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Abstract
Drones are one of the latest tools to have been added to farmers’ precision agriculture tech-
nology tool kit. Despite the proclaimed benefits, adoption rates of drones are low and liter-
ature regarding the adoption of drones in agriculture is scarce. Therefore, this study inves-
tigates whether an extended Technology Acceptance Model (TAM) can contribute to the 
understanding of latent factors influencing farmers’ intention to adopt a drone. The sample 
of 167 German farmers was collected in 2019 via an online survey. Using partial least 
squares structural equation modelling and a binary model, the TAM explains 69% of the 
variance in the intention to use a drone by German farmers. According to the results, rais-
ing farmers’ awareness of farm-specific areas of drone application and the confidence level 
of using a drone can increase farmers’ intention to adopt a drone. The results are of interest 
for agribusinesses developing drones as well as selling or providing drones. Furthermore, 
the results are of interest for researchers in precision agriculture technologies.

Keywords  Drone · Precision agriculture · Technology acceptance model · Partial least 
squares structural equation modelling · Unmanned aerial vehicle

Introduction

Precision agriculture (PA) consists of management practices, strategies and corresponding 
technologies that support management decisions leading to an improvement in resource 
use efficiency, productivity, profitability and the simultaneous reduction of externalities 
from agricultural production based on the analysis of temporal, spatial and individual data 
(Gebbers & Adamchuk, 2010; ISPA, 2019). In this context, farmers use several technolo-
gies like global positioning system (GPS) for machine guidance, variable rate technologies 
(VRT) for the pinpoint application of inputs or sensor networks and remote sensing to col-
lect site-specific information (Khanal et al., 2017). One recent tool added to farmers’ PA 
technology tool kit is the application of unmanned aerial vehicles (UAV), also known as 
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drones. In contrast to remote sensing via satellites and aircrafts, drones are less inhibited by 
cloud cover and atmospheric distortion, while still can be affected by severe weather condi-
tions like heavy rain or wind. However, they offer a higher spatial and spectral resolution as 
well as higher flexibility due to their ability to start almost at any preferred time (Candiago 
et al., 2015; European Commission, 2018; Moskvitch, 2015).

In Europe, drones are currently mostly used as a non-invasive method to collect site-
specific information via cameras and sensors mounted on the drone (Usha & Singh, 2013). 
Due to legal restrictions they are not widely used for spot spraying or fertilizer applica-
tions (Reger et  al., 2018; Spalevic et  al., 2018) with the exception of the application of 
Trichogramma spp. for the control of the European corn borer (Ostrinia nubilalis) in some 
countries. However, using digital cameras, farmers can document damage by wild animals, 
droughts and hail storms for insurance claims or can be used to track farm animals. Fur-
thermore, using spectral images farmers can detect plant stress due to lack of nutrients, 
water or drought as well as the presence of pests, weeds and diseases. In addition, infor-
mation on plant growth and soil health can be collected (Candiago et al., 2015; Cao et al., 
2020; European Commission, 2018; Hunt & Daughtry, 2018; Moskvitch, 2015; Sylvester, 
2018; Vayssade et  al., 2019). Collected spectral information from drones can be further 
processed into maps which can guide pinpoint fertilizer or pesticide application using com-
plementary precision agriculture technologies (PAT, e.g. variable rate fertilizer applicators 
and sprayers) (Moskvitch, 2015) or to schedule irrigation procedures (Sylvester, 2018). 
Hence, the abilities and multi-functionality of drones provide several possible areas of 
the application of information collected by the drone in agricultural production and offer 
both economic and environmental benefits to the farmer (Michels et al., 2020). Neverthe-
less, adoption rates are low and literature focusing on the adoption of drones by farmers 
is scarce. Zheng et al. (2019) have investigated farmers’ intention to use drones and only 
Michels et al. (2020) have focused on factors influencing the actual adoption decision. The 
latter authors mainly focused on farmer and farm characteristics, for instance farmers’ age 
and farm size, influencing the adoption decision.

Even though the economic benefit associated with a new technology is one of the most 
important factors for the adoption decision, not all farmers act as strict profit maximizers. 
Considering that farmers’ utility is not solely dependent on profit maximization, the util-
ity they derive from a specific technology will differ between individuals. Furthermore, 
especially for new technologies an objective assessment of the associated economic ben-
efits is limited, thus it is the farmer’s perception of these benefits that will influence his 
or her adoption behavior. If the farmers’ adoption of new technologies was purely based 
on objectively measurable (economic) benefits that would imply that all farmers are equal 
and adopt a technology simultaneously (Diederen et al., 2003). Ultimately, it is hence the 
farmers’ perception of the utility associated with a new technology which regulates the 
adoption process (Barnes et al., 2019). In addition, farmers are not fully rationale in the 
decision making (Musshoff & Hirschauer, 2011) and can also be affected by a status quo 
bias e.g. the preference to preserve the current state (Kahneman et al., 1991). To unravel 
such cognitive considerations which cannot be observed directly, literature has shown that 
assessing farmers’ perceptions and beliefs can contribute to the understanding of farm-
ers’ decision making (e.g. Schaak & Musshoff, 2018). Unsurprisingly, literature has also 
shown that farmers’ perceptions and beliefs towards the technology play a major role in 
decision making with respect to PAT and decision support tools (DST) (e.g., Adrian et al., 
2005; Das et al., 2019; Rose et al., 2016). For instance, Rose et al. (2016) provided evi-
dence that besides other factors, perceived performance, ease of use and relevance to the 
user are important factors in the decision process for the uptake and use of DST. Adrian 
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et  al. (2005) also provided empirical evidence that perceived ease of use and perceived 
usefulness play a major role in the adoption process with respect to PAT. Hence, it can also 
be expected that farmers’ perceptions and beliefs towards the benefits and effort of using 
a drone can play a major role in the decision-making process. This holds especially true 
since drones are not widespread yet and therefore farmers’ first perceptions with drones 
may be of great importance in the adoption process. In consequence, delivering programs 
and marketing activities that addresses farmers’ perceptions and beliefs will be more likely 
to succeed (Gaffney et al., 2019).

