, shown in Fig. 8C, provide the required information regarding the spa-
tial distribution of nitrogen status in the field and could thus be used as a guide to vari-
able rate application of nitrogen fertilizers by suitable machines (such as drones especially 
made for fertilization). Although the SPAD value is merely a good surrogate for nitrogen 
status of rice plants, an actual plant nitrogen content map for more precise application rate 
decisions could be easily created once an operational relationship between SPAD values 
and plant nitrogen content has been established. Future work will focus on building such an 
operational relationship.

More studies should also focus on testing the developed model across different varieties 
and stress levels related to leaf N concentration to improve the robustness and applicability 

Fig. 7   Scatter plot between 
estimated and measured N-index 
for validation dataset
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of the model. Detailed studies regarding SPAD values and plant nitrogen content for differ-
ent varieties and at different DAT are also needed for better site-specific and variable rate 
N management.

Conclusions

Due to the negative environmental and economic impacts of using conventional methods, 
there is growing interest over site-specific and variable rate nitrogen application. Remote 
sensing is emerging as an efficient tool for monitoring plant nitrogen status in the field. 
However, background (water, bare soil and algae) interferences created a mixed pixel 
problem when trying to extract nitrogen status information for rice plants at the vegetative 
phase. In the present study, background interferences were removed through using UAV-
based high spatial resolution aerial images. Various vegetation indices of rice plants were 
calculated to evaluate their capability to monitor nitrogen status in rice crop. It was found 
that using a new variable, N-index (ratio of N content of plants to be evaluated and plants 
not receiving N fertilizers), can resolve the difficulty in developing a model to predict rapid 
changing of rice plant nitrogen content during vegetative phase. A linear regression model 
based on NDRI and RECI was developed for prediction of N-index at periods important in 
determining rice yield and grain quality, with RMSE and MBE of 0.061 and 0.004, respec-
tively. Spatial maps of N-index and SPAD generated for the fertilizer trials field indicated 

Fig. 8   Spatial distribution of N-index values (A), relationships between estimated N-index and measured 
SPAD values (B), and spatial distribution of SPAD values (C) at the fertilizers trial field on different days 
after transplanting (DAT)
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that the developed model has good potential to identify plant N status at the vegetative 
phase of paddy rice.
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