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Abstract
Recently, agriculture has gained much attention regarding automation by artificial intel-
ligence techniques and robotic systems. Particularly, with the advancements in machine 
learning (ML) concepts, significant improvements have been observed in agricultural tasks. 
The ability of automatic feature extraction creates an adaptive nature in deep learning (DL), 
specifically convolutional neural networks to achieve human-level accuracy in various 
agricultural applications, prominent among which are plant disease detection and classi-
fication, weed/crop discrimination, fruit counting, land cover classification, and crop/plant 
recognition. This review presents the performance of recent uses in agricultural robots by 
the implementation of ML and DL algorithms/architectures during the last decade. Perfor-
mance plots are drawn to study the effectiveness of deep learning over traditional machine 
learning models for certain agricultural operations. The analysis of prominent studies high-
lighted that the DL-based models, like RCNN (Region-based Convolutional Neural Net-
work), achieve a higher plant disease/pest detection rate (82.51%) than the well-known ML 
algorithms, including Multi-Layer Perceptron (64.9%) and K-nearest Neighbour (63.76%). 
The famous DL architecture named ResNet-18 attained more accurate Area Under the 
Curve (94.84%), and outperformed ML-based techniques, including Random Forest (RF) 
(70.16%) and Support Vector Machine (SVM) (60.6%), for crop/weed discrimination. 
Another DL model called FCN (Fully Convolutional Networks) recorded higher accuracy 
(83.9%) than SVM (67.6%) and RF (65.6%) algorithms for the classification of agricultural 
land covers. Finally, some important research gaps from the previous studies and innova-
tive future directions are also noted to help propel automation in agriculture up to the next 
level.
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Introduction

The agricultural industries are facing several problems including deficiency in the growth 
of products like fruits, vegetables, etc. (Chen et  al., 2019), unpredictable soil contents 
(Padarian et  al., 2019), improper application of pesticides (Sladojevic et  al., 2016), her-
bicides, fungicides or insecticides to reduce crop/plant diseases and shortage of trained/
skilled labour (Zhao et  al., 2016a), etc. It is very important to address these issues as 
advancements in agriculture play a vital role in the economy of a country. Just like other 
fields of research including medical science, mechanical/automation, and business indus-
tries, etc., agriculture can also benefit from the use of robots to complement the human 
workforce. Therefore, in recent years, several attempts have been made to resolve agri-
cultural issues through robotic platforms (Ebrahimi et  al., 2017; Wspanialy & Moussa, 
2016; Zhao et  al., 2016a). Many state-of-the-art approaches have been introduced/modi-
fied to perform various agricultural tasks like fuzzy logic/classifier (Cho, Chang, et  al., 
2002; Cho, Lee, et al., 2002; Sujaritha et al., 2017), combined radar-vision system (Milella 
et  al., 2011), HIS colour model (Feng et  al., 2015), improved Otsu threshold algorithm 
(Wei et al., 2014), integration of various sensors (Milella, Reina, et al., 2019; Reina et al., 
2016), self-supervised scheme (Reina et  al., 2016), etc. In this regard, Artificial Intelli-
gence (AI) has been proven to have great potential towards agricultural applications by the 
implementation of robotic systems with machine learning (ML)/deep learning (DL) algo-
rithms (Ebrahimi et al., 2017; McCool et al., 2017; Zhang, Jia, et al., 2018; Zhang, Qiao, 
et al., 2018). Some advanced visualization techniques are prominent: saliency map visu-
alization (Brahimi et al., 2018), hyperspectral imaging (Mahlein et al., 2017; Wang, Vin-
son, et al., 2019; Wang, Zhang, et al., 2019), multispectral imaging (Patrick et al., 2017; 
Pourazar et  al., 2019; Slaughter et  al., 2008) and thermal imaging (Azouz et  al., 2015; 
Ishimwe et  al., 2014), etc., have also been applied with ML/DL models for agricultural 
tasks. Therefore, with the progress in AI, the performance of many complex agricultural 
operations has improved as compared to the earlier approaches. This led us to present an 
overall review of research outcomes that have been obtained for agricultural applications 
by the implementation of ML/DL algorithms through robotic systems.

Some review articles have been published incorporating only a particular type of agri-
cultural application with/without a robotic system by considering AI/computer vision/
other advanced vision control techniques. For example, a recent review addressed the crop 
water stress by the machine learning approach (Virnodkar et al., 2020). A review article 
summarized the statistical ML algorithms, which have been implemented for various agri-
cultural operations (Rehman et  al., 2019). In (Huang et  al., 2010), soft computing tech-
niques including fuzzy logic, neural network, genetic algorithm, decision tree, and support 
vector machine (SVM) were presented for the analysis of soil, precision agriculture, and 
management of crops. A comprehensive review was conducted for precision agriculture 
by Unmanned Aerial Systems (UAS) and important future directions were also provided 
in the article (Zhang & Kovacs, 2012). In (Kamilaris & Prenafeta-Boldú, 2018), the DL 
architectures were reviewed for several agricultural operations. The review presented in 
(Zhao et al., 2016a) indicated the algorithms/schemes developed for vision control of har-
vesting robots. Another review paper outlined the harvesting robots to show their perfor-
mance along with the procedures of robotic designs, and adaptive algorithms for harvesting 
purposes. Some interesting future recommendations including modification in the environ-
ment of crops, innovative robotic designs, and other important factors like safety and econ-
omy were also summarized (Bac et al., 2014). For the harvesting purpose, the advancement 
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in sensors was summarized in (Zujevs et  al., 2015), by dividing them into four classes: 
chemical, tactile, proximity sensors, and computer vision. The issues like an in-camera 
sensor, design of the filter, and image segmentation methods for the identification of fruits 
through harvesting robots were presented in Li et al. (2011). Another review article pre-
sented the development of sensors for the detection/localization of fruit; it also described 
the AI-based classification methods and highlighted loopholes in those approaches (Gon-
gal et  al., 2015). The applications of machine vision with AI for agricultural tasks like 
detection of disease/pests in crops, evaluation of the quality of the grain, and automatic 
detection of plant phenotyping were studied in (Patrício & Rieder, 2018). The procedure 
for weed detection by various classification methods including machine learning and deep 
learning was reviewed in (Wang, Vinson, et  al., 2019; Wang, Zhang, et  al., 2019). The 
supervision of plant pathology by the robotic system while utilizing AI and machine vision 
techniques were presented in (Ampatzidis et al., 2017). Various sensing technologies and 
advanced cameras along with their limitations to categorize fruit/plant and analyse the 
physical structure of plants were summarized in (Narvaez et  al., 2017). Another review 
article outlined the latest smart methodologies like internet of things (IoT), ML, and DL for 
agricultural purposes including crops/plant disease, pesticide and weed control, and stor-
age and water management. (Jha et al., 2019). A review paper summarized ML algorithms 
for addressing weed detection, plant disease/pest detection tasks (Behmann et al., 2015). A 
recent review article presented the DL-based techniques for various agricultural applica-
tions (Santos et al., 2019). Another review paper explained and summarized deep learning 
models for the identification and classification of plant disease along with the application 
of DL with advanced imaging techniques including hyperspectral/multispectral imaging 
and some interesting future directions were also provided (Saleem et al., 2019). Moreover, 
the application of Big Data for agriculture was reviewed by Wolfert et al. (2017).

