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Abstract

Recently, agriculture has gained much attention regarding automation by artificial intel-
ligence techniques and robotic systems. Particularly, with the advancements in machine
learning (ML) concepts, significant improvements have been observed in agricultural tasks.
The ability of automatic feature extraction creates an adaptive nature in deep learning (DL),
specifically convolutional neural networks to achieve human-level accuracy in various
agricultural applications, prominent among which are plant disease detection and classi-
fication, weed/crop discrimination, fruit counting, land cover classification, and crop/plant
recognition. This review presents the performance of recent uses in agricultural robots by
the implementation of ML and DL algorithms/architectures during the last decade. Perfor-
mance plots are drawn to study the effectiveness of deep learning over traditional machine
learning models for certain agricultural operations. The analysis of prominent studies high-
lighted that the DL-based models, like RCNN (Region-based Convolutional Neural Net-
work), achieve a higher plant disease/pest detection rate (82.51%) than the well-known ML
algorithms, including Multi-Layer Perceptron (64.9%) and K-nearest Neighbour (63.76%).
The famous DL architecture named ResNet-18 attained more accurate Area Under the
Curve (94.84%), and outperformed ML-based techniques, including Random Forest (RF)
(70.16%) and Support Vector Machine (SVM) (60.6%), for crop/weed discrimination.
Another DL model called FCN (Fully Convolutional Networks) recorded higher accuracy
(83.9%) than SVM (67.6%) and RF (65.6%) algorithms for the classification of agricultural
land covers. Finally, some important research gaps from the previous studies and innova-
tive future directions are also noted to help propel automation in agriculture up to the next
level.
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Introduction

The agricultural industries are facing several problems including deficiency in the growth
of products like fruits, vegetables, etc. (Chen et al., 2019), unpredictable soil contents
(Padarian et al., 2019), improper application of pesticides (Sladojevic et al., 2016), her-
bicides, fungicides or insecticides to reduce crop/plant diseases and shortage of trained/
skilled labour (Zhao et al., 2016a), etc. It is very important to address these issues as
advancements in agriculture play a vital role in the economy of a country. Just like other
fields of research including medical science, mechanical/automation, and business indus-
tries, etc., agriculture can also benefit from the use of robots to complement the human
workforce. Therefore, in recent years, several attempts have been made to resolve agri-
cultural issues through robotic platforms (Ebrahimi et al., 2017; Wspanialy & Moussa,
2016; Zhao et al., 2016a). Many state-of-the-art approaches have been introduced/modi-
fied to perform various agricultural tasks like fuzzy logic/classifier (Cho, Chang, et al.,
2002; Cho, Lee, et al., 2002; Sujaritha et al., 2017), combined radar-vision system (Milella
et al., 2011), HIS colour model (Feng et al., 2015), improved Otsu threshold algorithm
(Wei et al., 2014), integration of various sensors (Milella, Reina, et al., 2019; Reina et al.,
2016), self-supervised scheme (Reina et al., 2016), etc. In this regard, Artificial Intelli-
gence (Al) has been proven to have great potential towards agricultural applications by the
implementation of robotic systems with machine learning (ML)/deep learning (DL) algo-
rithms (Ebrahimi et al., 2017; McCool et al., 2017; Zhang, Jia, et al., 2018; Zhang, Qiao,
et al., 2018). Some advanced visualization techniques are prominent: saliency map visu-
alization (Brahimi et al., 2018), hyperspectral imaging (Mahlein et al., 2017; Wang, Vin-
son, et al., 2019; Wang, Zhang, et al., 2019), multispectral imaging (Patrick et al., 2017;
Pourazar et al., 2019; Slaughter et al., 2008) and thermal imaging (Azouz et al., 2015;
Ishimwe et al., 2014), etc., have also been applied with ML/DL models for agricultural
tasks. Therefore, with the progress in Al, the performance of many complex agricultural
operations has improved as compared to the earlier approaches. This led us to present an
overall review of research outcomes that have been obtained for agricultural applications
by the implementation of ML/DL algorithms through robotic systems.

Some review articles have been published incorporating only a particular type of agri-
cultural application with/without a robotic system by considering Al/computer vision/
other advanced vision control techniques. For example, a recent review addressed the crop
water stress by the machine learning approach (Virnodkar et al., 2020). A review article
summarized the statistical ML algorithms, which have been implemented for various agri-
cultural operations (Rehman et al., 2019). In (Huang et al., 2010), soft computing tech-
niques including fuzzy logic, neural network, genetic algorithm, decision tree, and support
vector machine (SVM) were presented for the analysis of soil, precision agriculture, and
management of crops. A comprehensive review was conducted for precision agriculture
by Unmanned Aerial Systems (UAS) and important future directions were also provided
in the article (Zhang & Kovacs, 2012). In (Kamilaris & Prenafeta-Boldd, 2018), the DL
architectures were reviewed for several agricultural operations. The review presented in
(Zhao et al., 2016a) indicated the algorithms/schemes developed for vision control of har-
vesting robots. Another review paper outlined the harvesting robots to show their perfor-
mance along with the procedures of robotic designs, and adaptive algorithms for harvesting
purposes. Some interesting future recommendations including modification in the environ-
ment of crops, innovative robotic designs, and other important factors like safety and econ-
omy were also summarized (Bac et al., 2014). For the harvesting purpose, the advancement
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in sensors was summarized in (Zujevs et al., 2015), by dividing them into four classes:
chemical, tactile, proximity sensors, and computer vision. The issues like an in-camera
sensor, design of the filter, and image segmentation methods for the identification of fruits
through harvesting robots were presented in Li et al. (2011). Another review article pre-
sented the development of sensors for the detection/localization of fruit; it also described
the Al-based classification methods and highlighted loopholes in those approaches (Gon-
gal et al., 2015). The applications of machine vision with Al for agricultural tasks like
detection of disease/pests in crops, evaluation of the quality of the grain, and automatic
detection of plant phenotyping were studied in (Patricio & Rieder, 2018). The procedure
for weed detection by various classification methods including machine learning and deep
learning was reviewed in (Wang, Vinson, et al., 2019; Wang, Zhang, et al., 2019). The
supervision of plant pathology by the robotic system while utilizing AI and machine vision
techniques were presented in (Ampatzidis et al., 2017). Various sensing technologies and
advanced cameras along with their limitations to categorize fruit/plant and analyse the
physical structure of plants were summarized in (Narvaez et al., 2017). Another review
article outlined the latest smart methodologies like internet of things (IoT), ML, and DL for
agricultural purposes including crops/plant disease, pesticide and weed control, and stor-
age and water management. (Jha et al., 2019). A review paper summarized ML algorithms
for addressing weed detection, plant disease/pest detection tasks (Behmann et al., 2015). A
recent review article presented the DL-based techniques for various agricultural applica-
tions (Santos et al., 2019). Another review paper explained and summarized deep learning
models for the identification and classification of plant disease along with the application
of DL with advanced imaging techniques including hyperspectral/multispectral imaging
and some interesting future directions were also provided (Saleem et al., 2019). Moreover,
the application of Big Data for agriculture was reviewed by Wolfert et al. (2017).

To the best of the authors’ knowledge, there is no systematic review in a single arti-
cle presenting the performance of robotic systems by machine/deep learning algorithms
considering the major agricultural operations including detection of plant disease, identi-
fication of crop/plant, fruit counting, fruit recognition, identification of weed, crop/weed
discrimination, and classification of agricultural land cover. Therefore, this review article
will be useful to advance the agricultural field of research by studying machine and deep
learning techniques that have been implemented on various intelligent agricultural systems.
It will also be helpful to understand the research gaps in several complex agricultural appli-
cations to save cost related to agricultural protection and increase the growth of several
agricultural products. To understand an overall idea of a robotic system for agricultural
operations by implementing an ML/DL algorithm, Fig. 1 can be a good resource. First,
the agricultural application should be selected, which would lead to the selection of a cer-
tain robotic platform that can be primarily used for the collection of datasets. Then, the
Machine Learning/Deep Learning model would be proposed and trained into a robot that
will perform the agricultural task, and finally record the accuracy of the models in terms of
various performance metrics, like classification accuracy, Fl-score, detection/failure rate,
etc.

On top of that, during this review, the following questions were addressed that will
guide the researchers of agricultural automation about many aspects of ML/DL algorithms
employed through robotic platforms specifically in agricultural fields.

e  Which agricultural operations have majorly implemented machine/deep learning algo-

rithms through automated systems and what are the robotic platforms adopted for these
agricultural tasks?
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Fig. 1 Block diagram of the implementation of robotic system through ML/DL algorithms

Which agricultural products/fruits/vegetables have been included in the previous
studies when considering the implementation of ML and DL algorithms for robotic
systems?

Which ML/DL algorithms have been applied frequently for agricultural operations?
How much has deep learning outperformed traditional machine learning algorithms
for various agricultural tasks?

Which performance metrics have been considered in the previous studies for the
evaluation of ML and DL models that were used to perform agricultural tasks?
What are the research gaps which could be filled to achieve better performance of
various agricultural operations by ML/DL-based automated systems?

The remainder of the paper is further divided into the following sections: “Appli-
cation of Traditional Machine Learning Algorithms in Agricultural Robots” presents
machine learning models for various agricultural applications applied on robotic sys-
tems along with the research gaps; “Deep Learning Approach for Agricultural Opera-
tions by Robotic Platforms” elaborates the deep learning architectures for several agri-
cultural operations implemented through robotic platforms along with the performance
plots, and “Conclusion and Future Directions” concludes the review along with some
future directions which will be helpful to achieve higher accuracy and great advance-
ments in several agricultural tasks.

@ Springer



Precision Agriculture (2021) 22:2053-2091 2057

Fig.2 A hierarchy of artificial
intelligence (Al) according to
which machine learning is typi-
cally a subset of Al and similarly
deep learning is the subcategory
of machine learning
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Fig.3 A general representation of steps to implement machine learning algorithms

Application of Traditional Machine Learning Algorithms in Agricultural
Robots

In this era of automation, artificial intelligence (AI) has complemented the human work-
force in many real-life applications. Similarly, the agricultural industries also require
smart solutions to address important issues like saving cost, better production of agri-
cultural products like fruits/vegetables, shortage of trained labour, etc. In this regard,
machine learning (ML) as a subset of Al produced a significant contribution to agricul-
tural automation. The ML has further subcategories such as deep learning (DL), which
is an emerging technology to perform various agricultural operations intelligently. A
general representation of AI, ML, and DL is presented in Fig. 2.

Before the evolution of deep learning architectures, prominent among which is
AlexNet (Krizhevsky et al., 2012), machine learning (ML) algorithms produced many
state-of-the-art results for various agricultural tasks. In these algorithms, Support Vec-
tor Machines (SVM), K-Nearest Neighbour (KNN), Random Forest (RF) classifier, and
Decision Tree (DT) are the most prominent models. Although the ML algorithms like
SVM have also been used to perform various complex tasks like classification and map-
ping of agricultural terrain (Reina et al., 2017), this review is focused on the studies
which applied ML models/algorithms to perform five agricultural tasks through robotic
systems as described in the next sub-sections. Also, their limitations are summarized
which could help to advance upcoming future research in the field of agricultural auto-
mation. The general flow for the implementation of an ML algorithm is presented in
Fig. 3.
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Plant Disease/Pest Detection and Classification

The diseases/pests on plant species produce a significant impact on the growth of agri-
cultural products. Therefore, their detection and classification are a necessity, particu-
larly by an automated approach. In this regard, ML algorithms have been applied to
perform this important agricultural task. For example, a multi-support vector machine
(M-SVM) was proposed for the detection of disease in citrus fruit and its performance
was compared with state-of-the-art approaches like Weighted K-Nearest Neighbour
(W-KNN), Decision Tree (DT), Linear Discriminant Analysis (LDA), and Ensemble
Boosted Tree (EBT). However, the model were not compared with DL architectures to
prove the effectiveness of the model more clearly (Sharif et al., 2018). Another research
was conducted to detect and classify the healthy and diseased leaves of vine by Local
Binary Patterns and One-Class Classifiers (Pantazi et al., 2019).

The ML algorithms have also been implemented through robotic platforms for the
detection of plant disease. For example, an Unmanned Aerial Vehicle (UAV) was used for
the detection of Citrus greening and well-known ML algorithms like linear SVM, coarse
gaussian SVM, standard gaussian SVM, K-Nearest Neighbour, and simple and complex
Decision Tree were implemented to obtain the best-suitable model. From this study, a
research gap can be filled by comparing the performance of ML models with well-known
DL models like AlexNet, ResNet-50, VGG-16, etc. for the classification between healthy
and diseased leaves (Sarkar et al., 2016). A mobile robot was implemented in a straw-
berry greenhouse to detect its disease; an SVM algorithm was applied for this purpose and
achieved a considerably lower prediction error (Ebrahimi et al., 2017).