A theoretical framework which explicitly focuses on individuals’ perceptions and beliefs 
is the Technology Acceptance Model (TAM) (Davis, 1989) which aims to explain an indi-
viduals’ intention to adopt a new technology with latent variables (e.g. perceptions and 
beliefs). In contrast to directly observable variables (e.g. individuals’ age), a latent variable 
(e.g. individuals’ perception or beliefs) cannot be directly measured but has to be estimated 
based of other directly observable variables (Kaplan, 2004). The TAM consists of the key 
latent variables perceived usefulness and perceived ease of use which are expected to have 
an effect on an individuals’ intention to use a new technology or practice and ultimately on 
the actual adoption decision (Davis, 1989). Pierpaoli et al. (2013) concluded based on their 
literature review that both perceived usefulness and perceived ease of use are important 
latent factors in determining the success of a PAT. With respect to drones, Zheng et  al. 
(2019) already included both latent variables as factors explaining Chinese farmers’ inten-
tion to use drones in a binary probit model. However, both latent variables have not been 
used in a structural equation model as proposed by the framework of the TAM to explain 
farmers’ intention to use drones and also the actual adoption of drones. More specifically, 
they have not been used to identify causal relationships in the adoption process as it is pos-
sible using structural equation modelling.

Against this background, this study aims to identify which latent factors influence farm-
ers’ intention to adopt a drone and the adoption process in general. Furthermore, the study 
intends to validate if the TAM framework can also contribute to the understanding farm-
ers’ decision making with respect to the adoption of drones. Hence, the objective of this 
paper is to study the adoption process of drones by applying an extended TAM framework. 
Evaluating how farmers’ perceptions influence their adoption behavior and understanding 
the causal relationship between latent variables therefore allows to identify levers that will 
facilitate adoption and speed up the adoption process. Considering how PAT and drones 
in particular can contribute towards a more sustainable agricultural production, which is 
one of the major challenges agriculture currently faces, enhancing the adoption process is 
highly relevant. Therefore, this article contributes the following to the literature: This is the 
first article focusing on a causal analysis to identify latent factors influencing the adoption 
process of drones in agriculture based on an extended TAM framework. Consequently, this 
article presents a novel adaptation of the TAM to farmers’ decision making with respect to 
the adoption of drones.

For this purpose, an online survey using a standardized questionnaire was conducted in 
2019 resulting in a sample of 167 German farmers. The methodical approach to estimate 
the TAM and analyze the causal relationships between the latent variables is partial least 
squares structural equation modelling (PLS-SEM). Furthermore, a logit model to test the 
relationship between the intention to use a drone and the actual adoption of drones stated 
by the farmers in the sample is applied. The results are of interest for agribusinesses devel-
oping drones as well as selling or providing drones to improve their marketing activities in 
a meaningful way for farmers. Furthermore, researchers in the field of PAT could benefit 
from this study as the proposed extensions of the TAM can also be used in other contexts 
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studying the adoption of PAT. Although the sample consists of German farmers, the results 
are partially transferable to other countries with similar legal regulations with respect to 
drones and structure of the agricultural sector.

Literature review, theoretical framework and hypothesis generation

The adoption of new agricultural technologies or practices has been an important factor 
influencing the (economic) welfare of the farmers as well as the productivity of agricul-
tural production (Chavas & Nauges, 2020). Likewise, agricultural innovations have shaped 
agricultural production systems (Pathak et  al., 2019). The literature describes the com-
mon phenomenon that farmers do not adopt a new technology or practice immediately and 
simultaneously (Diederen et  al., 2003), besides the literature suggesting that innovations 
are adopted if they generate benefits. Likewise, Pierpaoli et  al. (2013) noticed that even 
though much effort is placed into convincing farmers to adopt new technologies, adoption 
of innovations is a complex activity and the process is influenced by many factors.

Unsurprisingly the adoption of new technologies, especially the adoption of PAT, and 
factors influencing the adoption process and decision, respectively, have received much 
attention in the literature (e.g. Antolini et  al., 2015; Pathak et  al., 2019; Pierpaoli et  al., 
2013; Tey & Brindal, 2012). Tey and Brindal (2012) provided a literature review about 
factors influencing the adoption process of PAT. They provided seven categories of factors 
influencing the adoption of PAT. According to the literature review (1) socio-economic fac-
tors (e.g. farmers’ age, education), (2) agro-ecological factors (e.g. soil-quality), (3) institu-
tional factors (e.g. region of farm location), (4) informational factors (e.g. use consultant), 
(5) farmer perception (e.g. perceived profitability), (6) behavioral factors (e.g. intention 
to adopt a PAT) as well as (7) technological factors (e.g. use of computers) influence the 
adoption of PAT (Tey & Brindal, 2012).

Since it is the aim of this research to investigate factors influencing the adoption process 
of drones by applying an extended TAM, this study contributes to a deeper understanding 
of factors in the categories five and six. While the literature review has already shown that 
for instance perceived profitability and the intention to adopt a technology influence the 
adoption process of several PAT, it is worthwhile to investigate the influence of these fac-
tors for drones on its own. Even though drones can be considered as being part of the set 
of PAT, they differ in some crucial characteristics from other PAT and established farming 
practices. First of all, drones offer a higher multifunctionality due to several possible areas 
of application like damage control and documentation. Second, drones can integrate with 
other PAT as the (spectral) information collected can be used to create maps for precision 
input application by other PAT (Michels et al., 2020). Lastly, the effective use of drones 
and the collection data, unlike the use of GPS on tractors or the use of variable-rate ferti-
lizer applicators, is not a continued development of existing technologies, but an entirely 
new technological approach for which farmers must adapt their way of working and can 
require learning new technological skills.