To the best of the authors’ knowledge, there is no systematic review in a single arti-
cle presenting the performance of robotic systems by machine/deep learning algorithms 
considering the major agricultural operations including detection of plant disease, identi-
fication of crop/plant, fruit counting, fruit recognition, identification of weed, crop/weed 
discrimination, and classification of agricultural land cover. Therefore, this review article 
will be useful to advance the agricultural field of research by studying machine and deep 
learning techniques that have been implemented on various intelligent agricultural systems. 
It will also be helpful to understand the research gaps in several complex agricultural appli-
cations to save cost related to agricultural protection and increase the growth of several 
agricultural products. To understand an overall idea of a robotic system for agricultural 
operations by implementing an ML/DL algorithm, Fig.  1 can be a good resource. First, 
the agricultural application should be selected, which would lead to the selection of a cer-
tain robotic platform that can be primarily used for the collection of datasets. Then, the 
Machine Learning/Deep Learning model would be proposed and trained into a robot that 
will perform the agricultural task, and finally record the accuracy of the models in terms of 
various performance metrics, like classification accuracy, F1-score, detection/failure rate, 
etc.

On top of that, during this review, the following questions were addressed that will 
guide the researchers of agricultural automation about many aspects of ML/DL algorithms 
employed through robotic platforms specifically in agricultural fields.

•	 Which agricultural operations have majorly implemented machine/deep learning algo-
rithms through automated systems and what are the robotic platforms adopted for these 
agricultural tasks?
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•	 Which agricultural products/fruits/vegetables have been included in the previous 
studies when considering the implementation of ML and DL algorithms for robotic 
systems?

•	 Which ML/DL algorithms have been applied frequently for agricultural operations?
•	 How much has deep learning outperformed traditional machine learning algorithms 

for various agricultural tasks?
•	 Which performance metrics have been considered in the previous studies for the 

evaluation of ML and DL models that were used to perform agricultural tasks?
•	 What are the research gaps which could be filled to achieve better performance of 

various agricultural operations by ML/DL-based automated systems?

The remainder of the paper is further divided into the following sections: “Appli-
cation of Traditional Machine Learning Algorithms in Agricultural Robots” presents 
machine learning models for various agricultural applications applied on robotic sys-
tems along with the research gaps; “Deep Learning Approach for Agricultural Opera-
tions by Robotic Platforms” elaborates the deep learning architectures for several agri-
cultural operations implemented through robotic platforms along with the performance 
plots, and “Conclusion and Future Directions” concludes the review along with some 
future directions which will be helpful to achieve higher accuracy and great advance-
ments in several agricultural tasks.
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Fig. 1   Block diagram of the implementation of robotic system through ML/DL algorithms
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Application of Traditional Machine Learning Algorithms in Agricultural 
Robots

In this era of automation, artificial intelligence (AI) has complemented the human work-
force in many real-life applications. Similarly, the agricultural industries also require 
smart solutions to address important issues like saving cost, better production of agri-
cultural products like fruits/vegetables, shortage of trained labour, etc. In this regard, 
machine learning (ML) as a subset of AI produced a significant contribution to agricul-
tural automation. The ML has further subcategories such as deep learning (DL), which 
is an emerging technology to perform various agricultural operations intelligently. A 
general representation of AI, ML, and DL is presented in Fig. 2.

Before the evolution of deep learning architectures, prominent among which is 
AlexNet (Krizhevsky et al., 2012), machine learning (ML) algorithms produced many 
state-of-the-art results for various agricultural tasks. In these algorithms, Support Vec-
tor Machines (SVM), K-Nearest Neighbour (KNN), Random Forest (RF) classifier, and 
Decision Tree (DT) are the most prominent models. Although the ML algorithms like 
SVM have also been used to perform various complex tasks like classification and map-
ping of agricultural terrain (Reina et  al., 2017), this review is focused on the studies 
which applied ML models/algorithms to perform five agricultural tasks through robotic 
systems as described in the next sub-sections. Also, their limitations are summarized 
which could help to advance upcoming future research in the field of agricultural auto-
mation. The general flow for the implementation of an ML algorithm is presented in 
Fig. 3.

Fig. 2   A hierarchy of artificial 
intelligence (AI) according to 
which machine learning is typi-
cally a subset of AI and similarly 
deep learning is the subcategory 
of machine learning
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Fig. 3   A general representation of steps to implement machine learning algorithms
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Plant Disease/Pest Detection and Classification

The diseases/pests on plant species produce a significant impact on the growth of agri-
cultural products. Therefore, their detection and classification are a necessity, particu-
larly by an automated approach. In this regard, ML algorithms have been applied to 
perform this important agricultural task. For example, a multi-support vector machine 
(M-SVM) was proposed for the detection of disease in citrus fruit and its performance 
was compared with state-of-the-art approaches like Weighted K-Nearest Neighbour 
(W-KNN), Decision Tree (DT), Linear Discriminant Analysis (LDA), and Ensemble 
Boosted Tree (EBT). However, the model were not compared with DL architectures to 
prove the effectiveness of the model more clearly (Sharif et al., 2018). Another research 
was conducted to detect and classify the healthy and diseased leaves of vine by Local 
Binary Patterns and One-Class Classifiers (Pantazi et al., 2019).

The ML algorithms have also been implemented through robotic platforms for the 
detection of plant disease. For example, an Unmanned Aerial Vehicle (UAV) was used for 
the detection of Citrus greening and well-known ML algorithms like linear SVM, coarse 
gaussian SVM, standard gaussian SVM, K-Nearest Neighbour, and simple and complex 
Decision Tree were implemented to obtain the best-suitable model. From this study, a 
research gap can be filled by comparing the performance of ML models with well-known 
DL models like AlexNet, ResNet-50, VGG-16, etc. for the classification between healthy 
and diseased leaves (Sarkar et  al., 2016). A mobile robot was implemented in a straw-
berry greenhouse to detect its disease; an SVM algorithm was applied for this purpose and 
achieved a considerably lower prediction error (Ebrahimi et al., 2017).

Plant/Leaves Recognition and Classification

Another important task of plant recognition has been done by state-of-the-art ML tech-
niques through robotic platforms. A mobile robot was implemented to find its best route for 
a plantation in a real agricultural farm (Jodas et al., 2013) and for that purpose, SVM and 
ANN were evaluated and achieved 93% and 90% accuracy respectively. A critical task of 
the classification of grapevines was performed by SVM and ANN models through an all-
terrain vehicle (Gutiérrez et al., 2018). This research could have a more interesting analysis 
if the performance of these two ML algorithms were compared with some successful CNN 
models like AlexNet, VGG, ResNet-50, etc. Another plant classification-related task was 
described in Huang et al. (2016) which proposed and designed a stand-still imaging sys-
tem consisting of a hyperspectral camera, and a Least Squares Support Vector Machine 
(LSSVM) model was selected to classify the maize seed. Although the technique imple-
mented in this research achieved good classification accuracy (CA), still the effectiveness 
of LSSVM should be proved by comparing its performance with the other ML classifi-
ers like RF. Furthermore, more diversity in data samples should be included to prove the 
robustness of the applied model. In a research, as a prerequisite for an agricultural robot in 
a practical field, an SVM-based classification method was applied to distinguish eight dif-
ferent plant species (Dyrmann et al., 2018); the method proposed in this research improved 
the classification accuracy which showed the significance of the work. Another research 
performed the classification among six different plant species by a BoniRob mobile robot 
through the implementation of well-known ML algorithms. Their comparison brought sim-
ple logistic regression, SVM, and neural network, with the best results (Weiss et al., 2010). 
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A research used a UAV-based system for the task of tobacco plant recognition. An SVM 
model was implemented for this purpose and further enhancement in the performance was 
suggested by the candidate region extraction and feature extraction (Xie et al., 2016).