Plant/Leaves Recognition and Classification

Another important task of plant recognition has been done by state-of-the-art ML tech-
niques through robotic platforms. A mobile robot was implemented to find its best route for
a plantation in a real agricultural farm (Jodas et al., 2013) and for that purpose, SVM and
ANN were evaluated and achieved 93% and 90% accuracy respectively. A critical task of
the classification of grapevines was performed by SVM and ANN models through an all-
terrain vehicle (Gutiérrez et al., 2018). This research could have a more interesting analysis
if the performance of these two ML algorithms were compared with some successful CNN
models like AlexNet, VGG, ResNet-50, etc. Another plant classification-related task was
described in Huang et al. (2016) which proposed and designed a stand-still imaging sys-
tem consisting of a hyperspectral camera, and a Least Squares Support Vector Machine
(LSSVM) model was selected to classify the maize seed. Although the technique imple-
mented in this research achieved good classification accuracy (CA), still the effectiveness
of LSSVM should be proved by comparing its performance with the other ML classifi-
ers like RF. Furthermore, more diversity in data samples should be included to prove the
robustness of the applied model. In a research, as a prerequisite for an agricultural robot in
a practical field, an SVM-based classification method was applied to distinguish eight dif-
ferent plant species (Dyrmann et al., 2018); the method proposed in this research improved
the classification accuracy which showed the significance of the work. Another research
performed the classification among six different plant species by a BoniRob mobile robot
through the implementation of well-known ML algorithms. Their comparison brought sim-
ple logistic regression, SVM, and neural network, with the best results (Weiss et al., 2010).
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A research used a UAV-based system for the task of tobacco plant recognition. An SVM
model was implemented for this purpose and further enhancement in the performance was
suggested by the candidate region extraction and feature extraction (Xie et al., 2016).

Crop/Weed Discrimination and Classification of Weeds/Crops

A critical agricultural task of crop and weed discrimination is also important to address as
it is useful for determining the amount of herbicide required to control the weeds. Most of
the studies were conducted for sugar beet fields; several were performed for carrot, rice,
maize, and cereal farms. The ML algorithms including RF and SVM were prominently
applied to robots for this agricultural operation. For example, the discrimination between
crop and weed in a carrot farm was performed by an autonomous system through the
implementation of the Random Forest classifier (Haug et al., 2014). For a more compre-
hensive assessment of the proposed system, there should be a comparative evaluation of
this method with other state-of-the-art techniques like SVM. In (Cheng & Matson, 2015),
an autonomous robot was used for the discrimination between crop (rice) and weed by
featuring a base system consisting of a Harris Corner Detection algorithm along with ML
algorithms that were compared in terms of precision and recall. A research was conducted
for the discrimination between sugar beet and weeds by a BoniRob robotic platform; the
classification was done by the Random Forest classifier, and the results were improved by
MRF (Markov Random Field). Due to the successful classification outcomes, it is sug-
gested that the RF would be useful for multiple-weed class problems (Lottes et al., 2016).
Another research was conducted for the discrimination between a sugar beet crop and weed
by a UAV; using information from RGB images; classification was done by RF classifier
to achieve high precision and recall (Lottes et al., 2017). For an autonomous detection of
weeds in a sugar beet field, two well-known algorithms—SVM and ANN—were imple-
mented. The ANN achieved a considerably higher classification accuracy than SVM which
proved the usefulness of the neural network-based technique (Bakhshipour & Jafari, 2018).
A research was conducted to show the effectiveness of near-infrared mosaic hyperspec-
tral imaging for crop and weed discrimination in a maize field. In the domain of machine
learning, a random forest classifier was used (Gao et al., 2018); the higher precision and
recall percentages showed that the applied method should be tested in a real-time robotic
system. In (Tellaeche et al., 2011), the weeds were identified in a cereal crop by SVM and
the classification accuracy was measured by Correct Classification Percentage (CCP) and
Yule coefficient; the novelty of this work was shown by the evaluation of spray applied
in the field. A research used the UAV for the detection/mapping of Silybum marianum
weeds on hyperspectral images by comparing the performance of various ML techniques
out of which One Class Support Vector Machine (OC-SVM) achieved the highest accuracy
(Alexandridis et al., 2017).

Harvesting/Recognition of Fruits and Vegetables

The agricultural task of fruit harvesting has been addressed in recent studies that imple-
mented well-known ML algorithms through robotic systems. However, the modified ver-
sions of ML models have also been proposed in a few research articles to perform this
agricultural operation. For example, to identify tomatoes according to their maturity, a
pixel and blob-based segmentation methods were applied along with a machine learn-
ing algorithm named X-means clustering which was derived from the famous K-means
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clustering method (Yamamoto et al., 2014). In (Ji et al., 2012), a harvesting robot was
tested in a real field environment by applying the vector median filter for the removal of
noise, then image segmentation was applied for the extraction of the features of apples.
An SVM-based method was applied to get improvement in recognition accuracy and
some research gaps were also provided in the paper like addressing the unrecognized
apples and reduction in timing of fruit recognition for a practical system. The apple
harvesting system was developed in another research which consisted of a manipulator,
end-effector, and vision system, whereas the SVM with RBF (radial basis function) was
used for the recognition of apples, and the effectiveness of the system was shown by
performing the experiments in the laboratory and real agricultural farms (De-An et al.,
2011). To harvest tomatoes, an ML approach named RVM (Relevance Vector Machine)
was introduced based on Bayesian inference, and a higher accuracy was obtained which
has provided the motivation to use an RVM model for upcoming research (Wu, Zeng,
et al., 2019; Wu, Zhang, et al., 2019). In addition to the applied methods, a comparative
analysis should be provided in these studies with the other ML algorithms to show the
usefulness of the proposed approach.

However, some research articles have considered various ML algorithms and compared
their performance for the recognition/classification of fruits. For example, a conveyor belt-
based system was proposed to evaluate various conditions of biscuits by implementing a
Radial-based SVM classifier with Wilk’s A method which achieved a higher classification
accuracy as compared to the Polynomial SVM and discriminant analysis (DA) (Nashat
et al., 2011). In, (Tao & Zhou, 2017), the authors used the Colour-FPFH 3D descriptor to
extract the features of apples. For the classification purpose, the Genetic Algorithm SVM
classifier (GA-SVM) was used and its performance was compared with other classifiers
like SVM, KNN, and RF. A complete study of Broccoli was presented in Kusumam et al.
(2017), which incorporated the important steps from detection to size estimation and level
of growth by a robotic tractor system and the SVM algorithm was again used along with a
viewpoint feature histogram and temporal filter; a comparison was also done between KNN
and SVM algorithms and the detection accuracy can be further improved by considering
texture features. Another research used a tractor system for the localization and detection of
Broccoli by using a method composed of VFH (ViewPoint Feature Histogram) and SVM
(Support Vector Machine), its performance was increased when temporal filtering (TF)
was included, and the proposed method was compared with ANN (Kusumam et al., 2016).
Another study used the SVM classifier (Liu, Mao, et al., 2019; Liu, Pi, et al., 2019), which
applied the HOG descriptor for the training of SVM and False Colour Removal (FCR)
and Non-Maximum Suppression (NMS) were proposed for the removal of false positives
and merge the overlapped detections. This research has practical importance for the future
robotic system as the images were taken at 500—1000 mm distance which is quite feasible
for an actual robotic platform. Therefore, the proposed method can be used in a real-time
robotic system. Moreover, the proposed method was compared with the other approaches
like AdaBoost (Zhao et al., 2016b), YOLO model (Redmon et al., 2016), Circular Gabor
Filter, and Eigen Fruit (Kurtulmus et al., 2011).

Another approach used SVM for texture classification along with Canny edge detection
with a graph-based connected component algorithm and the Hough line detection method
for the removal/reduction of false positives of green citrus fruit (Sengupta & Lee, 2014).
An SVM-based approach was proposed in (Mao et al., 2020) to recognize cucumbers in a
farm; the method consisted of Iterative-RELIEF which was used for the extraction of col-
our components, background pre-processing being done by Median filter, Otsu algorithm,
and Maximally Stable Extremal Regions (MSER); a fine-tuned DL model was proposed
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for feature extraction and finally PCA was used for the reduction of the dimension which
eventually became useful for SVM classification.

Land Cover Classification

Several researchers used well-known ML algorithms and compared their performance
for the selection of the best-suited model to classify different classes of agricultural land
covers. For example, the classification among agricultural lands was performed and com-
pared by implementing DT, RF, and SVM and it was concluded that object-based SVM
got the highest Overall accuracy (Duro et al., 2012). A research was conducted to classify
16 classes divided into ten agricultural and six non-agricultural landscapes; a comprehen-
sive comparison was provided between six state-of-the-art ML techniques including Multi-
layer Perceptron (MLP), Support Vector Regression (SVR), the Least-Squares (LS)-SVM,
Bagged Regression Trees (BaRTs), Boosted Regression Trees (BoRTs), and the Random
Forest (RF) by using EPR- (Eenmalige perceels registratie—in the Dutch language) based
data and CORINE Land-Cover 2006 dataset. It was found that SVM classifiers (SVR and
LS-SVM) outperformed other classifiers in terms of pixel-level Nash—Sutcliffe (NS) index
and some future directions were provided in the article including the selection of input var-
iables and the implication of fractional abundance constraints (Heremans & Van Orshoven,
2015). For the land cover classification, three state-of-the-art methods were applied includ-
ing Support Vector Machine (SVM), Neural Network (NN), and Classification and Regres-
sion Trees (CART). It was found that the SVM classifier achieved the highest classifica-
tion accuracy (Shao & Lunetta, 2012). Another research performed a comparative study
between RF, kNN, and SVM to classify six different classes (including agricultural land-
scape) by using images taken through Sentinel-2 satellite (Thanh Noi & Kappas, 2018). A
study was conducted for the classification of croplands and this time TerraSAR-X satellite
data was used; the significance of RF was noted by comparing its performance with Clas-
sification and Regression Tree (CART) (Sonobe et al., 2014). In (Pefia et al., 2014), nine
important crops were classified by considering input from images of ASTER satellite and
state-of-the-art ML approaches like DT, LR, SVM, and MLP were utilized for this pur-
pose. Among all of them, SVM and MLP outperformed the others and the authors imple-
mented an SVM +SVM algorithm that achieved slightly higher accuracy than SVM and
MLP models.

On the other hand, a few articles implemented only RF classifier for the classification
of the landscape. For example, the Landsat-5 Thematic Mapper data was used to classify
complex landscapes by RF algorithm and achieved 92% overall accuracy (Rodriguez-
Galiano et al., 2012). Similarly, the research presented in Eisavi et al. (2015) showed the
significance of the RF classifier by taking the images of 13 agricultural landscapes via
Landsat 8 satellite.

The Random Forest (RF) classifier and Maximum Likelihood Classification (MLC)
were implemented on images taken from SPOT 5 satellite for the classification of various
agricultural cropland fields. The outcome of this research favoured RF classifier by a sig-
nificant margin (Ok et al., 2012). A research performed the classification of four croplands
by classical ML algorithms such as SVM and RF through images taken by time series
UAV. The novelty of this work was proved by considering the effect of textural features
through the Grey-Level Co-occurrence Matrix (GLCM) along with the spectral features.
Moreover, DL architectures could also be applied for further improvement in the classifica-
tion task (Kwak & Park, 2019).
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Overall Presentation of ML Algorithms for Agricultural Operations by Robots

Few important research gaps/future directions related to each agricultural operation from
this section are presented in Table 1. Moreover, a summary of the performance of ML
algorithms is shown in Table 2.

Deep Learning Approach for Agricultural Operations by Robotic
Platforms

After the development of deep learning (DL), many state-of-the-art models were imple-
mented for various real-life applications. Among those models, Convolutional Neural Net-
work (CNN) produced significant improvement for many image recognition/classification
tasks. Similarly, agricultural operations have also been performed by the implementation of
CNN architectures through robots.

Previously, some review articles were focused on DL with respect to certain agricultural
operations. For example, a comprehensive review of DL in agriculture was presented in
(Kamilaris & Prenafeta-Boldd, 2018), in which all the major agricultural tasks were sum-
marized. In contrast, this review article presents deep learning approach for major agri-
cultural operations implemented through robotic platforms. Moreover, few research arti-
cles are also included in this review which showed the effectiveness of proposed DL-based
models for upcoming agricultural robotic projects. Furthermore, some important research
gaps are mentioned to address agricultural issues by automation through CNN architec-
tures. The performance plots are also drawn to indicate the significance of DL architectures
over traditional/well-known ML models for the respective agricultural tasks.

The implementation of DL to perform agricultural operations through robots involves
few steps as presented in FigS. 4, and 5 further explains all the three steps of Fig. 4 more
clearly.

Plant Disease/Pest Detection and Classification

In recent times, DL has been considered a better method to perform agricultural tasks.
These tasks are performed by implementing well-known CNN architectures or by propos-
ing some modifications to those well-known models. A complex task of plant disease iden-
tification has been addressed by the DL techniques (Esgario et al., 2020; Li et al., 2020;
Liu, Abd-Elrahman, et al., 2018; Liu, Zhang, et al., 2018; Singh et al., 2019). An over-
all review can be referred to (Saleem et al., 2019) related to plant disease identification
by DL. However, in this section, a summary of the DL approaches applied through auto-
mated systems (like mobile robot, robotic arm, etc.) is provided for plant disease and pest
identification.

An imaging system was proposed to detect the powdery mildew disease by the imple-
mentation of a famous CNN architecture named GooglLeNet and the accuracy was com-
pared with experts’ performance (Bierman et al., 2019). A research was conducted for the
comparative evaluation of the performance of DL and ML algorithms for the detection of
pests on tomato and pepper crops for autonomous robots and concluded with the superior
accuracy of DL architecture, principally Faster RCNN (more accurate but requires more
computation time) and SSD (less accurate than RCNN and requires less training time).
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Fig.4 The basic steps of a

robotic platform for an agricul-

tural task by DL approach; (A)

indicates the input dataset like

images of various plants/fruits,

(B) presents that the robotic

system needs a brain to perform A
certain tasks and here DL models

act as a brain to the robot, and,

finally, (C) represents the output \
of agricultural robots to show

the significance of applied DL B
architecture

—>| processing

Input data

Robot

The DL architecture
behaves like a brain of

A robot

Performance of
c agricultural
operation

Classification
~———————"| accuracy, F1-

score, etc.