The TAM was developed by Davis (1989) and has been used for agricultural research in 
several research areas including PAT adoption (e.g., Adrian et al., 2005; Das et al., 2019). 
According to Verma and Sinha (2018), the TAM is the most widely applied model for 
the intention to adopt a technology. The proposed TAM for the adoption of drones and 
its hypotheses (H) will be explained in the following and is also graphically displayed in 
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Fig. 2. To better understand the extensions and adjustments made, the basic TAM is shown 
in Fig. 1.

Perceived ease of use is defined by Davis (1989) as an individuals’ belief that using a 
technology is free of effort. Perceived usefulness is an individual’s belief that a technology 
improves the job performance. According to the TAM framework, both factors determine 
an individuals’ intention to use a technology and ultimately the actual adoption. Further-
more, an individual who perceives using a technology as easy also perceives the technol-
ogy as more useful (Davis, 1989). As proposed by the TAM framework, it can also be 
expected that a farmer who perceives using a drone as easy has a higher intention to use 
one for agricultural purposes. Furthermore, if the farmer feels that the information pro-
vided by the drones is useful for his or her on-farm operational activities, he or she has a 
higher intention to use a drone. Moreover, if a farmer feels that using a drone is easy, he 
or she also perceives this instrument as more useful. The following hypotheses represent 
these considerations:

Fig. 1   Adapted TAM as proposed by David (1989)

Fig. 2   Proposed extended TAM for the adoption of drones
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H1:  Perceived ease of use of drones in agriculture (Peou) has a positive effect on perceived 
usefulness of drones in agriculture

H2:  Perceived ease of use of drones in agriculture (Peou) has a positive effect on the inten-
tion to use drones in agriculture

H3:  Perceived usefulness of drones in agriculture (Pu) has a positive effect on the intention 
to use drones in agriculture

Adrian et  al. (2005) included the latent variable attitude of confidence in their 
extended TAM for the adoption of PAT. They justified the inclusion of this latent var-
iable with the fact that “precision agriculture technologies provide a vast amount of 
information…” (Adrian et al., 2005, p. 260). To properly handle this information poten-
tially requires farmers to learn new skills. The latent variable therefore measures the 
“[…] confidence of a producer to learn how to use precision agriculture technologies” 
(Adrian et  al., 2005, p. 260). This also holds true for drones since they provide large 
amounts of information for farmers. To collect and use this amount of information in an 
efficient way, the farmer requires new skills, for instance to transform the collected data 
online into maps to guide pinpoint fertilizer application. Therefore, a positive effect of 
the attitude of confidence on perceived ease of use and the intention to use a drone is 
expected which is in line with Adrian et al. (2005). Hence, the following hypotheses are 
proposed:

H4:  Attitude of confidence in using drones in agriculture (Aoc) has a positive effect on 
perceived ease of use of a drone

H5:  Attitude of confidence in using drones in agriculture (Aoc) has a positive effect on the 
intention to use drones in agriculture

Job relevance is defined by Venkatesh and Davis (2000) as an individual’s perception 
that a new technology is applicable and/or important to his or her job. Hence, it can be 
expected that if a farmer feels that the several functions of a drone fit his or her tasks on the 
farm, he or she perceives drones as more useful. Likewise, this farmer has a higher inten-
tion to use a drone. Rose et al. (2016) also observed a higher probability of farmers using 
a decision support tool if they perceive the provided information as relevant. Hence, the 
following hypotheses are tested:

H6:  Job relevance of drones in agriculture (Jr) has a positive effect on perceived usefulness 
of a drone

H7:  Job relevance of drones in agriculture (Jr) has a positive effect on the intention to use 
drones in agriculture

Lastly, according to the TAM framework, intention to use has a positive effect on the 
actual adoption decision (Davis, 1989). Therefore, the following hypothesis will be tested:

H8:  Intention to use drones in agriculture (Itu) has a positive effect on the actual adoption 
of a drone
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Material and methods

Structure of the questionnaire

The questionnaire was divided into two parts. In the first part, the farmers were asked 
to evaluate 14 randomized statements for the estimation of the TAM presented in the 
previous section. The statements serve as the indicators to estimate the latent variables. 
To evaluate the 14 statements, a five-point Likert scale was used with 1 = do not agree 
and 5 = fully agree. The statements were derived from Davis (1989) and Venkatesh and 
Davis (2000) but adapted and contextualized to the topic of drones in agriculture. In 
the second part, the farmers were asked to provide socio-demographic and farm related 
information. Lastly, the farmers were asked if they use a drone on the farm (hired or 
bought), which serves as the dependent variable in the TAM (Fig. 2). Thus, the depend-
ent variable is a binary variable with 1 = usage of a drone and 0 = no usage of a drone. 
The questions on sociodemographic and farm related information as well as the state-
ments are shown in Tables 1 and 2.  

Table 1   Descriptive statistics (n = 167)

SD standard deviation
a German Farmers’ Federation (2018, 2019)

Variable Description Mean SD Min Max German averagea

Adoption 1, if the farmer uses a drone; 0 otherwise 0.22 – 0 1 0.09
Age Farmers’ age in years 39.62 14.23 21 69 53
East 1, if the farm is located in the Eastern Federal 

States of Germany; 0 otherwise
0.44 – 0 1 0.07

Education 1, if the farmer has a university degree;
0 otherwise

0.38 – 0 1 0.12

Farm size Farm size in hectare arable land 717.79 855.14 10 4500 60
Gender 1, if the farmer is male; 0 otherwise 0.86 – 0 1 0.90
Livestock 1, if the farmer is engaged in livestock farm-

ing; 0 otherwise
0.65 – 0 1 0.67

Table 2   Heterotrait-Monotrait 
(HTMT) ratios (n = 167)

Cut-off level: HTMT < 0.9
Jr job relevance of drones in agriculture, Aoc attitude of confidence in 
using drones in agriculture, Itu inten-tion to use drones in agriculture, 
Peou perceived ease of use of drones in agriculture, Pu perceived use-
fulness of drones in agriculture