Crop/Weed Discrimination and Classification of Weeds/Crops

A critical agricultural task of crop and weed discrimination is also important to address as 
it is useful for determining the amount of herbicide required to control the weeds. Most of 
the studies were conducted for sugar beet fields; several were performed for carrot, rice, 
maize, and cereal farms. The ML algorithms including RF and SVM were prominently 
applied to robots for this agricultural operation. For example, the discrimination between 
crop and weed in a carrot farm was performed by an autonomous system through the 
implementation of the Random Forest classifier (Haug et al., 2014). For a more compre-
hensive assessment of the proposed system, there should be a comparative evaluation of 
this method with other state-of-the-art techniques like SVM. In (Cheng & Matson, 2015), 
an autonomous robot was used for the discrimination between crop (rice) and weed by 
featuring a base system consisting of a Harris Corner Detection algorithm along with ML 
algorithms that were compared in terms of precision and recall. A research was conducted 
for the discrimination between sugar beet and weeds by a BoniRob robotic platform; the 
classification was done by the Random Forest classifier, and the results were improved by 
MRF (Markov Random Field). Due to the successful classification outcomes, it is sug-
gested that the RF would be useful for multiple-weed class problems (Lottes et al., 2016). 
Another research was conducted for the discrimination between a sugar beet crop and weed 
by a UAV; using information from RGB images; classification was done by RF classifier 
to achieve high precision and recall (Lottes et al., 2017). For an autonomous detection of 
weeds in a sugar beet field, two well-known algorithms—SVM and ANN—were imple-
mented. The ANN achieved a considerably higher classification accuracy than SVM which 
proved the usefulness of the neural network-based technique (Bakhshipour & Jafari, 2018). 
A research was conducted to show the effectiveness of near-infrared mosaic hyperspec-
tral imaging for crop and weed discrimination in a maize field. In the domain of machine 
learning, a random forest classifier was used (Gao et al., 2018); the higher precision and 
recall percentages showed that the applied method should be tested in a real-time robotic 
system. In (Tellaeche et al., 2011), the weeds were identified in a cereal crop by SVM and 
the classification accuracy was measured by Correct Classification Percentage (CCP) and 
Yule coefficient; the novelty of this work was shown by the evaluation of spray applied 
in the field. A research used the UAV for the detection/mapping of Silybum marianum 
weeds on hyperspectral images by comparing the performance of various ML techniques 
out of which One Class Support Vector Machine (OC-SVM) achieved the highest accuracy 
(Alexandridis et al., 2017).

Harvesting/Recognition of Fruits and Vegetables

The agricultural task of fruit harvesting has been addressed in recent studies that imple-
mented well-known ML algorithms through robotic systems. However, the modified ver-
sions of ML models have also been proposed in a few research articles to perform this 
agricultural operation. For example, to identify tomatoes according to their maturity, a 
pixel and blob-based segmentation methods were applied along with a machine learn-
ing algorithm named X-means clustering which was derived from the famous K-means 



2060	 Precision Agriculture (2021) 22:2053–2091

1 3

clustering method (Yamamoto et al., 2014). In (Ji et al., 2012), a harvesting robot was 
tested in a real field environment by applying the vector median filter for the removal of 
noise, then image segmentation was applied for the extraction of the features of apples. 
An SVM-based method was applied to get improvement in recognition accuracy and 
some research gaps were also provided in the paper like addressing the unrecognized 
apples and reduction in timing of fruit recognition for a practical system. The apple 
harvesting system was developed in another research which consisted of a manipulator, 
end-effector, and vision system, whereas the SVM with RBF (radial basis function) was 
used for the recognition of apples, and the effectiveness of the system was shown by 
performing the experiments in the laboratory and real agricultural farms (De-An et al., 
2011). To harvest tomatoes, an ML approach named RVM (Relevance Vector Machine) 
was introduced based on Bayesian inference, and a higher accuracy was obtained which 
has provided the motivation to use an RVM model for upcoming research (Wu, Zeng, 
et al., 2019; Wu, Zhang, et al., 2019). In addition to the applied methods, a comparative 
analysis should be provided in these studies with the other ML algorithms to show the 
usefulness of the proposed approach.

However, some research articles have considered various ML algorithms and compared 
their performance for the recognition/classification of fruits. For example, a conveyor belt-
based system was proposed to evaluate various conditions of biscuits by implementing a 
Radial-based SVM classifier with Wilk’s λ method which achieved a higher classification 
accuracy as compared to the Polynomial SVM and discriminant analysis (DA) (Nashat 
et al., 2011). In, (Tao & Zhou, 2017), the authors used the Colour-FPFH 3D descriptor to 
extract the features of apples. For the classification purpose, the Genetic Algorithm SVM 
classifier (GA-SVM) was used and its performance was compared with other classifiers 
like SVM, KNN, and RF. A complete study of Broccoli was presented in Kusumam et al. 
(2017), which incorporated the important steps from detection to size estimation and level 
of growth by a robotic tractor system and the SVM algorithm was again used along with a 
viewpoint feature histogram and temporal filter; a comparison was also done between KNN 
and SVM algorithms and the detection accuracy can be further improved by considering 
texture features. Another research used a tractor system for the localization and detection of 
Broccoli by using a method composed of VFH (ViewPoint Feature Histogram) and SVM 
(Support Vector Machine), its performance was increased when temporal filtering (TF) 
was included, and the proposed method was compared with ANN (Kusumam et al., 2016). 
Another study used the SVM classifier (Liu, Mao, et al., 2019; Liu, Pi, et al., 2019), which 
applied the HOG descriptor for the training of SVM and False Colour Removal (FCR) 
and Non-Maximum Suppression (NMS) were proposed for the removal of false positives 
and merge the overlapped detections. This research has practical importance for the future 
robotic system as the images were taken at 500–1000 mm distance which is quite feasible 
for an actual robotic platform. Therefore, the proposed method can be used in a real-time 
robotic system. Moreover, the proposed method was compared with the other approaches 
like AdaBoost (Zhao et al., 2016b), YOLO model (Redmon et al., 2016), Circular Gabor 
Filter, and Eigen Fruit (Kurtulmus et al., 2011).

Another approach used SVM for texture classification along with Canny edge detection 
with a graph-based connected component algorithm and the Hough line detection method 
for the removal/reduction of false positives of green citrus fruit (Sengupta & Lee, 2014). 
An SVM-based approach was proposed in (Mao et al., 2020) to recognize cucumbers in a 
farm; the method consisted of Iterative-RELIEF which was used for the extraction of col-
our components, background pre-processing being done by Median filter, Otsu algorithm, 
and Maximally Stable Extremal Regions (MSER); a fine-tuned DL model was proposed 
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for feature extraction and finally PCA was used for the reduction of the dimension which 
eventually became useful for SVM classification.