Collection of dataset

Images augmentation for
diversity in dataset by

from real field or Publicly
available dataset

> changing rotation,
brightness, sharpness,
contrast of images, etc.

~| image detection such as

Selection of suitable DL/
CNN architecture for

DL architecture for
image classification such

Faster RCNN, SSD, etc.

A/

as ResNet-50,
MobileNet, Xception, etc.

Improvement in Selection of
results by Performance Testing of DL Training of DL hyperparameters
proposing le«—] analysis of DL j#—] model on robotic ja— architegctures l«—] like batch size,

modified/cascaded models platform optimizer, learning

DL architecture rate, etc.

@ ©

Fig.5 A clearer explanation of (A, B, and C) (presented in the previous figure) require to implement an
agricultural task by DL-based robot

Moreover, the characteristics of the automatic feature extraction of DL were presented that
helped to achieve better accuracy/classification as compared to an ML approach which
required complex feature engineering works, and some innovative future directions were
also presented like data augmentation technique and an inclusion of dataset images hav-
ing pests present in the plants to generate diversity in a dataset (Gutierrez et al., 2019).
Another research was conducted to prove the significance of deep learning in terms of its
ability to automatically detect disease on fruits through an automatic sorting machine; the
performance of the proposed system could be improved by deep autoencoder (da Costa
et al., 2020). For the detection of a crop virus, a Fully Convolution Neural Network (FCN)
model was deployed on the hyperspectral images through a tractor-shaped system contain-
ing a push broom (Polder et al., 2019). A 6 degree-of-freedom (DoF) robotic arm was used
to automatically detect the diseased leaves by the implementation of Faster-RCNN with
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ResNet-101 model (Joffe et al., 2018). An Unmanned Aerial Vehicle (UAV)—based sys-
tem was developed for the identification of vineyard disease by a deep learning algorithm
applied to multispectral images, but it is suggested that false detections could be reduced
by applying and testing various DL models (Kerkech et al., 2019). The UAV was also used
for the detection of Fusarium wilt in a radish farm; the well-known VGG model performed
well and achieved comparatively higher accuracy than the K-means clustering ML algo-
rithm. Some recommendations were provided to improve the performance such as the com-
bination of RGB and infrared images; a comprehensive analysis was recommended based
on the severity of the disease (Ha et al., 2017). Another approach used UAV technology
for the detection of disease in a radish farm by the implementation of K-means clustering
along with GoogLeNet architecture (trained by a fine-tuning technique). The performance
of the DL model was significantly better than the SVM model (Dang et al., 2018).

From this section, it can be concluded that various DL architectures were implemented
for the detection of disease in plant leaves. However, the future research should be con-
ducted to detect and classify the disease present in all the defected parts of the plant spe-
cies including leaves, stem, fruit, and flowers, by utilizing the adaptive nature of DL. This
is one of the most important research gaps provided in this review. Moreover, very few
studies have been conducted to perform this task by a real-time automated system, there-
fore there is a need of a robotic platform than can address this agricultural problem. Fur-
thermore, the chemical sprays like fungicide/herbicide/pesticides should be applied intel-
ligently after the successful detection of plant disease, which would be helpful to generate
a cost-effective crop protection system.

Plant/Leaves Recognition and Classification

Just like traditional ML algorithms, deep learning models have also applied for the plant
recognition task. For instance, a research was conducted for the classification of several
plant species by proposing/implementing CNN models (Dyrmann et al., 2016). A very
important study was done in (Lee et al., 2017) to understand the concept and capability
of deep learning models to extract the characteristics/features of several plant species. The
development of deep plant phenomics (DPP) created a major contribution to the commu-
nity of plant phenotyping (Ubbens & Stavness, 2017). Another state-of-the-art approach
was proposed for the classification of plants with their multiple organs through CNN and
RNN models (Lee et al., 2018). The classification of four different plant species was done
by proposing a CNN model which outperformed the approaches like Scale-Invariant Fea-
ture Transform (SIRF) and speeded up robust features (SURF) (Kazerouni et al., 2019). A
study was conducted for the classification of plant seedlings by CNN. This research also
compared its performance with well-known ML techniques like SVM and KNN which
proved the significance of the approach (Nkemelu et al., 2018).

Few of the studies were conducted to perform the task of plant recognition through
robotic systems/platforms. To extract the stalk count and stalk width of the plant, a deep
convolutional neural network and a semantic segmentation-based ground mobile robotic
platform were proposed and validated the performance of the robot with two humans
which showed the effectiveness of the proposed idea. The Faster Recurrent Convolution
Neural Network (Faster RCNN) model was used for generating the bounding box and the
binary output was obtained by Fully Convolution Network (FCN) to classify images as
either stalk or background. As compared to human performance, the robot performed the
stalk count task 30 times faster and stalk width measurement task 270 times faster (Baweja
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et al., 2018). A study was conducted for the plant phenotyping by the deep learning tech-
nique based on a recently developed Point Cloud Network (PCN) model through multi-
robotic systems (Wu, Zeng, et al., 2019; Wu, Zhang, et al., 2019). A research used the
UAV to count corn plants through a DL model named U-Net. The successful result of this
approach provided a future motivation to implement this type of system for other crops
(Kitano et al., 2019). A robotic manipulator was used to recognize seven vegetables by
famous DL feature extraction/detection architectures, but the recognition accuracy should
be further increased by proposing some key modifications to the models applied in this
research (Zheng et al., 2018). To recognize Legacy Blueberries plants, a Computer Numer-
ical Control (CNC)—based system was developed and a CNN was proposed to achieve
a good performance in terms of precision, recall, Fl-score, and accuracy. Although this
proposed scheme can also be tested for pest detection, more improvement in the system’s
performance is recommended in the future by the implementation of generative adversarial
networks (GANSs) for the generation of synthetic images (Quiroz & Alférez, 2020). The
segmentation of Fig plants was done by UAV, and a CNN model was inspired by SegNet
encoder-decoder architecture CNN. The code of the CNN model and dataset were pub-
lished online for the research community. A good thing was that the complex and variable/
original background of images were considered and it was suggested that the orthomosaic
images could improve the system proposed in the paper (Fuentes-Pacheco et al., 2019).
Another research used a UAV for the collection of datasets to detect Tobacco plants by
the CNN models. Although the proposed CNN architecture achieved good accuracy, there
is still room to improve the performance further by the implementation of various avail-
able well-known CNN models, the advanced training techniques like transfer learning/fine-
tuning techniques could be utilized and some other crops should also be considered in the
future (Fan et al., 2018). A research addressed the problem that occurs due to the critical
distribution of heads of sorghum by a CNN model named RetinaNet on the UAV images;
the system can achieve better performance by including diversity in the dataset (Ghosal
et al., 2019). A hybrid approach consisting of SLIC (Simple Linear Iterative Clustering)
and Hue properties was combined with a CNN model for the detection of flowers in a Soy-
bean field and a single axis robot was used for this purpose, and the authors also provided
a future direction—that seed pod counting should also be considered (Yahata et al., 2017).
A research utilized the UAV for the detection, classification, counting of trees, and evalu-
ation of varieties of citrus by the implementation of a famous DL detection model named
YOLO-v3 (Ampatzidis & Partel, 2019).

In summary, the plant recognition task by DL models achieved considerably good per-
formance. Some future works are recommended like diversity in datasets and considering
different crops to prove the effectiveness of CNNs. And stalk count/width should also be
addressed in more detail.

Crop/Weed Discrimination and Classification of Weeds/Crops

Another complex agricultural task of discrimination between crop and weed has been
reported by the DL approach through real-time robotic systems. In (Adhikari et al., 2019),
the authors presented a deep convolutional encoder-decoder neural network and achieved
a higher mloU (mean Intersection of Union) which was significantly higher than the pre-
viously-used models like UNet (Ronneberger et al., 2015), FCN (Long et al., 2015) and
DeepLabV3 (Chen et al., 2017). A mobile platform was designed and implemented for
the detection of weed in a radish farm by implementing an ANN model that showed the

@ Springer



Precision Agriculture (2021) 22:2053-2091 2071

obvious effectiveness of a neural network for the detection of weeds (Sel Cho, Chang,
et al., 2002; Cho, Lee, et al., 2002). A CNN-based semantic segmentation for real-time
crop and weed classification was done in a sugar beet field (Milioto et al., 2018). Another
research was conducted to classify crop and weed by the implementation of a lightweight
& deeper CNN on a mobile robot and the novelty of the work was that these CNN archi-
tectures were applied on the RGB along with Infra-red images (Potena et al., 2016). A
research was conducted to propose a class-wise stem and pixel-wise semantic segmenta-
tion-based system for the stem and crop/weed classification. This research achieved state-
of-the-art results through a mobile robot and UAV, and they outperformed conventional
approaches like Random Forest, baseline-stem (Lottes et al., 2018a). An FCN model
having an encoder-decoder structure was proposed and implemented in sugar beet fields
through a mobile robot named BoniRob containing RGB and NIR cameras for the col-
lection of datasets (Lottes et al., 2018b). An automated ground robotic system was imple-
mented for crop and weed discrimination through a simple ANN model by considering
the natural environment, ignoring plants having incomplete features, and maximizing the
pixels of weeds (Jeon et al., 2011). The classification between crop and weed was also
performed by the UAV platform through the famous CNN model ResNet and two agri-
cultural fields were considered to show the effectiveness of the proposed system; super-
vised labelling was done to improve the AUC on both fields. Moreover, an improvement in
background segmentation by using multispectral images and graphical interface to gener-
ate an infestation map was suggested to reduce costs while applying herbicide in the fields
(Bah et al., 2018). A smart sprayer system was designed for the management of weeds
and the system’s performance was analysed by using two different Graphical Processing
Units (GPUs); real/artificial plants were also considered which clearly proved the useful-
ness of the DL model for the detection of weeds. As a future direction, an algorithm should
be deployed that can vary the amount of chemical spray required to control the weed and
its performance should be compared with the traditional sprayers (Partel et al., 2019). A
wheeled robot named AgBotll was implemented on a cotton field to manage the weeds
and proposed an image locking system for a clustering algorithm. The value of the work
was shown by introducing a new performance metric named DScore and discrimination of
weed was done successfully without previous knowledge of the field (Hall et al., 2017). A
Micro Aerial Vehicle (MAV) was also implemented for the treatment of weed in a sugar
beet field. The images were taken by multispectral imaging technique and a recently-devel-
oped SegNet model was trained and tested for the classification of weed and crop which
could achieve higher accuracy by training the model on a larger dataset (Sa et al., 2017).
In (dos Santos Ferreira et al., 2017), a quadcopter was used for the collection of crop and
weed images, whereas the classification task was done by a very famous CNN architecture
called AlexNet on Caffe software. Classification accuracy was compared with ML-based
state-of-the-art approaches like SVM, Random Forest, and AdaBoost, and the results were
obtained under a controlled environment which leads to a research gap that can be filled by
considering a real environment with a larger dataset. A research was conducted to generate
a publicly available dataset for the classification of eight types of weeds that were trained
and tested through well-known CNN models like Inception-v3 and ResNet-50 (Olsen et al.,
2019). A mobile robot was used to generate the dataset for crop/weed detection (Di Cicco
et al., 2017) and higher accuracy could be obtained by the use of NIR spectroscopy and
hyperspectral imaging. A research was evaluated the robustness of the two models (JULE
and DeepCluster) on the datasets developed in Olsen et al. (2019) and (dos Santos Ferreira
et al., 2017) by unsupervised clustering algorithms (dos Santos Ferreira et al., 2019). A
mobile robot was designed and implemented to classify crop and weed, and implemented
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popular CNN architectures like AlexNet, VGG, ResNet, and Inception-v3, while the train-
ing was performed by the transfer learning technique through ImageNet dataset (Suh et al.,
2018). It is recommended to use Multiple classes to better prove the strength of the applied
method. In (Dyrmann et al., 2017), the DetectNet model proposed in Barker et al. (2016)
was used for the detection of weeds in a wheat field and an all-terrain vehicle was operated
to generate the dataset. The proposed DL model should be tested in a real-time system
to show the effectiveness of DetectNet architecture. Another article was published in the
domain of weed detection by comparing the performance between SVM and ResNet mod-
els through a UAV in sugar beet fields; the obtained results favoured the ResNet model
(Bah et al., 2019).

To conclude, many UAVs and ground robots have been implemented on fields like sugar
beet, corn, etc., for performing complex tasks of weed/crop discrimination by state-of-the-
art DL models. These successful DL models should be tested on other crops by UAVs or
other robotic platforms. Moreover, smart chemical sprayers should be deployed to control
the weeds in agricultural fields.