Jr Aoc Itu Peou Pu

Jr
Aoc 0.666
Itu 0.849 0.872
Peou 0.447 0.734 0.640
Pu 0.882 0.501 0.711 0.320
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The questionnaire addressed to German farmers was distributed in the spring of 2019 
via German online forums and the largest German social media groups dedicated to agri-
culture. The link for the survey was posted and farmers were invited to participate on a 
voluntary basis. Likewise, farmers were informed on the first page that they could cancel 
the survey at any time. Precondition to take part in the survey was to be aware of the poten-
tial usage and application of drones in agriculture. By purposive sampling for farmers who 
are aware of the application of drones in agriculture, it was ensured that farmers are able 
to understand and evaluate the drone-specific statements. Furthermore, by using an online 
questionnaire, it was expected to achieve the group of farmers who are potential adopters 
of drones. Even though more than 95% of German farmers were already using the internet 
in 2016, younger, better-educated farmers from larger farms in particular were using the 
internet with a higher frequency (Michels et al., 2019). These types of farmers represent 
the potential adopters of PAT and drones, respectively (e.g. Paustian & Theuvsen, 2017; 
Tey & Brindal, 2012). Likewise, the European Commission (2018) emphasizes that drones 
are more suitable for larger farms.

Partial least squares structural equation modelling and logit model

The left part of the TAM up to the intention to use a drone is estimated using PLS-SEM. 
To analyze the relationship between the intention to use a drone and the actual adoption 
decision a binary logit model is applied to account for the binary response structure of the 
adoption variable (1 = usage of a drone; 0 = no usage of a drone) (Fig. 2). In the following 
the procedure of PLS-SEM is explained as a first step. Afterwards, the binary logit model 
is presented.

Structural equation modelling (SEM) is a combination of factor analysis and multiple 
regression analysis. SEM allows to simultaneously estimate cause-effect relationships 
between multiple dependent and independent latent variables. As stated in the introduc-
tion, latent variables cannot be directly measured. Hence, indicators in the form of observ-
able variables are used to estimate the latent variables. The indicators are derived from the 
respondents’ answers to the statements in the survey (Haenlein & Kaplan, 2004; Sarsted 
et al., 2014). In SEM, independent latent variables are called exogenous while dependent 
variables are classified as endogenous. The endogenous latent variable(s) are explained by 
exogenous variables (Hair et al., 2014). For SEM two approaches exist: covariance-based 
SEM (CB-SEM) and variance-based SEM. The goal of CB-SEM is to minimize the dis-
crepancy between estimated and sample covariance matrices. In contrast, PLS-SEM is a 
nonparametric variance-based SEM aiming to maximize the explained variance (R2) of 
the endogenous latent variable (Hair et  al., 2011, 2014). The nonparametric PLS-SEM 
was used for the estimation of the proposed TAM model for the following reasons: This 
approach to SEM is less restrictive concerning the structure of the data than covariance-
based approaches which require normally distributed data. Moreover, it has been proven 
to perform well if the sample size is small. In addition, PLS-SEM allows the use of latent 
variables with only one or two indicators. Furthermore, the use of latent variable scores 
in the subsequent analysis of the adoption decision (1 = usage of a drone; 0 = no usage of 
a drone) within a logit model is also possible as intended for this study. Lastly, PLS-SEM 
is more suitable for prediction rather than for theory testing (Hair et al., 2014, 2017, 2019; 
Sarstedt et al., 2017).

Two steps are required to evaluate a PLS-SEM. In the first step, the relationship between 
the indicators and the latent variable (outer model; measurement model) is evaluated. In 
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the second step, the causal relationship between the latent variables is estimated (inner 
model; structural model). The outer model for a simple PLS path model with two latent 
variables has a causal relationship from the latent variable to its indicators. Therefore, each 
indicator can be generated as a linear function of its latent variable and the residuals:

 where �i is the vector of the exogenous latent variables and �j is the vector of the 
endogenous latent variables. Xi and Xj denote the associated vectors of indicator 
( x1,… , xi;x1,… , xj) of the exogenous latent variable �i and endogenous latent variable �j , 
respectively. Moreover, Λi and Λj reflect the matrices of the indicator loading ( �1,… , �k) 
with K as the number of indicators. � and � are the vectors of measurement errors for the 
indicators (Chin, 1998).

For the evaluation of the outer model, indicator reliability (1), internal consistency (2), 
convergent validity (3) and discriminant validity (4) are tested. Standardized loadings of an 
indicator should exceed 0.7 to establish indicator reliability. Internal consistency is estab-
lished if composite reliability ( CR ) also surpasses a value of 0.7. CR for a latent variable �j 
is estimated as follows:

where �jk is the indicator loading and �jk is the error variance of the kth 
(

k = 1,… ,Kj

)

 indi-
cator for the latent variable �j . Average variance extracted ( AVE ) provides an estimation 
for convergent validity and should exceed 0.5. The AVE for a latent variable �j can be esti-
mated as follows:

Lastly, discriminant validity is established by estimating the Heterotrait-Monotrait 
( HTMT  ) correlations between the latent variables. Discriminant validity can also be 
established using the Fornell-Larcker criterion or by estimating cross-loadings. However, 
according to Henseler et  al. (2015), the HTMT is the best performing and most reliable 
criterion of all three. The HTMT  ratios should be below 0.9 (Hair et al., 2017; Henseler 
et al., 2015) and can be estimated for two latent variables �i and �j with Ki and Kj indicators 
as follows:

where rij is the coefficient for the correlation between two latent variables �i and �j.
Before proceeding to the second step of the estimation of a path model, possible issues 

with multicollinearity should be checked. To assess the level of collinearity between the 
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latent variables in the model, variance inflation factors (VIF) can be estimated. After 
checking for multicollinearity, the relationships between exogenous and endogenous latent 
(standardized path coefficients β) variables are estimated in an iterative sequence of ordi-
nary least squares regressions, which is the second step in the PLS-SEM process. The iter-
ative nature of the least squares regression to estimate the model parameters to maximize 
the endogenous latent variables explained variance is also name-giving for the procedure. 
In contrast to the ordinary least squares (OLS) regression, the path coefficients for each 
path are estimated separately. Hence, the parameters of the full model are estimated in 
parts and not in one model as in the OLS method (Hair et al., 2017; Sarstedt et al., 2017). 
The inner model therefore connects the endogenous ( �j ) and exogenous ( �i ) latent variables 
and can be written as:

B and Γ are path coefficient matrices, where B is the coefficient matrix of the causal effects 
between endogenous latent variables and Γ represents the coefficient matrix of the causal 
effects of the exogenous latent variable �i on the endogenous latent variable �j . In PLS-
SEM a latent endogenous variable can also serve as an exogenous variable for another 
endogenous variable in the structural model which is why an endogenous variable �j also 
explains another endogenous variable �j in Eq. 6. See for instance the latent variable per-
ceived usefulness of drones in agriculture which is explained by the variable job relevance 
of drones in agriculture and at the same time also serves as an exogenous variable for the 
intention to use drones in agriculture (Fig. 2). Lastly, � is the vector of residuals indicating 
that the independent variables do not fully explain the variance in the latent endogenous 
latent variables (Chin, 1998). Figure 3 shows these relationships graphically.

(6)�j = B�j + Γ�i + �

Fig. 3   Exemplary extract from the applied model to show the relationship between the outer and inner 
model as well as between the indicators (jr1, jr2; itu1, itu2; see for the indicators Table 3) and the corre-
sponding latent variables (Job relevance of drones in agriculture; Intention to use drones in agriculture). Job 
relevance of drones in agriculture represents an exogenous latent variable, while intention to use drones in 
agriculture represents an endogenous latent variable
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To estimate t-statistics to check for statistical significance of the standardized path coef-
ficients (β), a bootstrapping procedure with 5,000 subsamples is applied. Furthermore, val-
ues for R2 and the out-of-sample predictive relevance (Q2) are estimated. Q2 values are 
estimated using blindfolding with an omission distance of 7 which means that every 7-th 
data point is of a latent variables’ indicator is deleted. Then the path model is estimated 
with the remaining data and the results are used to predict the deleted data points. Further-
more, effect sizes (f2-values) are estimated (Hair et al., 2017). Estimates for the PLS-SEM 
were performed using SmartPLS 3.2.7 (Ringle et al., 2015).

Since the target endogenous variable in the TAM (Fig. 2) is a binary variable (1 = usage 
of a drone; 0 = no usage of a drone) applying ordinary least squares regression as used in 
the procedure of PLS-SEM would result in biased standard errors (Hair et al., 2012). To 
avoid this, the latent variable score of Itu ( ̂�Itu) is implemented as an independent variable 
in a logistic regression with the dummy variable for the adoption as the dependent variable. 
Formally, the decision to use a drone can then be specified as follows:

The necessary specification test (Hosmer–Lemeshow chi2-test) for a binary logit model 
is also conducted and the result for this test is presented in the next section. Coefficients 
are given as Odds ratios (OR). OR > 1 indicate a positive effect on the dependent variable 
while OR < 1 indicate a negative effect on the dependent variable. Data analysis for the 
logit model was carried out using STATA version 14.2

Results and discussion

Descriptive statistics

After the removal of incomplete surveys, 167 usable records remain thus satisfying Bart-
lett et al.’s (2001) least sample size estimation (n = 167) with a population size of 266,660 
farms in Germany in the year of the survey (Statista, 2019) and an applied margin of error 
of 10% and a confidence interval of 99%. The descriptive statistics of the sample (n = 167) 
are given in Table 1. For illustrative purposes, the mean values for the average German 
farmer in the population are provided in the last column of Table 1. 22% of the farmers in 
the sample use a drone on their farms which exceeds the German average of 9%, regard-
less of owning a drone or hiring one (German Farmers’ Federation, 2018). The average 
farmer from the sample is 40 years old and therefore younger than the average German 
farmer with 53 years of age. 44% of the surveyed farmers’ farms are located in the East 
of Germany which exceeds the German average of 7% to a large extent. Furthermore, the 
mean farm size in the sample of 718 hectares of arable land also greatly exceeds the Ger-
man average of 60 hectares of arable land (German Farmers’ Federation, 2019). This could 
be explained by the fact that the sample has a high share of farmers located in the eastern 
Federal States of Germany where farms are on average larger compared to the rest of Ger-
many (Reichardt & Jürgens, 2009). The farmers in the sample are well-educated, as 39% of 
them hold a university degree compared to 12% of farmers for the German average. With 

(7)y =

{

1 if Adoption > 0

0 if Adoption = 0

(8)Adoption = 𝛽0 + 𝛽1𝜉Itu + 𝜀i
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respect to the share of female farmers who participated in the survey, the sample (87% 
male farmers) is close to the German average of 90% male. Similarly, the share of farmers 
who participate in livestock farming (66%) is close to the German average (67%) (German 
Farmers’ Federation, 2019).

Thus, the sample is not representative for German agriculture and can therefore be 
described as a non-random sample. As expected, the sample consists of young, well-
educated farmers managing larger farms than the German average. Furthermore, a large 
share of farmers is located in the eastern Federal states of Germany. Therefore, the bias 
in the sample by conducting an online-survey was expected but also welcomed as briefly 
shown in the section on material and methods: The farmers in the sample can be seen as 
the core group of potential adopters of PAT (e.g. Paustian & Theuvsen, 2017; Tey & Brin-
dal, 2012). Furthermore, the large average farm size and the high share of farmers located 
in the eastern Federal states of Germany are associated with a higher likelihood of PAT 
adoption (Reichardt & Jürgens, 2009) to which drones can be associated and also used as 
a complement. Lastly, the European Commission (2018) emphasizes that drones are less 
suitable for small- and medium farms due to economies of scale. Hence, the sample corre-
sponds to the core group of farmers and farms who are already adopters of drones or most 
likely potential future adopters of drones. Therefore, to increase user acceptance and facili-
tate widespread adoption, it is worthwhile to focus on their perceptions and attitudes first. 
Still, the reader is cautioned that the results should be interpreted representing this type of 
farmers (young, well-educated farmers from larger farms).