Land Cover Classification

Several researchers used well-known ML algorithms and compared their performance 
for the selection of the best-suited model to classify different classes of agricultural land 
covers. For example, the classification among agricultural lands was performed and com-
pared by implementing DT, RF, and SVM and it was concluded that object-based SVM 
got the highest Overall accuracy (Duro et al., 2012). A research was conducted to classify 
16 classes divided into ten agricultural and six non-agricultural landscapes; a comprehen-
sive comparison was provided between six state-of-the-art ML techniques including Multi-
layer Perceptron (MLP), Support Vector Regression (SVR), the Least-Squares (LS)-SVM, 
Bagged Regression Trees (BaRTs), Boosted Regression Trees (BoRTs), and the Random 
Forest (RF) by using EPR- (Eenmalige perceels registratie—in the Dutch language) based 
data and CORINE Land-Cover 2006 dataset. It was found that SVM classifiers (SVR and 
LS-SVM) outperformed other classifiers in terms of pixel-level Nash–Sutcliffe (NS) index 
and some future directions were provided in the article including the selection of input var-
iables and the implication of fractional abundance constraints (Heremans & Van Orshoven, 
2015). For the land cover classification, three state-of-the-art methods were applied includ-
ing Support Vector Machine (SVM), Neural Network (NN), and Classification and Regres-
sion Trees (CART). It was found that the SVM classifier achieved the highest classifica-
tion accuracy (Shao & Lunetta, 2012). Another research performed a comparative study 
between RF, kNN, and SVM to classify six different classes (including agricultural land-
scape) by using images taken through Sentinel-2 satellite (Thanh Noi & Kappas, 2018). A 
study was conducted for the classification of croplands and this time TerraSAR-X satellite 
data was used; the significance of RF was noted by comparing its performance with Clas-
sification and Regression Tree (CART) (Sonobe et al., 2014). In (Peña et al., 2014), nine 
important crops were classified by considering input from images of ASTER satellite and 
state-of-the-art ML approaches like DT, LR, SVM, and MLP were utilized for this pur-
pose. Among all of them, SVM and MLP outperformed the others and the authors imple-
mented an SVM + SVM algorithm that achieved slightly higher accuracy than SVM and 
MLP models.

On the other hand, a few articles implemented only RF classifier for the classification 
of the landscape. For example, the Landsat-5 Thematic Mapper data was used to classify 
complex landscapes by RF algorithm and achieved 92% overall accuracy (Rodriguez-
Galiano et al., 2012). Similarly, the research presented in Eisavi et al. (2015) showed the 
significance of the RF classifier by taking the images of 13 agricultural landscapes via 
Landsat 8 satellite.

The Random Forest (RF) classifier and Maximum Likelihood Classification (MLC) 
were implemented on images taken from SPOT 5 satellite for the classification of various 
agricultural cropland fields. The outcome of this research favoured RF classifier by a sig-
nificant margin (Ok et al., 2012). A research performed the classification of four croplands 
by classical ML algorithms such as SVM and RF through images taken by time series 
UAV. The novelty of this work was proved by considering the effect of textural features 
through the Grey-Level Co-occurrence Matrix (GLCM) along with the spectral features. 
Moreover, DL architectures could also be applied for further improvement in the classifica-
tion task (Kwak & Park, 2019).
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Overall Presentation of ML Algorithms for Agricultural Operations by Robots

Few important research gaps/future directions related to each agricultural operation from 
this section are presented in Table  1. Moreover, a summary of the performance of ML 
algorithms is shown in Table 2.

Deep Learning Approach for Agricultural Operations by Robotic 
Platforms

After the development of deep learning (DL), many state-of-the-art models were imple-
mented for various real-life applications. Among those models, Convolutional Neural Net-
work (CNN) produced significant improvement for many image recognition/classification 
tasks. Similarly, agricultural operations have also been performed by the implementation of 
CNN architectures through robots.

Previously, some review articles were focused on DL with respect to certain agricultural 
operations. For example, a comprehensive review of DL in agriculture was presented in 
(Kamilaris & Prenafeta-Boldú, 2018), in which all the major agricultural tasks were sum-
marized. In contrast, this review article presents deep learning approach for major agri-
cultural operations implemented through robotic platforms. Moreover, few research arti-
cles are also included in this review which showed the effectiveness of proposed DL-based 
models for upcoming agricultural robotic projects. Furthermore, some important research 
gaps are mentioned to address agricultural issues by automation through CNN architec-
tures. The performance plots are also drawn to indicate the significance of DL architectures 
over traditional/well-known ML models for the respective agricultural tasks.

The implementation of DL to perform agricultural operations through robots involves 
few steps as presented in FigS. 4, and 5 further explains all the three steps of Fig. 4 more 
clearly.

Plant Disease/Pest Detection and Classification

In recent times, DL has been considered a better method to perform agricultural tasks. 
These tasks are performed by implementing well-known CNN architectures or by propos-
ing some modifications to those well-known models. A complex task of plant disease iden-
tification has been addressed by the DL techniques (Esgario et al., 2020; Li et al., 2020; 
Liu, Abd-Elrahman, et  al., 2018; Liu, Zhang, et  al., 2018; Singh et  al., 2019). An over-
all review can be referred to (Saleem et  al., 2019) related to plant disease identification 
by DL. However, in this section, a summary of the DL approaches applied through auto-
mated systems (like mobile robot, robotic arm, etc.) is provided for plant disease and pest 
identification.

An imaging system was proposed to detect the powdery mildew disease by the imple-
mentation of a famous CNN architecture named GoogLeNet and the accuracy was com-
pared with experts’ performance (Bierman et al., 2019). A research was conducted for the 
comparative evaluation of the performance of DL and ML algorithms for the detection of 
pests on tomato and pepper crops for autonomous robots and concluded with the superior 
accuracy of DL architecture, principally Faster RCNN (more accurate but requires more 
computation time) and SSD (less accurate than RCNN and requires less training time). 
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Moreover, the characteristics of the automatic feature extraction of DL were presented that 
helped to achieve better accuracy/classification as compared to an ML approach which 
required complex feature engineering works, and some innovative future directions were 
also presented like data augmentation technique and an inclusion of dataset images hav-
ing pests present in the plants to generate diversity in a dataset (Gutierrez et  al., 2019). 
Another research was conducted to prove the significance of deep learning in terms of its 
ability to automatically detect disease on fruits through an automatic sorting machine; the 
performance of the proposed system could be improved by deep autoencoder (da Costa 
et al., 2020). For the detection of a crop virus, a Fully Convolution Neural Network (FCN) 
model was deployed on the hyperspectral images through a tractor-shaped system contain-
ing a push broom (Polder et al., 2019). A 6 degree-of-freedom (DoF) robotic arm was used 
to automatically detect the diseased leaves by the implementation of Faster-RCNN with 

Fig. 4   The basic steps of a 
robotic platform for an agricul-
tural task by DL approach; (A) 
indicates the input dataset like 
images of various plants/fruits, 
(B) presents that the robotic 
system needs a brain to perform 
certain tasks and here DL models 
act as a brain to the robot, and, 
finally, (C) represents the output 
of agricultural robots to show 
the significance of applied DL 
architecture

Input data

Robot

Performance of 
agricultural 
operation

A

B

C

Pre-
processing 

steps

Classification 
accuracy, F1-

score, etc.

The DL architecture 
behaves like a brain of 

robot 

Images augmentation for 
diversity in dataset by 

changing rotation, 
brightness, sharpness, 
contrast of images, etc. 
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Selection of suitable DL/
CNN architecture for 

image detection such as 
Faster RCNN, SSD, etc.

DL architecture for 
image classification such 

as ResNet-50, 
MobileNet, Xception, etc. 

B2

B3

Selection of 
hyperparameters 
like batch size, 

optimizer, learning 
rate, etc.

B4B5C1

Training of DL 
architectures

Testing of DL 
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Performance 
analysis of DL 
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Improvement in 
results by 
proposing 

modified/cascaded 
DL architecture
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Fig. 5   A clearer explanation of (A, B, and C) (presented in the previous figure) require to implement an 
agricultural task by DL-based robot
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ResNet-101 model (Joffe et al., 2018). An Unmanned Aerial Vehicle (UAV)—based sys-
tem was developed for the identification of vineyard disease by a deep learning algorithm 
applied to multispectral images, but it is suggested that false detections could be reduced 
by applying and testing various DL models (Kerkech et al., 2019). The UAV was also used 
for the detection of Fusarium wilt in a radish farm; the well-known VGG model performed 
well and achieved comparatively higher accuracy than the K-means clustering ML algo-
rithm. Some recommendations were provided to improve the performance such as the com-
bination of RGB and infrared images; a comprehensive analysis was recommended based 
on the severity of the disease (Ha et al., 2017). Another approach used UAV technology 
for the detection of disease in a radish farm by the implementation of K-means clustering 
along with GoogLeNet architecture (trained by a fine-tuning technique). The performance 
of the DL model was significantly better than the SVM model (Dang et al., 2018).