Harvesting/Recognition of Fruits and Vegetables

Some of the recent studies were conducted for the fruit detection/harvesting task by well-
known DL architectures or by proposing an improved version of a DL model for forthcom-
ing agricultural robotic projects (Sa et al., 2016; Zhang et al., 2019). A few of them focused
on designing a gripper for a fruit harvesting robot, like (Zhang, Harrison, et al., 2020;
Zhang, Huang, et al., 2020) proposed a harvesting system consisting of a low-cost robotic
gripper and manipulator; the detection of the fruits/vegetables was done by the state-of-
the-art Mask-RCNN model. A research proposed an improved version of Faster-RCNN
to detect fruits and the effectiveness of the proposed model was proved by comparing
its performance with other well-known and successful DL image detection architectures
including YOLO, Fast RCNN, and Faster RCNN (Wan & Goudos, 2020). A recent article
proposed an apple recognition system by pulse couple neural network and genetic Elman
neural network and achieved a higher recognition rate (Jia et al., 2020). In (Liu, Mao, et al.,
2019; Liu, Pi, et al., 2019), the authors proposed an improved version of a DenseNet model
(Huang et al., 2017) to recognize and harvest tomatoes in a real environment. That research
used a complex/actual environment that proved the novelty of the research as many of the
previous studies used plain/controlled background and the rate of detection was compar-
atively better when compared to popular CNN models like ResNet, DenseNet, and SSD
architectures. Another recent research was conducted for the classification of date fruits by
well-known AlexNet and VGG-16 models trained through the transfer learning technique
and comparing the performance of these models with previously published work (Altaheri
et al., 2019). For the tomato harvesting robot, a wavelet transform-based image processing
technique was applied along with two hidden layer feed-forward neural network models
(Arefi & Motlagh, 2013). Another research implemented DL architecture by proposing a
CNN model to harvest tomatoes and obtained 91.9% accuracy in a short period of time
(Zhang, Jia, et al., 2018; Zhang, Qiao, et al., 2018).

In this article, those studies which used different robotic platforms for fruit harvest-
ing/recognition purpose are extensively summarized. A novel research was conducted in
which a robotic manipulator consisting of four arms was designed and implemented in a
kiwifruit orchard for harvesting; the novel end-effector for each arm was designed to pick
kiwifruit safely and dynamic scheduling was also done. The detection of kiwifruits was
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done by proposing a fully convolutional network named FCN-8S and real-field testing was
performed which gave 51% successful harvesting results. Moreover, it was also determined
that with the applied approach, the rate of successful harvesting can be increased to 70%
and that a greater degree of freedom could increase cycle time (Williams et al., 2019).
Few recent articles considered an important agricultural task of segmentation of fruit clus-
ters in the real agricultural environment. In this regard, the first attempt was made for the
estimation of canopy volume, counting, and detection of grape clusters. The images were
taken by an RGBD camera placed on a mobile platform. Four pre-trained DL models were
implemented; the VGG-19 model attained the highest accuracy (Milella, Marani, et al.,
2019). Another recent study reported the segmentation of clusters of grapes by pre-trained
DL architectures. Moreover, a novel method to improve the segmentation of cluster pix-
els was proposed. Due to high segmentation accuracy (Marani et al., 2020), this research
could be adopted for the future research. A study implemented a simple backpropagation
neural network on a sorting system consisting of a conveyor belt to classify the date fruit,
and the future work should comprise an impact sensor, and feature a distribution-based
method which should be introduced for better grading of the fruit (Al Ohali, 2011). A six
DoF robotic manipulator was implemented for an ice lettuce farm and achieved a good
success rate for harvesting, but the average cycle was comparatively slower than a human’s
performance due to the weight of the end-effector. Also, the damage rate is required to be
reduced in future studies (Birrell et al., 2019). For the harvesting robot, the Mask-RCNN
with ResNet-50 model was used to detect strawberries and achieved higher mean Inter-
section over Union (mloU). But it is suggested that the real-time implementation can be
improved by proposing a lightweight model and the sample size could also be increased to
improve the performance (Yu et al., 2019). To perform two tasks simultaneously (detection
of fruits and estimation of their ripeness), a CNN-based system was proposed in Halstead
et al. (2018). An important task of fruit detection on a coffee crop was performed by UAV
in which a simple ANN model was used and compared with well-known ML techniques
like K-nearest neighbour and random forest classifier; ANN outperformed the ML tech-
niques in terms of F-score (Carrijo et al., 2017). An Unmanned Ground Vehicle (UGV)
system was deployed in an orchard for the detection of fruits and their yield was estimated
by CNN, MLP, and WS algorithms. Future studies can be conducted to use the transfer
learning technique and various labelling methods should be implemented to advance the
performance (Bargoti & Underwood, 2017a, b). A comprehensive research was conducted
for the detection of fruits in an orchard by UGV through Faster-RCNN with ZFNet and
VGG-16. The secondary contribution of this research was the evaluation of the transfer
learning method, the conclusion being that for the fruits detection task of the dataset used
in that research, this approach was not very useful in terms of average precision, and the
transfer learning strategy was suggested with variation/diversity in the dataset images
(Bargoti & Underwood, 2017a, b). A robotic arm along with its grippers and recognition
system was designed to harvest tomatoes; a YOLO model was used for the detection of
tomatoes. It is to be noted that, following hardware design and obtaining good recogni-
tion and harvesting results, the applied YOLO method should be compared with other DL
architectures like Faster-RCNN, SSD, etc. (Yeshmukhametov et al., 2019). A mobile robot
was designed that consisted of robotic arms for the detection of tomatoes according to their
maturity level. For that purpose, the MobileNet model with SSD architecture was selected
due to its best performance in terms of classification accuracy after a comprehensive com-
parison of state-of-the-art DL architectures like YOLO-v3 and ResNet-152 with Faster-
RCNN (Horng et al., 2019). An UR3 robotic arm was used for harvesting apples and Single
Shot Multibox Detector (SSD) was used, although the implemented DL network achieved
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more than 90% detection accuracy. But other efficient DL models (Faster RCNN or RFCN)
should still be tested to further investigate the effectiveness of SSD for that task (Onishi
et al., 2019). Another research article used a robotic manipulator to recognize seven veg-
etables by well-known DL feature extraction/detection architectures, but the recognition
accuracy should be further increased by proposing some key modifications on the models
applied in this research (Zheng et al., 2018).

From the explanation provided above, it is evident that several robotic manipulators
have been proposed in many studies for the recognition/harvesting of fruits and vegetables,
and various DL architectures have been implemented to perform these tasks in real-time.
Nonetheless, only a few suggestions have been highlighted for the improvement in accu-
racy such as training the DL models by transfer learning technique and some modifications
in famous DL models, etc.

Land Cover Classification

Land cover classification is a vast topic. Many studies have been conducted to classify
land covers of various types to perform an overall analysis of one or more areas by DL-
based techniques, specifically CNN architectures (Huang et al., 2018; Luus et al., 2015;
Zhang, Harrison, et al., 2020; Zhang, Huang, et al., 2020). Some researchers used publicly
available datasets by considering important lands of an area and performed classification
studies by CNN models (Helber et al., 2019). In this review, only those studies were con-
sidered which incorporated agricultural land covers. For example, a single hidden layer
neural network based on the extreme learning machine (ELM) method was proposed for
this task and achieved comparable performance with a backpropagation neural network
(BPNN) (Pal, 2009). An Unmanned Aircraft System (UAS) was implemented to classify
land covers by Fully Convolutional Network (FCN), Support Vector Machines (SVM),
Random Forest (RF), and Deep Convolutional Neural Network (DCNN) and concluded
that DCNN and FCN have substantially higher accuracy than other classifiers, and authors
suggested that multi-view data taken from the UAS can work with the DNN without need-
ing a huge amount of training data (Liu, Abd-Elrahman, et al., 2018; Liu, Zhang, et al.,
2018). To monitor forest cover, the CNN approach was adopted for the images taken from
airborne and LiDAR. The weights can be optimized and other agricultural lands should be
considered to prove the effectiveness of the method (Suzuki et al., 2018). The detection
of citrus along with other crops’ trees was performed by UAV through the implementa-
tion of a simple CNN model consisting of only one hidden layer (Csillik et al., 2018). A
research letter was published to show the significance of the Deep Recurrent Neural Net-
work (DRNN) for the task of land cover classification on the satellite images, found that
one set of images achieved the highest accuracy by RF (LSTM) model while other datasets
obtained best results by SVM (LSTM) model (Ienco et al., 2017). Another research was
conducted to classify satellite images of 11 different crops’ land by RNN predominantly
Long Short Term Memory (LSTM) and Gated Recurrent Unit (GRU). This analysis was
important to get the spatial information of the crops. It was suggested that multi-source
data such as optical and SAR radar could be implemented in the future (Ndikumana et al.,
2018). Another research was conducted to project the dynamics of forest cover by LSTM-
based DL architecture, and relative explanatory variables to be included in future work
and a robust deep learning model for different forest covers could be proposed (Ye et al.,
2019). A study proposed the 3D-VGG model to show its effectiveness for the classification
of crops’ lands from the images taken by two satellites (Ji et al., 2018). In (Kussul et al.,
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2017), a study presented the classification of various land cover types and crop types by the
application of 1-D and 2-D CNN:ss for the first time specifically for the multisource satellite
images, and the performance of CNNs was compared with RF and MLP. A study utilized
hyperspectral images for the classification of various categories of natural vegetation and
evaluated the performance of CNN, RF, and SVM. Moreover, accuracy can be increased by
proposing an improved version of DL architecture (Guidici & Clark, 2017). A research was
conducted by an airborne imaging system considering three kinds of datasets out of which
two datasets were related to agricultural crops and the third dataset was related to various
buildings; the applied CNN model was highly accurate to classify different crops for the
first two locations (Song & Kim, 2017). Some well-known and successful DL models were
trained and tested on wetland classes and found that the Inception ResNet-v2 model out-
performed the other DL models including VGG, ResNet, Xception, DenseNet, Inception-
v3 (Mahdianpari et al., 2018). The classification of 14 agricultural landscapes was per-
formed by proposing six DL architectures and comparing the best CNN model with RF
algorithm to prove its effectiveness in terms of its spatial feature extraction capability (Xie
et al., 2019).

Various state-of-the-art DL models performed the task of agricultural land cover classi-
fication, especially CNNs and RNNs, which opens future research opportunities to manage
various agricultural landscapes in a better way.

Overall Presentation of DL Algorithms for Agricultural Operations by Robots

The performance of DL/ML algorithms described in this section for the various agricul-
tural operations is presented by bar plots in Figs. 6, 7, 8, and 9. In these plots, the DL/
ML models are grouped by their respective research articles (denoted by D1, D2, D3, and
so on) which are cited in Figs. 10, 11, 12, and 13 respectively. These figures are address-
ing the research questions mentioned in “Introduction” regarding the performance metrics/
indicators, robotic platforms, and agricultural products, that have been commonly used dur-
ing the implementation of deep learning architectures. It is also to be noted from the plots
that some of the articles have shown the superiority of DL/ANN over traditional ML algo-
rithms, like (Gutierrez et al., 2019) evaluated that RCNN outperformed the KNN model for
the task of plant disease detection; in (Fan et al., 2018), the CNN achieved slightly better
performance than SVM and RF for plant recognition purposes. To perform the crop/weed
discrimination task, ResNet outperformed SVM and RF models (Bah et al., 2018), and, as
described in (dos Santos Ferreira et al., 2017), a Convnet achieved better precision than
RF. For the recognition of coffee, ANN obtained better results than KNN and RF (Carrijo
et al., 2017). Moreover, several studies were conducted which proved the significance of
DL models as compared to ML algorithms for the classification of agricultural land cover
(Liu, Abd-Elrahman, et al., 2018; Liu, Zhang, et al., 2018), (Kussul et al., 2017), (Guidici
& Clark, 2017) and (Xie et al., 2019). Similarly, from bar plots, it can also be observed that
the deep learning-based image classification algorithms like AlexNet (Krizhevsky et al.,
2012), ResNet (He et al., 2016), VGG (Simonyan & Zisserman, 2014), Xception (Chollet,
2017), MobileNet-v2 (Sandler et al., 2018) and object detection algorithms including Fast
RCNN (Girshick, 2015), Faster RCNN (Ren et al., 2015), SSD (Liu et al., 2016), various
versions of YOLO (You Only Look Once) models like YOLO-v1 (Redmon et al., 2016),
YOLO-v2 (Redmon & Farhadi, 2017) and YOLO-v3 (Redmon & Farhadi, 2018) have been
commonly used for various agricultural tasks. Therefore, upcoming research should incor-
porate any of the agricultural tasks by using successful deep learning models or proposing
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Performance comparison of ML/DL models for plant disease and plant
recognition applications
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Fig.6 Performance plots (in %) of ML/DL models used in robotic systems for plant disease detection (hori-
zontal bars) and plant recognition (diagonal bars) tasks

modifications in the form of cascaded or hybrid versions, essential changes in convolu-
tional layers, the number of filter, stride, etc. (Liu, Abd-Elrahman, et al., 2018; Liu, Zhang,
et al., 2018; Singh et al., 2019; Zhang, Jia, et al., 2018; Zhang, Qiao, et al., 2018). Its per-
formance should then be tested offline before its implementation on real robotic platforms.
Some important research gaps/future directions from this section are provided in Table 3.

Conclusion and Future Directions

In this review, robotic solutions are presented for the major agricultural tasks by machine
and deep learning algorithms. Moreover, the performance of machine learning models is
summarized along with selected agricultural products and robotic platforms for certain
agricultural operations. Furthermore, the performance plots are drawn to indicate the effec-
tiveness of deep learning models for the respective agricultural tasks. From the plots, it can
be concluded that the DL architectures outperformed traditional ML algorithms. Although
significant developments have been observed in recent studies, still some important
research gaps are identified to further advance the agricultural field of research.