Estimation results of the technology acceptance model

Tables 2 and 3 present the estimation results for the outer model. Table 2 shows the results 
for the HTMT criterion to establish discriminant validity. Discriminant validity ensures 
that one latent variable is separable enough from another latent variable. The results sup-
port that discriminant validity of the model is given since no HTMT ratio exceeds the 
threshold level of 0.9 (Hair et al., 2017; Henseler et al., 2015).

Table 3 shows the mean and standard deviation for each indicator as well as the loading 
of each indicator. Furthermore, values for the CR and AVE are provided in the last col-
umns. Indicator reliability is measured by the loadings of each indicator. More than 50% 
of the variance of one indicator is explained by the latent variable if loadings exceed the 
threshold of 0.7, which holds true for all indicators in the model. The lowest loading is 
displayed by the indicator aoc1 with a value of 0.712. Internal consistency refers to how 
well a latent variable is measured by the indicators. CR values above 0.7 establish internal 
consistency for the model. The latent variable Aoc displays the lowest CR value with 0.811 
which exceeds the threshold and therefore establishes internal consistency for the model. 
Convergent validity is measured by the AVE value. AVE is the average amount of variance 
in its indicators that is explained by the corresponding latent variable relative to the total 
variance of its indicators. AVE values should exceed 0.5 which means that the latent vari-
able captures more than 50% of the indicators’ variance. The lowest AVE takes a value of 
0.686 for the latent variable Aoc and therefore establishes convergent validity for the outer 
model. Considering the results in Tables 2 and 3, sufficient validity of the outer model is 
given.

To check for issues with multicollinearity, VIFs for all latent variables in the model 
are estimated (Table  4). VIFs < 5 indicate the absence of multicollinearity issues (Hair 
et  al., 2017), which holds true for the model. Table 5 presents estimation results for the 
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structural equation model. Table  6 shows the results for the logit model. All results are 
also graphically displayed in Fig.  4. Explained variance (R2) of the latent variables Itu, 
Peou and Pu amount to 0.689, 0.342 and 0.514, respectively. Reported values for R2 which 
amount to 0.670, 0.330, and 0.190 are described for PLS-SEM as substantial, modest and 

Table 4   Variance inflation 
factors (VIF) for the latent 
variables in the PLS-SEM 
(n = 167)

Cut-off level VIFs < 5
Jr job relevance of drones in agriculture, Aoc attitude of confidence in 
using drones in agriculture, Itu intention to use drones in agriculture, 
Peou perceived ease of use of drones in agriculture, Pu perceived use-
fulness of drones in agriculture

Itu Peou Pu

Jr 2.289 1.154
Aoc 1.708 1.000
Peou 1.546 1.154
Pu 2.061

Table 5   PLS-SEM results for the TAM (n = 167)

Itu (R2 = 0.689; Adjusted R2 = 0.681; Q2 = 0.612), Peou (R2 = 0.342; Adjusted R2 = 0.338; Q2 = 0.249), Pu 
(R2 = 0.514; Adjusted R2 = 0.508; Q2 = 0.355)
Reversed statements for the latent variable Aoc were used in the path analysis
Jr job relevance of drones in agriculture, Aoc attitude of confidence in using drones in agriculture, Itu inten-
tion to use drones in agriculture, Peou perceived ease of use of drones in agriculture, Pu perceived useful-
ness of drones in agriculture
a f2 values > 0.02, > 0.15 and > 0.35 indicate small, medium and large effects of the exogenous on the endog-
enous latent variable
b Bootstrapping results with 5000 subsamples applied

H0 Path coefficient β Effect size f2a t-Statisticsb Support?

Peou → Pu H1 0.027 0.001 0.386 No
Peou → Itu H2 0.217** 0.098 3.308 Yes
Pu → Itu H3 0.243** 0.092 3.447 Yes
Aoc → Peou H4 0.584*** 0.519 9.566 Yes
Aoc → Itu H5 0.297*** 0.166 4.652 Yes
Jr → Pu H6 0.707*** 0.889 14.502 Yes
Jr → Itu H7 0.308*** 0.133 4.097 Yes

Table 6   Binary logit model 
results (n = 167)

LR chi2(1) = 61.04***; log likelihood = − 56.52; Correctly classified 
85.03%; Hosmer–Lemeshow chi2(7) = 6.37
p-value = 0.496; Nagelkerke Pseudo R2 = 0.473; McFadden Pseudo 
R2 = 0.350
OR odds ratio
p < 0.001 (p < 0.01; p < 0.05) is indicated by *** (**; *)

H0 OR Std. Error z-statistic Support?

Itu → Adoption H8 9.553*** 3.894 5.540 Yes
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weak, respectively (Chin, 2010). The R2 values of the model can therefore be described as 
substantial and modest. Values for Q2, estimated with an omission distance of 7, amount 
to 0.612, 0.249 and 0.355 for the latent variables Itu, Peou and Pu, respectively. Q2 values 
should exceed 0 (Hair et al., 2017) which holds true for the mentioned latent variables indi-
cating a sufficient predictive relevance of the model. Another conclusion can be drawn by 
comparing R2 and Q2, as the closer the two values for each latent variable are to each other, 
the smaller the prediction error and the higher the prediction accuracy of the model. The 
f2-value measures the change in the R2-value of an endogenous latent variable if the exoge-
nous latent variable is omitted. If f2 values exceed 0.02, 0.15, and 0.35, they indicate small, 
medium, and large effects of the exogenous on the endogenous latent variable, respectively 
(Hair et al., 2017). All f2-values, except for the effect of Peou on Pu, exceed the critical 
threshold of 0.02 indicating that all exogenous latent variables have a reasonable effect on 
the corresponding endogenous variable.   