From this section, it can be concluded that various DL architectures were implemented 
for the detection of disease in plant leaves. However, the future research should be con-
ducted to detect and classify the disease present in all the defected parts of the plant spe-
cies including leaves, stem, fruit, and flowers, by utilizing the adaptive nature of DL. This 
is one of the most important research gaps provided in this review. Moreover, very few 
studies have been conducted to perform this task by a real-time automated system, there-
fore there is a need of a robotic platform than can address this agricultural problem. Fur-
thermore, the chemical sprays like fungicide/herbicide/pesticides should be applied intel-
ligently after the successful detection of plant disease, which would be helpful to generate 
a cost-effective crop protection system.

Plant/Leaves Recognition and Classification

Just like traditional ML algorithms, deep learning models have also applied for the plant 
recognition task. For instance, a research was conducted for the classification of several 
plant species by proposing/implementing CNN models (Dyrmann et  al., 2016). A very 
important study was done in (Lee et  al., 2017) to understand the concept and capability 
of deep learning models to extract the characteristics/features of several plant species. The 
development of deep plant phenomics (DPP) created a major contribution to the commu-
nity of plant phenotyping (Ubbens & Stavness, 2017). Another state-of-the-art approach 
was proposed for the classification of plants with their multiple organs through CNN and 
RNN models (Lee et al., 2018). The classification of four different plant species was done 
by proposing a CNN model which outperformed the approaches like Scale-Invariant Fea-
ture Transform (SIRF) and speeded up robust features (SURF) (Kazerouni et al., 2019). A 
study was conducted for the classification of plant seedlings by CNN. This research also 
compared its performance with well-known ML techniques like SVM and KNN which 
proved the significance of the approach (Nkemelu et al., 2018).

Few of the studies were conducted to perform the task of plant recognition through 
robotic systems/platforms. To extract the stalk count and stalk width of the plant, a deep 
convolutional neural network and a semantic segmentation-based ground mobile robotic 
platform were proposed and validated the performance of the robot with two humans 
which showed the effectiveness of the proposed idea. The Faster Recurrent Convolution 
Neural Network (Faster RCNN) model was used for generating the bounding box and the 
binary output was obtained by Fully Convolution Network (FCN) to classify images as 
either stalk or background. As compared to human performance, the robot performed the 
stalk count task 30 times faster and stalk width measurement task 270 times faster (Baweja 
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et al., 2018). A study was conducted for the plant phenotyping by the deep learning tech-
nique based on a recently developed Point Cloud Network (PCN) model through multi-
robotic systems (Wu, Zeng, et  al., 2019; Wu, Zhang, et  al., 2019). A research used the 
UAV to count corn plants through a DL model named U-Net. The successful result of this 
approach provided a future motivation to implement this type of system for other crops 
(Kitano et  al., 2019). A robotic manipulator was used to recognize seven vegetables by 
famous DL feature extraction/detection architectures, but the recognition accuracy should 
be further increased by proposing some key modifications to the models applied in this 
research (Zheng et al., 2018). To recognize Legacy Blueberries plants, a Computer Numer-
ical Control (CNC)—based system was developed and a CNN was proposed to achieve 
a good performance in terms of precision, recall, F1-score, and accuracy. Although this 
proposed scheme can also be tested for pest detection, more improvement in the system’s 
performance is recommended in the future by the implementation of generative adversarial 
networks (GANs) for the generation of synthetic images (Quiroz & Alférez, 2020). The 
segmentation of Fig plants was done by UAV, and a CNN model was inspired by SegNet 
encoder-decoder architecture CNN. The code of the CNN model and dataset were pub-
lished online for the research community. A good thing was that the complex and variable/
original background of images were considered and it was suggested that the orthomosaic 
images could improve the system proposed in the paper (Fuentes-Pacheco et  al., 2019). 
Another research used a UAV for the collection of datasets to detect Tobacco plants by 
the CNN models. Although the proposed CNN architecture achieved good accuracy, there 
is still room to improve the performance further by the implementation of various avail-
able well-known CNN models, the advanced training techniques like transfer learning/fine-
tuning techniques could be utilized and some other crops should also be considered in the 
future (Fan et al., 2018). A research addressed the problem that occurs due to the critical 
distribution of heads of sorghum by a CNN model named RetinaNet on the UAV images; 
the system can achieve better performance by including diversity in the dataset (Ghosal 
et al., 2019). A hybrid approach consisting of SLIC (Simple Linear Iterative Clustering) 
and Hue properties was combined with a CNN model for the detection of flowers in a Soy-
bean field and a single axis robot was used for this purpose, and the authors also provided 
a future direction—that seed pod counting should also be considered (Yahata et al., 2017). 
A research utilized the UAV for the detection, classification, counting of trees, and evalu-
ation of varieties of citrus by the implementation of a famous DL detection model named 
YOLO-v3 (Ampatzidis & Partel, 2019).

In summary, the plant recognition task by DL models achieved considerably good per-
formance. Some future works are recommended like diversity in datasets and considering 
different crops to prove the effectiveness of CNNs. And stalk count/width should also be 
addressed in more detail.

