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Abstract
Proximal sensing is being integrated into vineyard management as it provides rapid assess-
ments of spatial variability of soils’ and plants’ features. The electromagnetic induction 
(EMI) technology is used to measure soil apparent electrical conductivity (ECa) with 
proximal sensing and enables to appraise soil characteristics and their possible effects on 
plant physiological responses. This study was conducted in a micro irrigated Cabernet 
Sauvignon (Vitis vinifera L.) vineyard to investigate the technical feasibility of apprais-
ing plant water status and its spatial variability using soil ECa and must carbon isotope 
ratio analysis (δ13C). Soil temperature and soil water content were monitored in-situ using 
time domain reflectometry (TDR) sensors. Soil ECa was measured with EMI at two depths 
[0–1.5 m (deep ECa) and 0–0.75 m (shallow ECa)] over the course of the crop season to 
capture the temporal dynamics and changes. At the study site, the main physical and chem-
ical soil characteristics, i.e. soil texture, gravel, pore water electrical conductivity (ECe), 
organic carbon, and soil water content at field capacity, were determined from samples 
collected auguring the soil at equidistant points that were identified using a regular grid. 
Midday stem water potential (Ψstem) and leaf gas exchange, including stomatal conduct-
ance (gs), net carbon assimilation (An), and intrinsic water use efficiency (WUEi) were 
measured periodically in the vineyard. The δ13C of produced musts was measured at har-
vest. The results indicated that soil water content (relative importance = 24%) and texture 
(silt: relative importance = 22.4% and clay: relative importance = 18.2%) were contribut-
ing the most towards soil ECa. Deep soil ECa was directly related to Ψstem (r2 = 0.7214) 
and gs (r2 = 0.5007). Likewise, δ13C of must was directly related to Ψstem (r2 = 0.9127), gs 
(r2 = 0.6985), and An (r2 = 0.5693). Results from this work provided relevant information on 
the possibility of using spatial soil ECa sensing and δ13C analysis to infer plant water status 
and leaf gas exchange in micro irrigated vineyards.
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Introduction

Electromagnetic induction (EMI) for soil sensing has been increasingly studied and used 
in viticulture systems with the surge of precision agriculture technologies owing to its non-
destructive and prompt manner in acquiring soil data in commercial vineyards (Morari 
et al. 2009; André et al. 2012; Rossi et al. 2013; Yu and Kurtural 2020). Soil apparent elec-
trical conductivity (ECa), or its reciprocal soil apparent electrical resistivity (ERa), is the 
main variable EMI sensors can measure and is utilized as an integrated variable to assess 
soil physical and chemical properties, including soil texture, water content, and salinity 
(Bittelli 2011; Brillante et al. 2014; De Clercq et al. 2009). Other soil characteristics, such 
as soil compaction and soil clay content can be appraised through soil ECa sensing, accord-
ing to studies conducted by various authors (Hedley et  al. 2004; Rodríguez-Pérez et  al. 
2011; Zarrouk et al. 2012). Previous research work indicated that, depending on the soil 
types, the severity of water deficits, and the grapevine cultivars, most of the active root 
zones are frequently distributed within the upper 1.0–1.2  m soil depth in drip irrigated 
vineyards (Smart et  al. 2006; Soar and Loveys 2007; Steenwerth et  al. 2008). Thus, the 
relationship between soil ECa and plant available water can be evaluated through the use of 
EMI sensors.