A brief summary of prominent results to indicate the significance of the DL architec-
tures as compared to the ML-based techniques applied through the robotic system for five
selected agricultural applications, and few future works is presented as follows:
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Fig. 8 Performance plots (in %) of ML/DL models used in robotic systems for fruit recognition and harvest-
ing tasks

Plant disease detection: RCNN achieved 82.51% detection rate, which was better
than the other methods including SSD, MLP, and KNN with a difference of 13.08%,
17.61%, and 18.75%, respectively.
Plant recognition: CNN attained 0.84 F-measure, which was greater than the Viola-
Jones’ method that achieved 0.80 F-measure.
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Fig.9 Performance plots (in %) of ML/DL models used in robotic systems for the land cover classification

Crop/weed discrimination: A well-known DL model named ResNet (94.84%) outper-
formed the traditional ML algorithms including SVM (60.6%) and RF (70.16%) in
terms of area under the curve.

Fruit recognition/harvesting: An ANN-based model achieved 0.5553 F-measure, which
was slightly better than the ML models like KNN (0.5284) and RF (0.5255).
Agricultural land cover classification: Three studies revealed that the performance of
DL models was better than the ML-based techniques as listed below:

e FCN got 83.9% overall accuracy, which was greater than DCNN (76.9%), SVM
(67.6%), and RF (65.6%) models.

e 2D-CNN attained a higher accuracy (94.6%) as compared to 1D-CNN (93.5%),
ENN (92.7%), and RF (88.7%) models.

e CNN (89.9%) performed better than SVM (89.5%) and RF models (82.2%) in terms
of overall accuracy.

Out of five major agricultural operations, plant disease detection and classification
lack a comprehensive study. Although these agricultural tasks have been addressed by
offline approaches in many research articles, these should be performed by a robotic
manipulator/mobile robot through deep learning meta-architectures.

After the successful application of DL algorithms for the detection/classification of
plant disease by the robot, a combined effort by engineers and agronomists is required
to implement a chemical spraying system that would apply fungicide/herbicide spray to
the defected parts of the plant. It will be useful to reduce the cost of the crop protection
system for agricultural farms.

Most of the approaches were detected/classified disease in plant leaves, but the defects
in other parts of the plant species should also be detected like stems/flowers.

The adaptive nature of DL models should be utilized to show its automatic feature
extraction capability for performing the various agricultural tasks by an efficient DL-
based robot. For this purpose, the diversity in datasets must also be presented.
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Fig. 10 The corresponding reference of research articles (D1-D15) linked to the bar plot (Fig. 6), and per-
formance metrics along with robotic platforms and agricultural products; a and b present plant disease
detection task, whereas, ¢ and d present plant recognition task

e To improve the performance of various complex agricultural tasks, the modified/cas-
caded version of DL models should be proposed which can show their effectiveness by
visualizing their convolutional layers.

e A multi-purpose robot should be designed to show its adaptive behaviour in a sense of
its physical structure to perform various operations in a farm (a tractor is the best exam-
ple of a robotic platform that can be used for various purposes like plowing, planting,
and similar tasks).
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Fig. 11 The corresponding reference of research articles (D16-D28) linked to the bar plot (Fig. 7) for crop/
weed discrimination task, and performance metrics along with robotic platforms and agricultural products

e To visualize the complex agricultural tasks like crop/weed discrimination and fruit
detection, advanced visualization techniques such as saliency map should be applied.

e Some articles have previously presented to understand the factors affecting the perfor-
mance of ML/DL algorithms for agricultural tasks, but a comprehensive study is still
required for further development in agricultural automated systems.

¢ Improvement in land cover classification could be done by proposing an improved ver-
sion of CNN/RNN.

e For better growth of agricultural products, an automated system should be proposed for
the prediction of soil moisture content through robotic platforms.

e A recent topic like Internet of Robotic Things should also be deployed for agricultural
purposes so that a new research area would be able to be explored.
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@ Springer



Precision Agriculture (2021) 22:2053-2091

2082

(810T “'Te 32 yns)
(610T “'Te 32 uas|Q)

(LT0T “'Te 12 eIo119, SOJURS SOp)
(L10T “Te W ES)

(610T T 12 [)ed)

(810T “Te 30 yeq)

(L10T “Te 32 '1RyRX)

(610T “Te 10 [esoyD)

(810T “'I2 30 ueq)

(610T “'Te 19 099YdRJ-sQuaN.])

(020T Z219)1V % z0INQ)
(610T “Te 19 ourlry])
(810 “Te 10 elomeg)

(L10T “Te 10 BH)
(610T “Te 32 Yoy193])
(020T “'Te 10 ©IS0D) ©p)

(6107 “"Te 1° Zo1191IN0)

poyrow pardde ayy Jo ssausnqor oY1 9401d 01 PaIapISUOd 9q OS[e P[NOJ sasse]d A[dnny
Koeanooe y3iy urene o3 [nydjoy 2q pnod JuiSew fenoadsiodAy pue Adoosonoads YIN Jo asn Y],

Jasejep I95Ie] B YIIM JUSWUOIAUD [Bd1 B SULIIPISUOD AqQ
PAIIY 2q ued ey de3 yoIeasal B 0) SPI] YoIym JUSWUOIIAUD PI[[ONUOD B IOPUN PAUTRIGO 1M SI[NSAI Y],

douewiojrad jo juswasordur ay) ur djoy p[nods jasejep 1a31e]

s1oAelds [euonipen oy yim paredwod aq prnoys soururioprad st cpakodap oq pnoys 1aAeids jrews
Paam 3Y) [01U0d 0) parmbar [eoTwaYd Jo Junowre ay) A1ea ued jey) parjdde oq pinod wiypLIos[e uy

Sp[y Ay} ur ap1o1qIay jo uonedrdde as10a1d ) £q paaes aq p[nod 1509 Ay,
dew ‘uonje)sojur ue 9JeIouas 0) PA)SIIINS sem doejIAul [eorydels vy
sagew fenoadsnnuw Suisn £q uop 29 pInoyYs uoneIudW3as punoIgyoeq ur juswasorduwr oy,

Iom amng jueriodwr 9uo aq pinod Jununod podpasg

QouewIofIad 9y} UT JUSWAAOIAWT 2I0W PIASIYOR JARY P[NOJ JASBILP Y} Ul ANISISAIP ],
QImIng 9y} UI PAIdPISUOD 3q os[e p[noys sdoid 1Yo swog

1oded oy ur pasodoxd wysAs ay) aaoxdwr pinod safewr OIESOWOYIIO0 Y,

sa3ew onayIuAs Sunerouas 10j pakojdop 2q OS[e UBD SYIOMIQU [BLIBSIOAPE JATBIQUAS Y],
uono)ap 15ad 10§ PaIsa) 9q os[e ued awayds pasodoxd ayJ,

sdoxo [ermnorSe 19Y10 Uo PaIsa) aq osfe pnoys poyrewr pasodoid ayJ,

pardwane 9q P[nod JUNod Y[els pue YIpIm J[els 10J Apnis 91eINOOE IO

9SBASIP Y} JO AILIGAIS JY) UO Paseq SUOp 3q P[NOYS SISA[eUL Y,
Souewojrad [[e13A0 da0Idwl pinod seSewr pareljur pue goy JO UONBUIQUOD Y

sjopow 1 Sutk[dde £q paonpar oq pynod uondIP Is[ef oY,
Qouewtoyrad oy oaordwr 1oyying 0) pajyuswa[dwir 9q ued roposusoine dosp v

JasBIRp Q) UT AJISISAIP UTR)qo 0) S3sad ‘S10asur papn[our 9ABY PInod 1asejep Ay,
Jase)ep oY) ur AJSIdAIp 9jerouad o) parjdde aq pinoys anbruyoe) uoneyuswsdne ereq

UOT)BUIWLIOSIP paam/doID)

JUNOJ Y[B)S/UoNTUS0921 JUB[d

uonod)IP SBISIP JUB[

DEN

suonoarp arnnj/sdes yoreasoy

suoneorjdde [e)monsy

suonerado e notSe 9Anoadsal J1oy) YIIM SaINOTYoIe T pAruswardwr sepone oy Jo swos woiy sded yoressay ¢ ajqel

pringer

A s



2083

Precision Agriculture (2021) 22:2053-2091

(L10T e[ % 1IpIMD)

(6T0T T 19 9X)
(810T “Te 19 RUBWNYIPN)

(810T e 19 Pnzng)

(810T “'[e 10 ‘Sueyz ‘nry
*810C "¢ 39 ‘UrwWyRIF-Pqy “0IT)

(q *eL10T ‘poomiapup) 39 nosreg)
(q ‘eL10T poomIdpun) pue nosreg)

(610T “Te 10 NX)
(610T “T& 10 [[o111g)
(110T ‘14O 1v)

(610T “'Te 30 SWer[[Ip)

QIN303)1YoIe (T JO uorsidA pasoxdwr ue Sursodoid £q pasearour oq ued AoeIndoe ay ],

pasodoxd
9q PINOD SIDA0D JSI0J JUAIYIP 1o} [opowr Surured] doop 1SnqoI e pue so[qerieA K1ojeue[dxo dATIE[oY

Qg o) ur payuswd[dur 9q ued Jepel JYyS pue [eondo se yons ejep 9Ios-nnu oy,

poyjaw ay) JO ssAU
-9ATIORJJ2 9} 2A01d 0) POIOPISUOD 9q PINOYS SPUE] [eIN)[NILISE JoYI0 puk ‘pazruundo aq ued sjyStom oy,

'Jep Sururen jo junowe a3ny
& Suraey Jnoy)im y1om NN( UI J[NSAI UBD ) Y) WOIJ UIYE) BIEP MIIA-D[NW Y} Jey) Paisa33ns sem I|

payuswd[dwir oq pnoys spoyiow Jurfjaqe[ SnoLeA pue anbruyod) Jurures| J9fsuer) Ay,
saewr joseep Y} ur AJISISAIP/UOTIBLIBA )IM P)SAZ3ns sem AFojens Surures| Jojsuen) y

douewiojrad oy dao1dwir 03 paseaIdul aq os[e
PpInood azis sojdures oy ‘[opowt 1yS1omiy3iy e Suisodoid £q poaoidur oq ued uonejuswdwr Swn-1eAI AY ],

paonpar aq prnoys ajer afewep Ay,
padonponur aq p[noys poyjal paseq-uonnqrysip anjedj e pue ‘pakordop 2q prnoys Iosuas joedwr uy

M 9[0Ad ISLAIIUT P[NOD YOTYM WOPIJ
-J0-99139p 1018213 B SULISPISUOD PUE %)/, 03 AorINIOE asearour 0} Toded oy UT UGAIS sem YI0m orming

UOT)BOYISSB[O JOAOD PUB

Sunsoaley pue
uonIuS001 SA[qRISFIA/SINT]

EN

suonoaIp arjnj/sded yoreasoy

suoneorjdde [e)mondy

(ponunuod) € sjqer

pringer

As



2084 Precision Agriculture (2021) 22:2053-2091

Funding This research was funded by the Ministry of Business, Innovation and Employment (MBIE), New
Zealand, Science for Technological Innovation (SfTI) National Science Challenge.

Declarations

Conflict of interest The authors declare that they have no conflict of interests.

References

Adhikari, S. P, Yang, H., & Kim, H. (2019). Learning semantic graphics using convolutional encoder-decoder
network for autonomous weeding in paddy field. Frontiers in Plant Science, 10, 1404

Al Ohali, Y. (2011). Computer vision based date fruit grading system: Design and implementation. Journal of
King Saud University-Computer and Information Sciences, 23(1), 29-36

Alexandridis, T. K., Tamouridou, A. A., Pantazi, X. E., Lagopodi, A. L., Kashefi, J., Ovakoglou, G., et al.
(2017). Novelty detection classifiers in weed mapping: Silybum marianum detection on UAV multispec-
tral images. Sensors, 17(9), 2007

Altaheri, H., Alsulaiman, M., & Muhammad, G. (2019). Date fruit classification for robotic harvesting in a
natural environment using deep learning. IEEE Access, 7, 117115-117133

Ampatzidis, Y., De Bellis, L., & Luvisi, A. (2017). iPathology: robotic applications and management of plants
and plant diseases. Sustainability, 9(6), 1010

Ampatzidis, Y., & Partel, V. (2019). UAV-based high throughput phenotyping in citrus utilizing multispectral
imaging and artificial intelligence. Remote Sensing, 11(4), 410

Arefi, A., & Motlagh, A. M. (2013). Development of an expert system based on wavelet transform and artifi-
cial neural networks for the ripe tomato harvesting robot. Australian Journal of Crop Science, 7(5), 699

Azouz, A. B., Esmonde, H., Corcoran, B., & O’Callaghan, E. (2015). Development of a teat sensing system for
robotic milking by combining thermal imaging and stereovision technique. Computers and Electronics
in Agriculture, 110, 162-170

Bac, C. W., van Henten, E. J., Hemming, J., & Edan, Y. (2014). Harvesting robots for high-value crops: State-
of-the-art review and challenges ahead. Journal of Field Robotics, 31(6), 888-911

Bah, M. D., Hafiane, A., & Canals, R. (2018). Deep learning with unsupervised data labeling for weed detec-
tion in line crops in UAV images. Remote Sensing, 10(11), 1690

Bah, M. D., Hafiane, A., Canals, R., & Emile, B. (2019). Deep features and One-class classification with unsu-
pervised data for weed detection in UAV images. In Ninth International Conference on Image Process-
ing Theory, Tools and Applications (IPTA), 2019 (pp. 1-5). Istanbul, Turkey: IEEE.

Bakhshipour, A., & Jafari, A. (2018). Evaluation of support vector machine and artificial neural networks in
weed detection using shape features. Computers and Electronics in Agriculture, 145, 153-160

Bargoti, S., & Underwood, J. (2017a). Deep fruit detection in orchards. In IEEE International Conference on
Robotics and Automation (ICRA), 2017 (pp. 3626-3633). Marina Bay Sands, Singapore: IEEE.