The high values for R2 in the PLS-SEM indicate that the proposed TAM is able to cap-
ture some important information about latent features in the adoption process of drones 
in agriculture. Furthermore, the results contribute further empirical evidence towards the 
robustness of the TAM and its generality across several research disciplines. Farmers’ 
intention to use drones is affected by the perceived ease of use, perceived usefulness, atti-
tude of confidence and job relevance of drones as proposed by the TAM. In the following, 
the results for each hypothesis in the PLS-SEM model are examined in detail.

H1 deals with the effect of perceived ease of use on perceived usefulness. The path 
coefficient Peou → Pu (β = 0.027; p = 0.694) is not statistically significant. Hence, H1 can-
not be supported by the model. One the one hand, this result can be explained by the multi-
functionality of drones, as the different features of a drone require different skill levels and 
effort input by the farmer. For instance, documentation of hail damage might be an easier 
task than collecting spectral data which can be processed into maps to guide and pinpoint 

Fig. 4   Results for the extended TAM for the adoption of drones (n = 167). For the hypotheses H1, H2, H3, 
H4, H5, H6 and H7 the standardized path coefficients (β) are given. For H8 the odds ratio (OR) is given. 
p < 0.001 (p < 0.01; p < 0.05) is indicated by *** (**; *)
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fertilizer application. Hence, the effect of perceived ease of use on perceived usefulness 
might depend on the area of application and therefore no statistical effect was observable 
in this case. One the other hand, farmers might also work together with extension services 
and providers of drones which help them to analyze the collected data. Thus, they might 
not be able to assess the effort to use the drone or analyze the collected data and therefore 
no statistical effect was observable in this case. The results also suggest that it might be of 
interest to differentiate in future studies between farmers’ owing a drone and farmer hiring 
a drone or a service provider.

As shown with the statistically significant path coefficient Peou → Itu (β = 0.217; 
p < 0.01), if a drone is perceived as easy to use, the farmer has a higher intention to use it. 
Hence, H2 can be supported by the model. The results indicate that a time-consuming way 
to use or start a drone/extract the collected for the targeted operational procedure data may 
inhibit farmers’ intention to use the drone for data collection or other purposes. A farmer 
might then prefer to scout the field by foot since it may take too much time for him or her 
to start or use the drone. H3 considers the effect of perceived usefulness on the intention 
to use a drone. The path coefficient Pu → Itu (β = 0.243; p < 0.01) is statistically signifi-
cant. Hence, H3 can be supported by the model. If a drone provides useful information, for 
instance documentation of hail damage for insurance claims and the farmer understands 
the benefit of this information, the farmer has a higher intention to use a drone.

H4 and H5 deal with the effect of the attitude of confidence on perceived ease of use 
and the intention to use a drone, respectively. Both hypotheses can be supported by the 
model since the path coefficients Aoc → Peou (β = 0.584; p < 0.001) and Aoc → Itu 
(β = 0.297; p < 0.001) are statistically significant. Hence, if a farmer has a high confidence 
level that he or she is able to work with a drone, the data provided by drones or digital 
instruments to further process the data collected by a drone, he or she perceives the appli-
cation of drones as easier. Moreover, he or she has also a higher intention to use a drone. 
H6 and H7 deal with the effect of farmers’ perceptions of the job relevance of drones on 
the perceived usefulness and intention to use a drone. The two statistically significant path 
coefficients Jr → Pu (β = 0.707; p < 0.001) and Jr → Itu (β = 0.308; p < 0.001) give support 
to both hypotheses. As described in the introduction, drones offer a high multifunctionality 
as they can be used on their own or in connection with other PAT. According to the results, 
a farmer perceives a drone as more useful if he or she recognizes that several functions of 
the drone also have relevance for several on-farm tasks. Likewise, this farmer has a higher 
intention to use a drone since he or she can be supported in several operational procedures 
by a drone.

Since standardized path coefficients were estimated, a comparison of the coefficients’ 
magnitudes indicates to which degree each exogenous latent variable influences the endog-
enous latent variable. Consequently, the results for the paths towards farmers’ intention to 
use a drone can be compared. First of all, comparing the magnitude of the key latent vari-
ables’ path coefficients, Peou → Itu (β = 0.217) and Pu → Itu (β = 0.243), the results imply 
that a higher user-friendliness does not have as strong an influence as the perceived benefit 
a drone provides the farmer which is in line with Davis (1989) that no perceived ease of 
use can outweigh the perceived usefulness. This implies that the benefit of using a drone 
should be clearly portrayed by sellers and providers of drones to increase farmers’ general 
interest in using a drone. Still, handling a drone and processing of information should be 
as easy as possible, despite the model having the lowest path coefficient for the effect of 
perceived ease of use on farmers’ intention to use a drone. However, when looking at the 
other path coefficients Aoc → Itu (β = 0.297) and Jr → Itu (β = 0.308), the results show an 
even stronger effect of these latent variables on the intention to use a drone. This implies 
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that reinforcing farmers’ attitude of confidence in using drones and perceived job relevance 
of drones will increase the likelihood of activating farmers’ intention to use a drone for 
agricultural purposes. For a practical implication, the results therefore suggest that farm-
ers need to be informed in a meaningful way about drones to increase the perceived job 
relevance of drones in agriculture and their attitude of confidence in using for agricultural 
purposes. More specifically, the results emphasize the importance for marketing activities 
to focus explicitly on the multi-functionality of drones for several on-farm activities. For 
this purpose, sellers and providers should be able to present corresponding fields of drone 
application relevant to the farm and the farmer. While it is a common practice to present 
a technology in the field to a farmer, sellers should collect information on the farm before 
to evaluate possible areas of drone application. Hence, practical demonstrations of drones 
with farmers in the field and also guided processing of the collected information as well 
as guided application of the information with complementary PAT should be personalized 
and focus on the most relevant task on the farm. Although this may require further collec-
tion of information by the providers or sellers, this could increase farmers’ perceived job 
relevance, attitude of confidence and ultimately their intention to use a drone. In line with 
that, personalized guided applications could also increase farmers’ attitude of confidence in 
working with a drone.