Crop/Weed Discrimination and Classification of Weeds/Crops

Another complex agricultural task of discrimination between crop and weed has been 
reported by the DL approach through real-time robotic systems. In (Adhikari et al., 2019), 
the authors presented a deep convolutional encoder-decoder neural network and achieved 
a higher mIoU (mean Intersection of Union) which was significantly higher than the pre-
viously-used models like UNet (Ronneberger et  al., 2015), FCN (Long et  al., 2015) and 
DeepLabV3 (Chen et  al., 2017). A mobile platform was designed and implemented for 
the detection of weed in a radish farm by implementing an ANN model that showed the 
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obvious effectiveness of a neural network for the detection of weeds (SeI Cho, Chang, 
et  al., 2002; Cho, Lee, et  al., 2002). A CNN-based semantic segmentation for real-time 
crop and weed classification was done in a sugar beet field (Milioto et al., 2018). Another 
research was conducted to classify crop and weed by the implementation of a lightweight 
& deeper CNN on a mobile robot and the novelty of the work was that these CNN archi-
tectures were applied on the RGB along with Infra-red images (Potena et  al., 2016). A 
research was conducted to propose a class-wise stem and pixel-wise semantic segmenta-
tion-based system for the stem and crop/weed classification. This research achieved state-
of-the-art results through a mobile robot and UAV, and they outperformed conventional 
approaches like Random Forest, baseline-stem (Lottes et  al., 2018a). An FCN model 
having an encoder-decoder structure was proposed and implemented in sugar beet fields 
through a mobile robot named BoniRob containing RGB and NIR cameras for the col-
lection of datasets (Lottes et al., 2018b). An automated ground robotic system was imple-
mented for crop and weed discrimination through a simple ANN model by considering 
the natural environment, ignoring plants having incomplete features, and maximizing the 
pixels of weeds (Jeon et  al., 2011). The classification between crop and weed was also 
performed by the UAV platform through the famous CNN model ResNet and two agri-
cultural fields were considered to show the effectiveness of the proposed system; super-
vised labelling was done to improve the AUC on both fields. Moreover, an improvement in 
background segmentation by using multispectral images and graphical interface to gener-
ate an infestation map was suggested to reduce costs while applying herbicide in the fields 
(Bah et  al., 2018). A smart sprayer system was designed for the management of weeds 
and the system’s performance was analysed by using two different Graphical Processing 
Units (GPUs); real/artificial plants were also considered which clearly proved the useful-
ness of the DL model for the detection of weeds. As a future direction, an algorithm should 
be deployed that can vary the amount of chemical spray required to control the weed and 
its performance should be compared with the traditional sprayers (Partel et al., 2019). A 
wheeled robot named AgBotII was implemented on a cotton field to manage the weeds 
and proposed an image locking system for a clustering algorithm. The value of the work 
was shown by introducing a new performance metric named DScore and discrimination of 
weed was done successfully without previous knowledge of the field (Hall et al., 2017). A 
Micro Aerial Vehicle (MAV) was also implemented for the treatment of weed in a sugar 
beet field. The images were taken by multispectral imaging technique and a recently-devel-
oped SegNet model was trained and tested for the classification of weed and crop which 
could achieve higher accuracy by training the model on a larger dataset (Sa et al., 2017). 
In (dos Santos Ferreira et al., 2017), a quadcopter was used for the collection of crop and 
weed images, whereas the classification task was done by a very famous CNN architecture 
called AlexNet on Caffe software. Classification accuracy was compared with ML-based 
state-of-the-art approaches like SVM, Random Forest, and AdaBoost, and the results were 
obtained under a controlled environment which leads to a research gap that can be filled by 
considering a real environment with a larger dataset. A research was conducted to generate 
a publicly available dataset for the classification of eight types of weeds that were trained 
and tested through well-known CNN models like Inception-v3 and ResNet-50 (Olsen et al., 
2019). A mobile robot was used to generate the dataset for crop/weed detection (Di Cicco 
et al., 2017) and higher accuracy could be obtained by the use of NIR spectroscopy and 
hyperspectral imaging. A research was evaluated the robustness of the two models (JULE 
and DeepCluster) on the datasets developed in Olsen et al. (2019) and (dos Santos Ferreira 
et  al., 2017) by unsupervised clustering algorithms (dos Santos Ferreira et  al., 2019). A 
mobile robot was designed and implemented to classify crop and weed, and implemented 
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popular CNN architectures like AlexNet, VGG, ResNet, and Inception-v3, while the train-
ing was performed by the transfer learning technique through ImageNet dataset (Suh et al., 
2018). It is recommended to use Multiple classes to better prove the strength of the applied 
method. In (Dyrmann et al., 2017), the DetectNet model proposed in Barker et al. (2016) 
was used for the detection of weeds in a wheat field and an all-terrain vehicle was operated 
to generate the dataset. The proposed DL model should be tested in a real-time system 
to show the effectiveness of DetectNet architecture. Another article was published in the 
domain of weed detection by comparing the performance between SVM and ResNet mod-
els through a UAV in sugar beet fields; the obtained results favoured the ResNet model 
(Bah et al., 2019).

To conclude, many UAVs and ground robots have been implemented on fields like sugar 
beet, corn, etc., for performing complex tasks of weed/crop discrimination by state-of-the-
art DL models. These successful DL models should be tested on other crops by UAVs or 
other robotic platforms. Moreover, smart chemical sprayers should be deployed to control 
the weeds in agricultural fields.

Harvesting/Recognition of Fruits and Vegetables

Some of the recent studies were conducted for the fruit detection/harvesting task by well-
known DL architectures or by proposing an improved version of a DL model for forthcom-
ing agricultural robotic projects (Sa et al., 2016; Zhang et al., 2019). A few of them focused 
on designing a gripper for a fruit harvesting robot, like (Zhang, Harrison, et  al., 2020; 
Zhang, Huang, et al., 2020) proposed a harvesting system consisting of a low-cost robotic 
gripper and manipulator; the detection of the fruits/vegetables was done by the state-of-
the-art Mask-RCNN model. A research proposed an improved version of Faster-RCNN 
to detect fruits and the effectiveness of the proposed model was proved by comparing 
its performance with other well-known and successful DL image detection architectures 
including YOLO, Fast RCNN, and Faster RCNN (Wan & Goudos, 2020). A recent article 
proposed an apple recognition system by pulse couple neural network and genetic Elman 
neural network and achieved a higher recognition rate (Jia et al., 2020). In (Liu, Mao, et al., 
2019; Liu, Pi, et al., 2019), the authors proposed an improved version of a DenseNet model 
(Huang et al., 2017) to recognize and harvest tomatoes in a real environment. That research 
used a complex/actual environment that proved the novelty of the research as many of the 
previous studies used plain/controlled background and the rate of detection was compar-
atively better when compared to popular CNN models like ResNet, DenseNet, and SSD 
architectures. Another recent research was conducted for the classification of date fruits by 
well-known AlexNet and VGG-16 models trained through the transfer learning technique 
and comparing the performance of these models with previously published work (Altaheri 
et al., 2019). For the tomato harvesting robot, a wavelet transform-based image processing 
technique was applied along with two hidden layer feed-forward neural network models 
(Arefi & Motlagh, 2013). Another research implemented DL architecture by proposing a 
CNN model to harvest tomatoes and obtained 91.9% accuracy in a short period of time 
(Zhang, Jia, et al., 2018; Zhang, Qiao, et al., 2018).

In this article, those studies which used different robotic platforms for fruit harvest-
ing/recognition purpose are extensively summarized. A novel research was conducted in 
which a robotic manipulator consisting of four arms was designed and implemented in a 
kiwifruit orchard for harvesting; the novel end-effector for each arm was designed to pick 
kiwifruit safely and dynamic scheduling was also done. The detection of kiwifruits was 
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done by proposing a fully convolutional network named FCN-8S and real-field testing was 
performed which gave 51% successful harvesting results. Moreover, it was also determined 
that with the applied approach, the rate of successful harvesting can be increased to 70% 
and that a greater degree of freedom could increase cycle time (Williams et  al., 2019). 
Few recent articles considered an important agricultural task of segmentation of fruit clus-
ters in the real agricultural environment. In this regard, the first attempt was made for the 
estimation of canopy volume, counting, and detection of grape clusters. The images were 
taken by an RGBD camera placed on a mobile platform. Four pre-trained DL models were 
implemented; the VGG-19 model attained the highest accuracy (Milella, Marani, et  al., 
2019). Another recent study reported the segmentation of clusters of grapes by pre-trained 
DL architectures. Moreover, a novel method to improve the segmentation of cluster pix-
els was proposed. Due to high segmentation accuracy (Marani et al., 2020), this research 
could be adopted for the future research. A study implemented a simple backpropagation 
neural network on a sorting system consisting of a conveyor belt to classify the date fruit, 
and the future work should comprise an impact sensor, and feature a distribution-based 
method which should be introduced for better grading of the fruit (Al Ohali, 2011). A six 
DoF robotic manipulator was implemented for an ice lettuce farm and achieved a good 
success rate for harvesting, but the average cycle was comparatively slower than a human’s 
performance due to the weight of the end-effector. Also, the damage rate is required to be 
reduced in future studies (Birrell et al., 2019). For the harvesting robot, the Mask-RCNN 
with ResNet-50 model was used to detect strawberries and achieved higher mean Inter-
section over Union (mIoU). But it is suggested that the real-time implementation can be 
improved by proposing a lightweight model and the sample size could also be increased to 
improve the performance (Yu et al., 2019). To perform two tasks simultaneously (detection 
of fruits and estimation of their ripeness), a CNN-based system was proposed in Halstead 
et al. (2018). An important task of fruit detection on a coffee crop was performed by UAV 
in which a simple ANN model was used and compared with well-known ML techniques 
like K-nearest neighbour and random forest classifier; ANN outperformed the ML tech-
niques in terms of F-score (Carrijo et  al., 2017). An Unmanned Ground Vehicle (UGV) 
system was deployed in an orchard for the detection of fruits and their yield was estimated 
by CNN, MLP, and WS algorithms. Future studies can be conducted to use the transfer 
learning technique and various labelling methods should be implemented to advance the 
performance (Bargoti & Underwood, 2017a, b). A comprehensive research was conducted 
for the detection of fruits in an orchard by UGV through Faster-RCNN with ZFNet and 
VGG-16. The secondary contribution of this research was the evaluation of the transfer 
learning method, the conclusion being that for the fruits detection task of the dataset used 
in that research, this approach was not very useful in terms of average precision, and the 
transfer learning strategy was suggested with variation/diversity in the dataset images 
(Bargoti & Underwood, 2017a, b). A robotic arm along with its grippers and recognition 
system was designed to harvest tomatoes; a YOLO model was used for the detection of 
tomatoes. It is to be noted that, following hardware design and obtaining good recogni-
tion and harvesting results, the applied YOLO method should be compared with other DL 
architectures like Faster-RCNN, SSD, etc. (Yeshmukhametov et al., 2019). A mobile robot 
was designed that consisted of robotic arms for the detection of tomatoes according to their 
maturity level. For that purpose, the MobileNet model with SSD architecture was selected 
due to its best performance in terms of classification accuracy after a comprehensive com-
parison of state-of-the-art DL architectures like YOLO-v3 and ResNet-152 with Faster-
RCNN (Horng et al., 2019). An UR3 robotic arm was used for harvesting apples and Single 
Shot Multibox Detector (SSD) was used, although the implemented DL network achieved 
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more than 90% detection accuracy. But other efficient DL models (Faster RCNN or RFCN) 
should still be tested to further investigate the effectiveness of SSD for that task (Onishi 
et al., 2019). Another research article used a robotic manipulator to recognize seven veg-
etables by well-known DL feature extraction/detection architectures, but the recognition 
accuracy should be further increased by proposing some key modifications on the models 
applied in this research (Zheng et al., 2018).