Bargoti, S., & Underwood, J. P. (2017b). Image segmentation for fruit detection and yield estimation in apple
orchards. Journal of Field Robotics, 34(6), 1039-1060

Barker, J., Sarathy, S., & July, A. (2016). DetectNet: Deep Neural Network for Object Detection in DIGITS.
Nvidia,(retrieved: 2016-11-30). Retrieved from https://devblogs.nvidia.com/parallelforall/detectnet-
deep-neural-network-object-detection-digits.

Baweja, H. S., Parhar, T., Mirbod, O., & Nuske, S. Stalknet: A deep learning pipeline for high-throughput
measurement of plant stalk count and stalk width. In Field and Service Robotics, 2018 (pp. 271-284):
Springer.

Behmann, J., Mahlein, A.-K., Rumpf, T., Romer, C., & Pliimer, L. (2015). A review of advanced machine
learning methods for the detection of biotic stress in precision crop protection. Precision Agriculture,
16(3), 239-260

Bierman, A., LaPlumm, T., Cadle-Davidson, L., Gadoury, D., Martinez, D., Sapkota, S., et al. (2019). A high-
throughput phenotyping system using machine vision to quantify severity of grapevine powdery mildew.
Plant Phenomics, 2019, 9209727

Birrell, S., Hughes, J., Cai, J. Y., & Iida, F. (2019). A field-tested robotic harvesting system for iceberg lettuce.
Journal of Field Robotics, 37,225-245

Brahimi, M., Arsenovic, M., Laraba, S., Sladojevic, S., Boukhalfa, K., & Moussaoui, A. (2018). Deep learn-
ing for plant diseases: detection and saliency map visualisation. In Human and Machine Learning (pp.
93-117): Springer.

@ Springer


https://devblogs.nvidia.com/parallelforall/detectnet-deep-neural-network-object-detection-digits
https://devblogs.nvidia.com/parallelforall/detectnet-deep-neural-network-object-detection-digits

Precision Agriculture (2021) 22:2053-2091 2085

Carrijo, G. L., Oliveira, D. E., de Assis, G. A., Carneiro, M. G., Guizilini, V. C., & Souza, J. R. (2017). Auto-
matic detection of fruits in coffee crops from aerial images. In Latin American Robotics Symposium
(LARS) and 2017 Brazilian Symposium on Robotics (SBR), 2017 (pp. 1-6). Curitiba, PR, Brazil: IEEE.

Chen, L.-C., Papandreou, G., Schroff, F., & Adam, H. (2017). Rethinking atrous convolution for semantic
image segmentation. arXiv preprint arXiv:1706.05587.

Chen, Y., Lee, W. S., Gan, H., Peres, N., Fraisse, C., Zhang, Y., et al. (2019). Strawberry Yield Prediction
Based on a Deep Neural Network Using High-Resolution Aerial Orthoimages. Remote Sensing, 11(13),
1584

Cheng, B., & Matson, E. T. (2015). A feature-based machine learning agent for automatic rice and weed dis-
crimination. In International Conference on Artificial Intelligence and Soft Computing, 2015 (pp. 517—
527). Zakopane, Poland: Springer.

Cho, S., Chang, S., Kim, Y., & An, K. (2002). Development of a three-degrees-of-freedom robot for harvesting
lettuce using machine vision and fuzzy logic control. Biosystems Engineering, 82(2), 143—-149

Cho, S., Lee, D., & Jeong, J. (2002). AE—automation and emerging technologies: Weed—plant discrimination
by machine vision and artificial neural network. Biosystems Engineering, 83(3), 275-280

Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2017 (pp. 1251-1258). Honolulu, HI,
USA.

Csillik, O., Cherbini, J., Johnson, R., Lyons, A., & Kelly, M. (2018). Identification of citrus trees from
unmanned aerial vehicle imagery using convolutional neural networks. Drones, 2(4), 39

da Costa, A. Z., Figueroa, H. E., & Fracarolli, J. A. (2020). Computer vision based detection of external defects
on tomatoes using deep learning. Biosystems Engineering, 190, 131-144

Dang, L. M., Hassan, S. 1., Suhyeon, 1., Kumar Sangaiah, A., Mehmood, 1., Rho, S., et al. (2018). UAV based
wilt detection system via convolutional neural networks. Sustainable Computing: Informatics and Sys-
tems. https://doi.org/10.1016/j.suscom.2018.05.010

De-An, Z., Jidong, L., Wei, J., Ying, Z., & Yu, C. (2011). Design and control of an apple harvesting robot.
Biosystems Engineering, 110(2), 112-122

Di Cicco, M., Potena, C., Grisetti, G., & Pretto, A. (2017). Automatic model based dataset generation for fast
and accurate crop and weeds detection. In IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2017 (pp. 5188-5195). Vancouver, BC, Canada: IEEE.

dos Santos Ferreira, A., Freitas, D. M., da Silva, G. G., Pistori, H., & Folhes, M. T. (2017). Weed detection in
soybean crops using ConvNets. Computers and Electronics in Agriculture, 143, 314-324

dos Santos Ferreira, A., Freitas, D. M., da Silva, G. G., Pistori, H., & Folhes, M. T. (2019). Unsupervised deep
learning and semi-automatic data labeling in weed discrimination. Computers and Electronics in Agri-
culture, 165, 104963

Duro, D. C., Franklin, S. E., & Dubé, M. G. (2012). A comparison of pixel-based and object-based image
analysis with selected machine learning algorithms for the classification of agricultural landscapes using
SPOT-5 HRG imagery. Remote Sensing of Environment, 118, 259-272

Dyrmann, M., Christiansen, P., & Midtiby, H. S. (2018). Estimation of plant species by classifying plants and
leaves in combination. Journal of Field Robotics, 35(2), 202-212

Dyrmann, M., Jgrgensen, R. N., & Midtiby, H. S. (2017). RoboWeedSupport-Detection of weed locations in
leaf occluded cereal crops using a fully convolutional neural network. Advances in Animal Biosciences,
8(2), 842-847

Dyrmann, M., Karstoft, H., & Midtiby, H. S. (2016). Plant species classification using deep convolutional neu-
ral network. Biosystems Engineering, 151, 72-80

Ebrahimi, M., Khoshtaghaza, M., Minaei, S., & Jamshidi, B. (2017). Vision-based pest detection based on
SVM classification method. Computers and Electronics in Agriculture, 137, 52-58

Eisavi, V., Homayouni, S., Yazdi, A. M., & Alimohammadi, A. (2015). Land cover mapping based on ran-
dom forest classification of multitemporal spectral and thermal images. Environmental Monitoring and
Assessment, 187(5), 291

Esgario, J. G., Krohling, R. A., & Ventura, J. A. (2020). Deep learning for classification and severity estima-
tion of coffee leaf biotic stress. Computers and Electronics in Agriculture, 169, 105162

Fan, Z., Lu, J., Gong, M., Xie, H., & Goodman, E. D. (2018). Automatic tobacco plant detection in UAV
images via deep neural networks. IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing, 11(3), 876-887

Feng, Q., Wang, X., Wang, G., & Li, Z. (2015). Design and test of tomatoes harvesting robot. In /EEE Interna-
tional Conference on Information and Automation, 2015 (pp. 949-952). Lijiang, Yunnan, China: IEEE.

Fuentes-Pacheco, J., Torres-Olivares, J., Roman-Rangel, E., Cervantes, S., Juarez-Lopez, P., Hermosillo-Val-
adez, J., et al. (2019). Fig plant segmentation from aerial images using a deep convolutional encoder-
decoder network. Remote Sensing, 11(10), 1157

@ Springer


http://arxiv.org/abs/1706.05587
https://doi.org/10.1016/j.suscom.2018.05.010

2086 Precision Agriculture (2021) 22:2053-2091

Gao, J., Nuyttens, D., Lootens, P., He, Y., & Pieters, J. G. (2018). Recognising weeds in a maize crop using
a random forest machine-learning algorithm and near-infrared snapshot mosaic hyperspectral imagery.
Biosystems Engineering, 170, 39-50

Ghosal, S., Zheng, B., Chapman, S. C., Potgieter, A. B., Jordan, D. R., Wang, X., et al. (2019). A weakly
supervised deep learning framework for sorghum head detection and counting. Plant Phenomics, 2019,
1525874

Girshick, R. (2015). Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision,
2015 (pp. 1440-1448). Santiago, Chile: IEEE.

Gongal, A., Amatya, S., Karkee, M., Zhang, Q., & Lewis, K. (2015). Sensors and systems for fruit detec-
tion and localization: A review. Computers and Electronics in Agriculture, 116, 8—19

Guidici, D., & Clark, M. L. (2017). One-Dimensional convolutional neural network land-cover classifi-
cation of multi-seasonal hyperspectral imagery in the San Francisco Bay Area, California. Remote
Sensing, 9(6), 629

Gutierrez, A., Ansuategi, A., Susperregi, L., Tubio, C., Ranki¢, I., & Lenza, L. (2019). A benchmarking
of learning strategies for pest detection and identification on tomato plants for autonomous scouting
robots using internal databases. Journal of Sensors. https://doi.org/10.1155/2019/5219471

Gutiérrez, S., Fernandez-Novales, J., Diago, M. P., & Tardaguila, J. (2018). On-the-go hyperspectral imag-
ing under field conditions and machine learning for the classification of grapevine varieties. Fron-
tiers in Plant Science, 9, 1102

Ha, J. G., Moon, H., Kwak, J. T., Hassan, S. I., Dang, M., Lee, O. N., et al. (2017). Deep convolutional
neural network for classifying Fusarium wilt of radish from unmanned aerial vehicles. Journal of
Applied Remote Sensing, 11(4), 042621

Hall, D., Dayoub, F., Kulk, J., & McCool, C. (2017). Towards unsupervised weed scouting for agricultural
robotics. In IEEE International Conference on Robotics and Automation (ICRA), 2017 (pp. 5223—
5230). Marina Bay Sands, Singapore: IEEE.

Halstead, M., McCool, C., Denman, S., Perez, T., & Fookes, C. (2018). Fruit quantity and ripeness estima-
tion using a robotic vision system. IEEE Robotics and Automation Letters, 3(4), 2995-3002

Haug, S., Michaels, A., Biber, P., & Ostermann, J. (2014). Plant classification system for crop/weed dis-
crimination without segmentation. In IEEE winter conference on applications of computer vision,
2014 (pp. 1142-1149). Steamboat Springs, CO, USA: IEEE.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recognition, 2016 (pp. 770-778). Las Vegas,
NV, USA: IEEE.

Helber, P., Bischke, B., Dengel, A., & Borth, D. (2019). Eurosat: A novel dataset and deep learning bench-
mark for land use and land cover classification. IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, 12(7), 2217-2226

Heremans, S., & Van Orshoven, J. (2015). Machine learning methods for sub-pixel land-cover classifica-
tion in the spatially heterogeneous region of Flanders (Belgium): A multi-criteria comparison. Inter-
national Journal of Remote Sensing, 36(11), 2934-2962

Horng, G.-J., Liu, M.-X., & Chen, C.-C. (2019). The smart image recognition mechanism for crop harvest-
ing system in intelligent agriculture. IEEE Sensors Journal, 20, 2766-2781

Huang, B., Zhao, B., & Song, Y. (2018). Urban land-use mapping using a deep convolutional neural net-
work with high spatial resolution multispectral remote sensing imagery. Remote Sensing of Environ-
ment, 214, 73-86

Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional
networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, 2017
(pp. 4700-4708). Honolulu, HI, USA: IEEE.

Huang, M., Tang, J., Yang, B., & Zhu, Q. (2016). Classification of maize seeds of different years based on
hyperspectral imaging and model updating. Computers and Electronics in Agriculture, 122, 139-145

Huang, Y., Lan, Y., Thomson, S. J., Fang, A., Hoffmann, W. C., & Lacey, R. E. (2010). Development of
soft computing and applications in agricultural and biological engineering. Computers and Electron-
ics in Agriculture, 71(2), 107-127

Ienco, D., Gaetano, R., Dupaquier, C., & Maurel, P. (2017). Land cover classification via multitempo-
ral spatial data by deep recurrent neural networks. IEEE Geoscience and Remote Sensing Letters,
14(10), 1685-1689

Ishimwe, R., Abutaleb, K., & Ahmed, F. (2014). Applications of thermal imaging in agriculture: A review.
Advances in Remote Sensing, 3(03), 128

Jeon, H. Y., Tian, L. F., & Zhu, H. (2011). Robust crop and weed segmentation under uncontrolled outdoor
illumination. Sensors, 11(6), 6270-6283

@ Springer


https://doi.org/10.1155/2019/5219471

Precision Agriculture (2021) 22:2053-2091 2087

Jha, K., Doshi, A., Patel, P., & Shah, M. (2019). A comprehensive review on automation in agriculture
using artificial intelligence. Artificial Intelligence in Agriculture, 2, 1-12

Ji, S., Zhang, C., Xu, A., Shi, Y., & Duan, Y. (2018). 3D convolutional neural networks for crop classifica-
tion with multi-temporal remote sensing images. Remote Sensing, 10(1), 75

Ji, W., Zhao, D., Cheng, F., Xu, B., Zhang, Y., & Wang, J. (2012). Automatic recognition vision system
guided for apple harvesting robot. Computers & Electrical Engineering, 38(5), 1186-1195

Jia, W,, Mou, S., Wang, J., Liu, X., Zheng, Y., Lian, J., et al. (2020). Fruit recognition based on pulse
coupled neural network and genetic Elman algorithm application in apple harvesting robot. Interna-
tional Journal of Advanced Robotic Systems, 17(1), 1729881419897473

Jodas, D. S., Marranghello, N., Pereira, A. S., & Guido, R. C. (2013). Comparing support vector machines
and artificial neural networks in the recognition of steering angle for driving of mobile robots
through paths in plantations. Procedia Computer Science, 18, 240-249

Joffe, B., Ahlin, K., Hu, A.-P., & McMurray, G. (2018). Vision-guided robotic leaf picking. EasyChair
Preprint, 250, 1-6

Kamilaris, A., & Prenafeta-Boldd, F. X. (2018). Deep learning in agriculture: A survey. Computers and
Electronics in Agriculture, 147, 70-90

Kazerouni, M. F., Saeed, N. T. M., & Kuhnert, K.-D. (2019). Fully-automatic natural plant recognition sys-
tem using deep neural network for dynamic outdoor environments. SN Applied Sciences, 1(7), 756

Kerkech, M., Hafiane, A., & Canals, R. (2019). Vine disease detection in UAV multispectral images with
deep learning segmentation approach. arXiv preprint arXiv:1912.05281.