In addition, the relationship between the intention to use drones in agriculture and the 
actual adoption of drones observed in this sample (H8) is also estimated by applying a logit 
model to the adoption variable which is shown in Table 6. The goodness-of-fit character-
istics are displayed below Table 6. The logit model has a log likelihood value of − 56.52. 
A statistically significant likelihood ratio test (LR chi2(1) = 61.04***) indicates that at least 
one coefficient in the model is statistically significantly different from zero. A non-statisti-
cally significant Hosmer–Lemeshow test (chi2(7) = 6.37, p = 0.496) indicates no misspeci-
fication of the model (Cameron & Trivedi, 2009). Nagelkerke Pseudo R2 value amounts 
to 0.473 and McFadden Pseudo R2 amounts to 0.350. The logit model correctly classified 
85.03% of the observations. The logit model providence evidence for a statistically sig-
nificant relationship between the intention to use drones and the actual adoption of drones 
since the OR exceeds a value of 1 (OR 9.553; p < 0.001). The result is straightforward as 
expected by the TAM, but it formally completes the analysis of the TAM. Otherwise an 
intention-behavior gap would be observed in this case, for instance due to participants not 
stating their true preferences in the statements. Furthermore, if there would be indeed an 
intention-behavior gap observed on the basis of the cross-sectional data in this study, this 
would be an indication that on the one hand the TAM framework cannot be applied to this 
topic and also the use of panel data is not promising. To conclude, the adoption of drones 
can therefore be predicted by farmers’ intention to use drones and the TAM framework.

Limitations of the study

As suggested by both anonymous reviewers, it is worthwhile to mention some limitations 
and criticism about the TAM besides its successful application. The triviality of the TAM, 
its limited explanatory and predictive power as well as the lack of practical value of the 
results have been criticized (Lim, 2018). However, it should be noted that the TAM is still 
the most widely applied model to predict an individuals’ intention to use a technology 
(Verma & Sinha, 2018) for a reason. As stated by Haji et  al. (2020, p. 1181), the TAM 
provides “clear and understandable insights about the process, stages, and mechanisms of 
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forming acceptance intention”. More specific, Lim (2018) emphasized that the basic TAM 
offers the opportunity to be extended by further contextualized motivational influences 
beside its core latent factors perceived usefulness and perceived ease of use and that it can 
therefore maintain its relevance. In this vein, the proposed extended TAM of this study 
was extended with the latent factors Jr and Aoc, which serve as upstream factors for Pu 
and Peou as well as direct influences for Itu. The latent variable Jr was included to account 
for the multifunctionality of the drones. Furthermore, the latent variable Aoc was added 
due to the disruptive changes drones can bring to farmers’ way of farming and also due to 
the required technological skills to work in an effective way with the information collected 
by the drones. The results of the study also provide evidence that both latent variables are 
major influences of farmers’ intention to use drones and therefore confirm the suggestions 
of Lim (2018).

To further validate the robustness of the results, this study should be repeated with a 
larger, more representative sample. Furthermore, this study was conducted in Germany 
where drones are not yet fully legally permitted for precise input application but mostly for 
information gathering for which this study was framed. Thus, drones hold a higher poten-
tial for further fields of application in agriculture, which is currently not fully exploited in 
the EU and other regions due to legal regulations. However, the major hurdle for a sustain-
able and long-term use of drones for the agricultural production lies in the willingness of 
farmers to use the drone and the information provided, which was the focus of this study. 
The results and implications of this study can be therefore used to address this hurdle. If 
the acceptance for this type of drone application among farmers is achieved, the next step 
to use drones and the information collected for the precise application of inputs represents 
a lower hurdle. However, it should nevertheless be validated in further studies whether the 
relationships between the latent variables in the TAM framework will be exactly the same 
for other areas of application.

Conclusions

This is the first study investigating the adoption of drones in the TAM framework by ana-
lyzing a sample of 167 German farmers collected in 2019 via an online survey. The TAM 
was estimated using PLS-SEM and a binary logistic regression. 69% of the variation in the 
intention to use a drone decision was explained by the model. Seven of eight hypotheses of 
the extended TAM could be supported by the model. Thus, this study provided empirical 
evidence that the TAM framework can also be applied to the adoption process of drones 
in agriculture and is also able to capture a large amount of information about the latent 
features in the process. In summary, the results suggest that—besides the communication 
of economic benefits—explaining and demonstrating drones and their benefits in an indi-
vidual meaningful way to the farmers is necessary to change farmers’ perceptions as well 
as beliefs about drones and to ultimately increase their intention to use drones. In this, 
marketing activities and guided applications individualized to farmers’ needs and relevant 
areas of drone application on the specific farm will be more likely to succeed.

Based on the limitations of the study, some outlook on potential further research can 
be given: It could be useful to investigate farmers’ perceptions with respect to drones in 
several other potential areas of drone application like precise input application to validate 
the results. This could be fruitful to address obstacles at an early stage. In addition, this 
study should be repeated in other countries. In this, by using a panel data and a larger more 
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representative sample, further evidence for the predictive strength of the TAM by assessing 
the link between farmers’ intention to use a drone and the actual adoption of a drone at a 
later point of time could be provided. Lastly, as suggested by one anonymous reviewer, as 
the adoption rates of drones are still low, it could be interesting to investigate from a tech-
nology resistance perspective.
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