From the explanation provided above, it is evident that several robotic manipulators 
have been proposed in many studies for the recognition/harvesting of fruits and vegetables, 
and various DL architectures have been implemented to perform these tasks in real-time. 
Nonetheless, only a few suggestions have been highlighted for the improvement in accu-
racy such as training the DL models by transfer learning technique and some modifications 
in famous DL models, etc.

Land Cover Classification

Land cover classification is a vast topic. Many studies have been conducted to classify 
land covers of various types to perform an overall analysis of one or more areas by DL-
based techniques, specifically CNN architectures (Huang et  al., 2018; Luus et  al., 2015; 
Zhang, Harrison, et al., 2020; Zhang, Huang, et al., 2020). Some researchers used publicly 
available datasets by considering important lands of an area and performed classification 
studies by CNN models (Helber et al., 2019). In this review, only those studies were con-
sidered which incorporated agricultural land covers. For example, a single hidden layer 
neural network based on the extreme learning machine (ELM) method was proposed for 
this task and achieved comparable performance with a backpropagation neural network 
(BPNN) (Pal, 2009). An Unmanned Aircraft System (UAS) was implemented to classify 
land covers by Fully Convolutional Network (FCN), Support Vector Machines (SVM), 
Random Forest (RF), and Deep Convolutional Neural Network (DCNN) and concluded 
that DCNN and FCN have substantially higher accuracy than other classifiers, and authors 
suggested that multi-view data taken from the UAS can work with the DNN without need-
ing a huge amount of training data (Liu, Abd-Elrahman, et al., 2018; Liu, Zhang, et al., 
2018). To monitor forest cover, the CNN approach was adopted for the images taken from 
airborne and LiDAR. The weights can be optimized and other agricultural lands should be 
considered to prove the effectiveness of the method (Suzuki et  al., 2018). The detection 
of citrus along with other crops’ trees was performed by UAV through the implementa-
tion of a simple CNN model consisting of only one hidden layer (Csillik et al., 2018). A 
research letter was published to show the significance of the Deep Recurrent Neural Net-
work (DRNN) for the task of land cover classification on the satellite images, found that 
one set of images achieved the highest accuracy by RF (LSTM) model while other datasets 
obtained best results by SVM (LSTM) model (Ienco et al., 2017). Another research was 
conducted to classify satellite images of 11 different crops’ land by RNN predominantly 
Long Short Term Memory (LSTM) and Gated Recurrent Unit (GRU). This analysis was 
important to get the spatial information of the crops. It was suggested that multi-source 
data such as optical and SAR radar could be implemented in the future (Ndikumana et al., 
2018). Another research was conducted to project the dynamics of forest cover by LSTM-
based DL architecture, and relative explanatory variables to be included in future work 
and a robust deep learning model for different forest covers could be proposed (Ye et al., 
2019). A study proposed the 3D-VGG model to show its effectiveness for the classification 
of crops’ lands from the images taken by two satellites (Ji et al., 2018). In (Kussul et al., 
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2017), a study presented the classification of various land cover types and crop types by the 
application of 1-D and 2-D CNNs for the first time specifically for the multisource satellite 
images, and the performance of CNNs was compared with RF and MLP. A study utilized 
hyperspectral images for the classification of various categories of natural vegetation and 
evaluated the performance of CNN, RF, and SVM. Moreover, accuracy can be increased by 
proposing an improved version of DL architecture (Guidici & Clark, 2017). A research was 
conducted by an airborne imaging system considering three kinds of datasets out of which 
two datasets were related to agricultural crops and the third dataset was related to various 
buildings; the applied CNN model was highly accurate to classify different crops for the 
first two locations (Song & Kim, 2017). Some well-known and successful DL models were 
trained and tested on wetland classes and found that the Inception ResNet-v2 model out-
performed the other DL models including VGG, ResNet, Xception, DenseNet, Inception-
v3 (Mahdianpari et  al., 2018). The classification of 14 agricultural landscapes was per-
formed by proposing six DL architectures and comparing the best CNN model with RF 
algorithm to prove its effectiveness in terms of its spatial feature extraction capability (Xie 
et al., 2019).

Various state-of-the-art DL models performed the task of agricultural land cover classi-
fication, especially CNNs and RNNs, which opens future research opportunities to manage 
various agricultural landscapes in a better way.