Kitano, B. T., Mendes, C. C., Geus, A. R., Oliveira, H. C., & Souza, J. R. (2019). Corn Plant Counting
Using Deep Learning and UAV Images. IEEE Geoscience and Remote Sensing Letters.

Krizhevsky, A., Sutskever, 1., & Hinton, G. E. Imagenet classification with deep convolutional neural net-
works. In Advances in neural information processing systems, 2012 (pp. 1097-1105).

Kurtulmus, F., Lee, W. S., & Vardar, A. (2011). Green citrus detection using ‘eigenfruit’, color and circular
Gabor texture features under natural outdoor conditions. Computers and Electronics in Agriculture,
78(2), 140-149

Kussul, N., Lavreniuk, M., Skakun, S., & Shelestov, A. (2017). Deep learning classification of land cover
and crop types using remote sensing data. [EEE Geoscience and Remote Sensing Letters, 14(5),
778-782

Kusumam, K., Krajnik, T., Pearson, S., Cielniak, G., & Duckett, T. (2016). Can you pick a broccoli?
3D-vision based detection and localisation of broccoli heads in the field. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2016 (pp. 646-651). Daejeon Convention
Center (DCC), Daejeon, South Korea: IEEE.

Kusumam, K., Krajnik, T., Pearson, S., Duckett, T., & Cielniak, G. (2017). 3D-vision based detection,
localization, and sizing of broccoli heads in the field. Journal of Field Robotics, 34(8), 1505-1518

Kwak, G.-H., & Park, N.-W. (2019). Impact of texture information on crop classification with machine
learning and UAV images. Applied Sciences, 9(4), 643

Lee, S. H., Chan, C. S., Mayo, S. J., & Remagnino, P. (2017). How deep learning extracts and learns leaf
features for plant classification. Pattern Recognition, 71, 1-13

Lee, S. H., Chan, C. S., & Remagnino, P. (2018). Multi-organ plant classification based on convolutional
and recurrent neural networks. IEEE Transactions on Image Processing, 27(9), 4287-4301

Li, P, Lee, S.-H., & Hsu, H.-Y. (2011). Review on fruit harvesting method for potential use of automatic
fruit harvesting systems. Procedia Engineering, 23, 351-366

Li, Y., Wang, H., Dang, L. M., Sadeghi-Niaraki, A., & Moon, H. (2020). Crop pest recognition in natural
scenes using convolutional neural networks. Computers and Electronics in Agriculture, 169, 105174

Liu, B., Zhang, Y., He, D., & Li, Y. (2018). Identification of apple leaf diseases based on deep convolu-
tional neural networks. Symmetry, 10(1), 11

Liu, G., Mao, S., & Kim, J. H. (2019). A mature-tomato detection algorithm using machine learning and
color analysis. Sensors, 19(9), 2023

Liu, J., Pi, J., & Xia, L. (2019). A novel and high precision tomato maturity recognition algorithm based on
multi-level deep residual network. Multimedia Tools and Applications, 79, 9403-9417

Liu, T., Abd-Elrahman, A., Morton, J., & Wilhelm, V. L. (2018). Comparing fully convolutional networks,
random forest, support vector machine, and patch-based deep convolutional neural networks for
object-based wetland mapping using images from small unmanned aircraft system. GIScience &
Remote Sensing, 55(2), 243-264

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y,, et al. Ssd: Single shot multibox detector. In
European conference on computer vision, 2016 (pp. 21-37). Amsterdam, Netherlands: Springer.

@ Springer


http://arxiv.org/abs/1912.05281

2088 Precision Agriculture (2021) 22:2053-2091

Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In
Proceedings of the IEEE conference on computer vision and pattern recognition, 2015 (pp. 3431-
3440). Boston, MA, USA: IEEE.

Lottes, P., Behley, J., Chebrolu, N., Milioto, A., & Stachniss, C. (2018). Joint stem detection and crop-weed
classification for plant-specific treatment in precision farming. In JEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2018a (pp. 8233—8238). Madrid, Spain: IEEE.

Lottes, P., Behley, J., Milioto, A., & Stachniss, C. (2018). Fully convolutional networks with sequential infor-
mation for robust crop and weed detection in precision farming. IEEE Robotics and Automation Letters,
3(4), 2870-2877

Lottes, P., Hoeferlin, M., Sander, S., Miiter, M., Schulze, P., & Stachniss, L. C. (2016). An effective classifica-
tion system for separating sugar beets and weeds for precision farming applications. In /EEE Interna-
tional Conference on Robotics and Automation (ICRA), 2016 (pp. 5157-5163). Stockholm Waterfront
Congress Centre, Stockholm, Sweden: IEEE.

Lottes, P., Khanna, R., Pfeifer, J., Siegwart, R., & Stachniss, C. (2017). UAV-based crop and weed classifica-
tion for smart farming. In /EEE International Conference on Robotics and Automation (ICRA), 2017
(pp- 3024-3031). Marina Bay Sands, Singapore: IEEE.

Luus, F. P, Salmon, B. P, Van den Bergh, F., & Maharaj, B. T. J. (2015). Multiview deep learning for land-use
classification. I[EEE Geoscience and Remote Sensing Letters, 12(12), 2448-2452

Mahdianpari, M., Salehi, B., Rezaee, M., Mohammadimanesh, F., & Zhang, Y. (2018). Very deep convolu-
tional neural networks for complex land cover mapping using multispectral remote sensing imagery.
Remote Sensing, 10(7), 1119

Mahlein, A., Kuska, M., Thomas, S., Bohnenkamp, D., Alisaac, E., Behmann, J., et al. (2017). Plant disease
detection by hyperspectral imaging: From the lab to the field. Advances in Animal Biosciences, 8(2),
238-243

Mao, S., Li, Y., Ma, Y., Zhang, B., Zhou, J., & Wang, K. (2020). Automatic cucumber recognition algorithm
for harvesting robots in the natural environment using deep learning and multi-feature fusion. Comput-
ers and Electronics in Agriculture, 170, 105254

Marani, R., Milella, A., Petitti, A., & Reina, G. (2020). Deep neural networks for grape bunch segmentation in
natural images from a consumer-grade camera. Precision Agriculture, 22, 387413

McCool, C., Perez, T., & Upcroft, B. (2017). Mixtures of lightweight deep convolutional neural networks:
Applied to agricultural robotics. IEEE Robotics and Automation Letters, 2(3), 1344-1351

Milella, A., Marani, R., Petitti, A., & Reina, G. (2019). In-field high throughput grapevine phenotyping with a
consumer-grade depth camera. Computers and Electronics in Agriculture, 156, 293-306

Milella, A., Reina, G., & Nielsen, M. (2019). A multi-sensor robotic platform for ground mapping and estima-
tion beyond the visible spectrum. Precision Agriculture, 20(2), 423-444

Milella, A., Reina, G., Underwood, J., & Douillard, B. Combining radar and vision for self-supervised ground
segmentation in outdoor environments. In /EEE/RSJ International Conference on Intelligent Robots and
Systems, 2011 (pp. 255-260). San Francisco, CA, USA: IEEE.

Milioto, A., Lottes, P., & Stachniss, C. (2018). Real-time semantic segmentation of crop and weed for preci-
sion agriculture robots leveraging background knowledge in CNNs. In [EEE International Conference
on Robotics and Automation (ICRA), 2018 (pp. 2229-2235). Brisbane, Australia: IEEE.

Narvaez, F. Y., Reina, G., Torres-Torriti, M., Kantor, G., & Cheein, F. A. (2017). A survey of ranging and
imaging techniques for precision agriculture phenotyping. IEEE/ASME Transactions on Mechatronics,
22(6), 2428-2439

Nashat, S., Abdullah, A., Aramvith, S., & Abdullah, M. (2011). Support vector machine approach to real-
time inspection of biscuits on moving conveyor belt. Computers and Electronics in Agriculture, 75(1),
147-158

Ndikumana, E., Ho Tong Minh, D., Baghdadi, N., Courault, D., & Hossard, L. (2018). Deep recurrent neu-
ral network for agricultural classification using multitemporal SAR Sentinel-1 for Camargue. France.
Remote Sensing, 10(8), 1217

Nkemelu, D. K., Omeiza, D., & Lubalo, N. (2018). Deep convolutional neural network for plant seedlings clas-
sification. arXiv preprint arXiv:1811.08404.

Ok, A. O., Akar, O., & Gungor, O. (2012). Evaluation of random forest method for agricultural crop classifica-
tion. European Journal of Remote Sensing, 45(1), 421-432

Olsen, A., Konovalov, D. A., Philippa, B., Ridd, P., Wood, J. C., Johns, J., et al. (2019). DeepWeeds: A multi-
class weed species image dataset for deep learning. Scientific Reports, 9(1), 1-12

Onishi, Y., Yoshida, T., Kurita, H., Fukao, T., Arihara, H., & Iwai, A. (2019). An automated fruit harvesting
robot by using deep learning. ROBOMECH Journal, 6(1), 13

Padarian, J., Minasny, B., & McBratney, A. (2019). Using deep learning to predict soil properties from
regional spectral data. Geoderma Regional, 16, 00198

@ Springer


http://arxiv.org/abs/1811.08404

Precision Agriculture (2021) 22:2053-2091 2089

Pal, M. (2009). Extreme-learning-machine-based land cover classification. International Journal of Remote
Sensing, 30(14), 3835-3841

Pantazi, X. E., Moshou, D., & Tamouridou, A. A. (2019). Automated leaf disease detection in different crop
species through image features analysis and One Class Classifiers. Computers and Electronics in Agri-
culture, 156, 96104

Partel, V., Kakarla, S. C., & Ampatzidis, Y. (2019). Development and evaluation of a low-cost and smart tech-
nology for precision weed management utilizing artificial intelligence. Computers and Electronics in
Agriculture, 157, 339-350

Patricio, D. I, & Rieder, R. (2018). Computer vision and artificial intelligence in precision agriculture for grain
crops: A systematic review. Computers and Electronics in Agriculture, 153, 69-81

Patrick, A., Pelham, S., Culbreath, A., Holbrook, C. C., De Godoy, I. J., & Li, C. (2017). High throughput
phenotyping of tomato spot wilt disease in peanuts using unmanned aerial systems and multispectral
imaging. IEEE Instrumentation & Measurement Magazine, 20(3), 4-12

Peiia, J. M., Gutiérrez, P. A., Hervas-Martinez, C., Six, J., Plant, R. E., & Lopez-Granados, F. (2014). Object-
based image classification of summer crops with machine learning methods. Remote Sensing, 6(6),
5019-5041

Polder, G., Blok, P. M., de Villiers, H., van der Wolf, J. M., & Kamp, J. (2019). Potato virus y detection in seed
potatoes using deep learning on hyperspectral images. Frontiers in Plant Science, 10, 209

Potena, C., Nardi, D., & Pretto, A. (2016). Fast and accurate crop and weed identification with summarized
train sets for precision agriculture. In International Conference on Intelligent Autonomous Systems, 2016
(pp. 105-121). Shanghai, China: Springer.

Pourazar, H., Samadzadegan, F., & Javan, F. D. (2019). Aerial Multispectral Imagery for Plant Disease Detec-
tion; Radiometric Calibration Necessity Assessment.

Quiroz, I. A., & Alférez, G. H. (2020). Image recognition of Legacy blueberries in a Chilean smart farm
through deep learning. Computers and Electronics in Agriculture, 168, 105044

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object
detection. In Proceedings of the IEEE conference on computer vision and pattern recognition, 2016 (pp.
779-788). Las Vegas, NV, USA: IEEE.

Redmon, J., & Farhadi, A. (2017). YOLO9000: better, faster, stronger. In Proceedings of the IEEE conference
on computer vision and pattern recognition, 2017 (pp. 7263—=7271). Honolulu, HI, USA: IEEE.

Redmon, J., & Farhadi, A. (2018). Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767.