Overall Presentation of DL Algorithms for Agricultural Operations by Robots

The performance of DL/ML algorithms described in this section for the various agricul-
tural operations is presented by bar plots in Figs. 6, 7, 8, and 9. In these plots, the DL/
ML models are grouped by their respective research articles (denoted by D1, D2, D3, and 
so on) which are cited in Figs. 10, 11, 12, and 13 respectively. These figures are address-
ing the research questions mentioned in “Introduction” regarding the performance metrics/
indicators, robotic platforms, and agricultural products, that have been commonly used dur-
ing the implementation of deep learning architectures. It is also to be noted from the plots 
that some of the articles have shown the superiority of DL/ANN over traditional ML algo-
rithms, like (Gutierrez et al., 2019) evaluated that RCNN outperformed the KNN model for 
the task of plant disease detection; in (Fan et al., 2018), the CNN achieved slightly better 
performance than SVM and RF for plant recognition purposes. To perform the crop/weed 
discrimination task, ResNet outperformed SVM and RF models (Bah et al., 2018), and, as 
described in (dos Santos Ferreira et  al., 2017), a Convnet achieved better precision than 
RF. For the recognition of coffee, ANN obtained better results than KNN and RF (Carrijo 
et al., 2017). Moreover, several studies were conducted which proved the significance of 
DL models as compared to ML algorithms for the classification of agricultural land cover 
(Liu, Abd-Elrahman, et al., 2018; Liu, Zhang, et al., 2018), (Kussul et al., 2017), (Guidici 
& Clark, 2017) and (Xie et al., 2019). Similarly, from bar plots, it can also be observed that 
the deep learning-based image classification algorithms like AlexNet (Krizhevsky et  al., 
2012), ResNet (He et al., 2016), VGG (Simonyan & Zisserman, 2014), Xception (Chollet, 
2017), MobileNet-v2 (Sandler et al., 2018) and object detection algorithms including Fast 
RCNN (Girshick, 2015), Faster RCNN (Ren et al., 2015), SSD (Liu et al., 2016), various 
versions of YOLO (You Only Look Once) models like YOLO-v1 (Redmon et al., 2016), 
YOLO-v2 (Redmon & Farhadi, 2017) and YOLO-v3 (Redmon & Farhadi, 2018) have been 
commonly used for various agricultural tasks. Therefore, upcoming research should incor-
porate any of the agricultural tasks by using successful deep learning models or proposing 
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modifications in the form of cascaded or hybrid versions, essential changes in convolu-
tional layers, the number of filter, stride, etc. (Liu, Abd-Elrahman, et al., 2018; Liu, Zhang, 
et al., 2018; Singh et al., 2019; Zhang, Jia, et al., 2018; Zhang, Qiao, et al., 2018). Its per-
formance should then be tested offline before its implementation on real robotic platforms. 
Some important research gaps/future directions from this section are provided in Table 3.

Conclusion and Future Directions

In this review, robotic solutions are presented for the major agricultural tasks by machine 
and deep learning algorithms. Moreover, the performance of machine learning models is 
summarized along with selected agricultural products and robotic platforms for certain 
agricultural operations. Furthermore, the performance plots are drawn to indicate the effec-
tiveness of deep learning models for the respective agricultural tasks. From the plots, it can 
be concluded that the DL architectures outperformed traditional ML algorithms. Although 
significant developments have been observed in recent studies, still some important 
research gaps are identified to further advance the agricultural field of research.

A brief summary of prominent results to indicate the significance of the DL architec-
tures as compared to the ML-based techniques applied through the robotic system for five 
selected agricultural applications, and few future works is presented as follows:
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Fig. 6   Performance plots (in %) of ML/DL models used in robotic systems for plant disease detection (hori-
zontal bars) and plant recognition (diagonal bars) tasks
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•	 Plant disease detection: RCNN achieved 82.51% detection rate, which was better 
than the other methods including SSD, MLP, and KNN with a difference of 13.08%, 
17.61%, and 18.75%, respectively.

•	 Plant recognition: CNN attained 0.84 F-measure, which was greater than the Viola-
Jones’ method that achieved 0.80 F-measure.
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Fig. 7   Performance plots (in %) of ML/DL models used in robotic systems for crop/weed discrimination 
task
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ing tasks
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•	 Crop/weed discrimination: A well-known DL model named ResNet (94.84%) outper-
formed the traditional ML algorithms including SVM (60.6%) and RF (70.16%) in 
terms of area under the curve.

•	 Fruit recognition/harvesting: An ANN-based model achieved 0.5553 F-measure, which 
was slightly better than the ML models like KNN (0.5284) and RF (0.5255).

•	 Agricultural land cover classification: Three studies revealed that the performance of 
DL models was better than the ML-based techniques as listed below:

•	 FCN got 83.9% overall accuracy, which was greater than DCNN (76.9%), SVM 
(67.6%), and RF (65.6%) models.

•	 2D-CNN attained a higher accuracy (94.6%) as compared to 1D-CNN (93.5%), 
ENN (92.7%), and RF (88.7%) models.

•	 CNN (89.9%) performed better than SVM (89.5%) and RF models (82.2%) in terms 
of overall accuracy.

•	 Out of five major agricultural operations, plant disease detection and classification 
lack a comprehensive study. Although these agricultural tasks have been addressed by 
offline approaches in many research articles, these should be performed by a robotic 
manipulator/mobile robot through deep learning meta-architectures.

•	 After the successful application of DL algorithms for the detection/classification of 
plant disease by the robot, a combined effort by engineers and agronomists is required 
to implement a chemical spraying system that would apply fungicide/herbicide spray to 
the defected parts of the plant. It will be useful to reduce the cost of the crop protection 
system for agricultural farms.

•	 Most of the approaches were detected/classified disease in plant leaves, but the defects 
in other parts of the plant species should also be detected like stems/flowers.

•	 The adaptive nature of DL models should be utilized to show its automatic feature 
extraction capability for performing the various agricultural tasks by an efficient DL-
based robot. For this purpose, the diversity in datasets must also be presented.
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Fig. 9   Performance plots (in %) of ML/DL models used in robotic systems for the land cover classification
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•	 To improve the performance of various complex agricultural tasks, the modified/cas-
caded version of DL models should be proposed which can show their effectiveness by 
visualizing their convolutional layers.

•	 A multi-purpose robot should be designed to show its adaptive behaviour in a sense of 
its physical structure to perform various operations in a farm (a tractor is the best exam-
ple of a robotic platform that can be used for various purposes like plowing, planting, 
and similar tasks).
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(c) (d)

D1: 
Bierman 

et al., 
2019

•Valida�on 
accuracy
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2019
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•Stand-s�ll 

system
•Tomato

D3: da 
Costa 
et al., 
2020

•Average 
precision

•Roller tracks
•Tomato

D4: 
Polder 
et al., 
2019

•Precision
•Tractor 
•Potato

D5: 
Joffe et 

al., 
2018 

•Average 
precision

•Robo�c arm
•General plant

D6: 
Kerkec
h et al., 

2019

•Detec�on 
accuracy

•UAV
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D7: Ha 
et al., 
2017

•Accuracy
•UAV
•Radish
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•UAV
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et al., 
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•Mobile robot
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et al., 
2019a
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Quiroz 

and 
Alférez, 
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•Mean accuracy
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et al., 
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et al., 
2017
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Partel, 
2019

•Precision
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Fig. 10   The corresponding reference of research articles (D1–D15) linked to the bar plot (Fig. 6), and per-
formance metrics along with robotic platforms and agricultural products; a and b present plant disease 
detection task, whereas, c and d present plant recognition task
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•	 To visualize the complex agricultural tasks like crop/weed discrimination and fruit 
detection, advanced visualization techniques such as saliency map should be applied.

•	 Some articles have previously presented to understand the factors affecting the perfor-
mance of ML/DL algorithms for agricultural tasks, but a comprehensive study is still 
required for further development in agricultural automated systems.

•	 Improvement in land cover classification could be done by proposing an improved ver-
sion of CNN/RNN.

•	 For better growth of agricultural products, an automated system should be proposed for 
the prediction of soil moisture content through robotic platforms.

•	 A recent topic like Internet of Robotic Things should also be deployed for agricultural 
purposes so that a new research area would be able to be explored.
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Fig. 11   The corresponding reference of research articles (D16-D28) linked to the bar plot (Fig. 7) for crop/
weed discrimination task, and performance metrics along with robotic platforms and agricultural products
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(c)
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Zhang 
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Fig. 12   The corresponding reference of research articles (D29-D39) linked to the bar plot (Fig. 8) for fruit 
recognition and harvesting tasks, and performance metrics along with robotic platforms and agricultural 
products
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Fig. 13   The corresponding reference of research articles (D40-D49) linked to the bar plot (Fig. 9) for land 
cover classification task, and performance metrics along with robotic platforms and agricultural products
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