Rehman, T. U., Mahmud, M. S., Chang, Y. K., Jin, J., & Shin, J. (2019). Current and future applications of sta-
tistical machine learning algorithms for agricultural machine vision systems. Computers and Electronics
in Agriculture, 156, 585-605

Reina, G., Milella, A., & Galati, R. (2017). Terrain assessment for precision agriculture using vehicle dynamic
modelling. Biosystems Engineering, 162, 124—139

Reina, G., Milella, A., Rouveure, R., Nielsen, M., Worst, R., & Blas, M. R. (2016). Ambient awareness for
agricultural robotic vehicles. Biosystems Engineering, 146, 114—132

Ren, S., He, K., Girshick, R., & Sun, J. Faster r-cnn: Towards real-time object detection with region proposal
networks. In Advances in neural information processing systems, 2015 (pp. 91-99).

Rodriguez-Galiano, V. F., Ghimire, B., Rogan, J., Chica-Olmo, M., & Rigol-Sanchez, J. P. (2012). An assess-
ment of the effectiveness of a random forest classifier for land-cover classification. ISPRS Journal of
Photogrammetry and Remote Sensing, 67, 93—-104

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image segmen-
tation. In International Conference on Medical image computing and computer-assisted intervention,
2015 (pp. 234-241). Munich, Germany: Springer.

Sa, I., Chen, Z., Popovi¢, M., Khanna, R., Liebisch, F., Nieto, J., et al. (2017). weednet: Dense semantic weed
classification using multispectral images and mav for smart farming. /EEE Robotics and Automation
Letters, 3(1), 588-595

Sa, L., Ge, Z., Dayoub, F., Upcroft, B., Perez, T., & McCool, C. (2016). Deepfruits: A fruit detection system
using deep neural networks. Sensors, 16(8), 1222

Saleem, M. H., Potgieter, J., & Arif, K. M. (2019). Plant disease detection and classification by deep learning.
Plants, 8(11), 468

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L.-C. (2018). Mobilenetv2: Inverted residuals and
linear bottlenecks. In Proceedings of the IEEE conference on computer vision and pattern recognition,
2018 (pp. 4510-4520). Salt Lake City, UT, USA: IEEE.

Santos, L., Santos, F. N., Oliveira, P. M., & Shinde, P. Deep learning applications in agriculture: A short
review. In Fourth Iberian Robotics conference, 2019 (pp. 139-151). Porto, Portugal: Springer.

Sarkar, S. K., Das, J., Ehsani, R., & Kumar, V. (2016). Towards autonomous phytopathology: Outcomes
and challenges of citrus greening disease detection through close-range remote sensing. In /EEE

@ Springer


http://arxiv.org/abs/1804.02767

2090 Precision Agriculture (2021) 22:2053-2091

International Conference on Robotics and Automation (ICRA), 2016 (pp. 5143-5148). Stockholm, Swe-
den: IEEE.

Sengupta, S., & Lee, W. S. (2014). Identification and determination of the number of immature green citrus
fruit in a canopy under different ambient light conditions. Biosystems Engineering, 117, 51-61

Shao, Y., & Lunetta, R. S. (2012). Comparison of support vector machine, neural network, and CART
algorithms for the land-cover classification using limited training data points. ISPRS Journal of Pho-
togrammetry and Remote Sensing, 70, 78-87

Sharif, M., Khan, M. A., Igbal, Z., Azam, M. F., Lali, M. 1. U., & Javed, M. Y. (2018). Detection and clas-
sification of citrus diseases in agriculture based on optimized weighted segmentation and feature
selection. Computers and Electronics in Agriculture, 150, 220-234

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recogni-
tion. arXiv preprint arXiv:1409.1556.

Singh, U. P,, Chouhan, S. S., Jain, S., & Jain, S. (2019). Multilayer convolution neural network for the clas-
sification of mango leaves infected by anthracnose disease. IEEE Access, 7, 43721-43729

Sladojevic, S., Arsenovic, M., Anderla, A., Culibrk, D., & Stefanovic, D. (2016). Deep neural networks
based recognition of plant diseases by leaf image classification. Computational Intelligence and
Neuroscience. https://doi.org/10.1155/2016/3289801

Slaughter, D. C., Giles, D. K., Fennimore, S. A., & Smith, R. F. (2008). Multispectral machine vision
identification of lettuce and weed seedlings for automated weed control. Weed Technology, 22(2),
378-384

Song, A., & Kim, Y. (2017). Deep learning-based hyperspectral image classification with application to envi-
ronmental geographic information systems. Korean Journal of Remote Sensing, 33, 1061-1073

Sonobe, R., Tani, H., Wang, X., Kobayashi, N., & Shimamura, H. (2014). Random forest classification of
crop type using multi-temporal TerraSAR-X dual-polarimetric data. Remote Sensing Letters, 5(2),
157-164

Suh, H. K., Ijsselmuiden, J., Hofstee, J. W., & van Henten, E. J. (2018). Transfer learning for the classification
of sugar beet and volunteer potato under field conditions. Biosystems Engineering, 174, 50-65

Sujaritha, M., Annadurai, S., Satheeshkumar, J., Sharan, S. K., & Mahesh, L. (2017). Weed detecting robot
in sugarcane fields using fuzzy real time classifier. Computers and Electronics in Agriculture, 134,
160-171

Suzuki, K., Rin, U., Maeda, Y., & Takeda, H. (2018). Forest cover classification using geospatial multi-
modal DaTA. International Archives of the Photogrammetry, Remote Sensing & Spatial Information
Sciences, 42(2), 1091-1096

Tao, Y., & Zhou, J. (2017). Automatic apple recognition based on the fusion of color and 3D feature for
robotic fruit picking. Computers and Electronics in Agriculture, 142, 388-396

Tellaeche, A., Pajares, G., Burgos-Artizzu, X. P., & Ribeiro, A. (2011). A computer vision approach for
weeds identification through Support Vector Machines. Applied Soft Computing, 11(1), 908-915

Thanh Noi, P., & Kappas, M. (2018). Comparison of random forest, k-nearest neighbor, and support vector
machine classifiers for land cover classification using Sentinel-2 imagery. Sensors, 18(1), 18

Ubbens, J. R., & Stavness, 1. (2017). Deep plant phenomics: a deep learning platform for complex plant
phenotyping tasks. Frontiers in plant science, 8, 1190

Virnodkar, S. S., Pachghare, V. K., Patil, V., & Jha, S. K. (2020). Remote sensing and machine learning
for crop water stress determination in various crops: A critical review. Precision Agriculture, 21,
1121-1155

Wan, S., & Goudos, S. (2020). Faster R-CNN for multi-class fruit detection using a robotic vision system.
Computer Networks, 168, 107036

Wang, A., Zhang, W., & Wei, X. (2019). A review on weed detection using ground-based machine vision
and image processing techniques. Computers and Electronics in Agriculture, 158, 226-240

Wang, D., Vinson, R., Holmes, M., Seibel, G., Bechar, A., Nof, S., et al. (2019). Early detection of tomato
spotted wilt virus by hyperspectral imaging and outlier removal auxiliary classifier generative adver-
sarial nets (OR-AC-GAN). Scientific Reports, 9(1), 4377

Wei, X., Jia, K., Lan, J,, Li, Y., Zeng, Y., & Wang, C. (2014). Automatic method of fruit object extraction
under complex agricultural background for vision system of fruit picking robot. Optik-International
Journal for Light and Electron Optics, 125(19), 5684-5689

Weiss, U., Biber, P., Laible, S., Bohlmann, K., & Zell, A. (2010). Plant species classification using a 3D
LIDAR sensor and machine learning. In Ninth International Conference on Machine Learning and
Applications, 2010 (pp. 339-345). Washington, DC, USA: IEEE.

Williams, H. A., Jones, M. H., Nejati, M., Seabright, M. J., Bell, J., Penhall, N. D, et al. (2019). Robotic
kiwifruit harvesting using machine vision, convolutional neural networks, and robotic arms. Biosys-
tems Engineering, 181, 140-156

@ Springer


http://arxiv.org/abs/1409.1556
https://doi.org/10.1155/2016/3289801

Precision Agriculture (2021) 22:2053-2091 2091

Wolfert, S., Ge, L., Verdouw, C., & Bogaardt, M.-J. (2017). Big data in smart farming: A review. Agricul-
tural Systems, 153, 69-80

Wspanialy, P., & Moussa, M. (2016). Early powdery mildew detection system for application in green-
house automation. Computers and Electronics in Agriculture, 127, 487-494

Wu, C., Zeng, R., Pan, J., Wang, C. C., & Liu, Y.-J. (2019). Plant phenotyping by deep-learning-based planner
for multi-robots. IEEE Robotics and Automation Letters, 4(4), 3113-3120

Wau, J., Zhang, B., Zhou, J., Xiong, Y., Gu, B., & Yang, X. (2019). Automatic recognition of ripening tomatoes
by combining multi-feature fusion with a bi-layer classification strategy for harvesting robots. Sensors,
19(3), 612

Xie, B., Zhang, H. K., & Xue, J. (2019). Deep convolutional neural network for mapping smallholder agricul-
ture using high spatial resolution satellite image. Sensors, 19(10), 2398

Xie, H., Fan, Z., Li, W., Rong, Y., Xiao, Y., & Zhao, L. (2016). Tobacco plant recognizing and counting based
on svm. In International Conference on Industrial Informatics-Computing Technology, Intelligent Tech-
nology, Industrial Information Integration (ICIICII), 2016 (pp. 109-113). Wuhan, China: IEEE.

Yahata, S., Onishi, T., Yamaguchi, K., Ozawa, S., Kitazono, J., Ohkawa, T., et al. (2017). A hybrid machine
learning approach to automatic plant phenotyping for smart agriculture. In International Joint Confer-
ence on Neural Networks (IJCNN), 2017 (pp. 1787-1793). Anchorage, Alaska: IEEE.

Yamamoto, K., Guo, W., Yoshioka, Y., & Ninomiya, S. (2014). On plant detection of intact tomato fruits using
image analysis and machine learning methods. Sensors, 14(7), 12191-12206

Ye, L., Gao, L., Marcos-Martinez, R., Mallants, D., & Bryan, B. A. (2019). Projecting Australia’s forest cover
dynamics and exploring influential factors using deep learning. Environmental Modelling & Software,
119, 407417

Yeshmukhametov, A., Koganezawa, K., Buribayev, Z., Amirgaliyev, Y., & Yamamoto, Y. (2019). Development
of Continuum Robot Arm and Gripper for Harvesting Cherry Tomatoes.

Yu, Y., Zhang, K., Yang, L., & Zhang, D. (2019). Fruit detection for strawberry harvesting robot in non-struc-
tural environment based on Mask-RCNN. Computers and Electronics in Agriculture, 163, 104846
Zhang, C., Harrison, P. A., Pan, X., Li, H., Sargent, I., & Atkinson, P. M. (2020). Scale Sequence Joint Deep
Learning (SS-JDL) for land use and land cover classification. Remote Sensing of Environment, 237,

111593

Zhang, C., & Kovacs, J. M. (2012). The application of small unmanned aerial systems for precision agricul-
ture: A review. Precision Agriculture, 13(6), 693-712

Zhang, L., Gui, G., Khattak, A. M., Wang, M., Gao, W., & Jia, J. (2019). Multi-task cascaded convolutional
networks based intelligent fruit detection for designing automated robot. IEEE Access, 7, 56028-56038

Zhang, L., Jia, J., Gui, G., Hao, X., Gao, W., & Wang, M. (2018). Deep learning based improved classification
system for designing tomato harvesting robot. IEEE Access, 6, 67940-67950

Zhang, T., Huang, Z., You, W, Lin, J., Tang, X., & Huang, H. (2020). An autonomous fruit and vegetable har-
vester with a low-cost gripper using a 3D sesnsor. Sensors, 20(1), 93

Zhang, X., Qiao, Y., Meng, F., Fan, C., & Zhang, M. (2018). Identification of maize leaf diseases using
improved deep convolutional neural networks. IEEE Access, 6, 30370-30377

Zhao, Y., Gong, L., Huang, Y., & Liu, C. (2016). A review of key techniques of vision-based control for har-
vesting robot. Computers and Electronics in Agriculture, 127,311-323

Zhao, Y., Gong, L., Zhou, B., Huang, Y., & Liu, C. (2016). Detecting tomatoes in greenhouse scenes by com-
bining AdaBoost classifier and colour analysis. Biosystems Engineering, 148, 127-137

Zheng, Y.-Y., Kong, J.-L., Jin, X.-B., Su, T.-L., Nie, M.-J., & Bai, Y.-T. (2018). Real-Time Vegetables Recogni-
tion System based on Deep Learning Network for Agricultural Robots. In Chinese Automation Congress
(CAC), 2018 (pp. 2223-2228). Xi’an, China: IEEE.

Zujevs, A., Osadcuks, V., & Ahrendt, P. (2015). Trends in robotic sensor technologies for fruit harvesting:
2010-2015. Procedia Computer Science, 77, 227-233

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer



	Automation in Agriculture by Machine and Deep Learning Techniques: A Review of Recent Developments
	Abstract
	Introduction
	Application of Traditional Machine Learning Algorithms in Agricultural Robots
	Plant DiseasePest Detection and Classification
	PlantLeaves Recognition and Classification
	CropWeed Discrimination and Classification of WeedsCrops
	HarvestingRecognition of Fruits and Vegetables
	Land Cover Classification
	Overall Presentation of ML Algorithms for Agricultural Operations by Robots

	Deep Learning Approach for Agricultural Operations by Robotic Platforms
	Plant DiseasePest Detection and Classification
	PlantLeaves Recognition and Classification
	CropWeed Discrimination and Classification of WeedsCrops
	HarvestingRecognition of Fruits and Vegetables
	Land Cover Classification
	Overall Presentation of DL Algorithms for Agricultural Operations by Robots

	Conclusion and Future Directions
	References