In the irrigated vineyards of northern California, when the soil–water salinity is low, 
the soil moisture content may become one of the main factors influencing soil ECa (Bril-
lante et al. 2015). Among many plant physiological variables, plant water status is one of 
the most critical factors regulating plant physiological processes and responses to environ-
mental parameters (Ojeda et al. 2001; Acevedo-Opazo et al. 2010). The plant water status 
is commonly assessed by measuring the hydrostatic pressure in plant tissues with a pres-
sure chamber through leaf or stem water potential measurements (Scholander et al. 1965). 
The processes is time-consuming and labor-intensive, hence it is not practically applicable 
at field scale in large commercial vineyards. With the possibility to promptly assess soil 
ECa at field scale, EMI sensing eases the burden to identify the variability in soil and, 
potentially, the plant response in terms of plant water status and berry development (Bram-
ley et al. 2011a; Tagarakis et al. 2013). Although the soil water content can be difficult to 
quantitatively predict from soil ECa assessments, due to the heterogeneity of vineyard soils 
(Brillante et al. 2014), the soil–plant water continuum can be well explained once the phys-
ical and chemical properties are surveyed to make soil ECa by proximal sensing explicitly 
interpretable (Morari et al. 2009). In viticulture research, the performance of grapevines is 
always the focus of both scientific research and commercial production. With soil texture 
playing an extremely critical role in grapevine growth and berry development, by provid-
ing nutrients and water, proximal soil sensing has the potential to capture the main sources 
of variability in the vineyards. A few recent studies have investigated how soil ECa sensing 
can be integrated into vineyard management (Brillante et al. 2015; Bonfante et al. 2015; Yu 
and Kurtural 2020). However, in the recent applications of proximal soil sensing in wine 
grape vineyards, the functional relationships between the soil ECa and the whole plant 
physiology are lacking thorough investigation and quantification.

Other than soil ECa sensing, an integrator of plant water status was recently inves-
tigated by analyzing the carbon isotope ratio of must sugars (van Leeuwen et al. 2010; 
Brillante et al. 2018). Briefly, ribulose 1,5-diphosphate will deplete more of the heavier 
carbon isotope 13C when stomata close under water deficits in most of the C3 plants, 
causing the 13C–12C ratio to increase (Farquhar et  al. 1982, 1989). As a result, the 
assimilated sucrose in leaves will be translocated into berries and converted to glucose 
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and fructose (Dai et al. 2013). The ratio of 13C to 12C was shown to be indirectly related 
to plant water status and stomatal conductance and net carbon assimilation by earlier 
studies (Farquhar et al. 1989; Bchir et al. 2016). Based on this mechanism, carbon iso-
tope ratio analysis (δ13C) on berry must sugars can be exploited as an integrated proxy 
for spatially assessing plant water deficits (Gaudillère et al. 2002). Being able to reveal 
the accumulated effects of water deficits between veraison and ripening (Bchir et  al. 
2016), this method can act as a complementary approach to validate proximal soil sens-
ing, without the demand to tracking plant water status throughout the berry maturation, 
to direct site-specific management for the upcoming season.

Overall, this study aimed at understanding how feasible it was to assess the vine 
water status through soil ECa sensing in wine grape vineyards. This study was also 
aimed to confirm the hypothesis that water could be the most contributing factors on 
soil ECa in wine grape vineyards. Finally, the possibility of using the must δ13C analy-
sis to understand the relationships among grape berry sugar content, plant water status, 
and leaf photosynthesis would be evaluated. Such relationships may allow using δ13C, 
among other variables, for managing vineyard variability in Mediterranean climates.

Materials and methods

Vineyard site and weather information

This study was conducted in 2019 in Oakville, California, USA, with Vitis vinifera L. 
cv. Cabernet Sauvignon grafted on 3309C (V. riparia × V. rupestris). The grapevines 
were spaced at 1.5 m × 2.0 m (vine × row) and trained as a bi-lateral cordon on a sin-
gle wire at the height of 1.80 m above the ground. The grapevines were mechanically 
pruned to a spur height of 0.10 m and treated with mechanical shoot removal at Eich-
horn-Lorenz (E-L) stage 17 (Coombe 1995) to meet production demands. Bud break 
occurred on 7 April, 2019 at the study vineyard. The vineyard was drip irrigated with 
two emitters per plant with a nominal flow rate of 4 L h−1. Irrigation events were sched-
uled from fruit-set to harvest to refill about 50% of the potential crop evapotranspira-
tion. About 138.6 mm of irrigation water was applied from fruit set to harvest, which 
occurred on 20 September 2019. Weather information at the study site was obtained 
from the automated weather station No. 77 (Oakville, CA) of the California Irrigation 
Management Information System (CIMIS), which is located about 200  m away from 
the study vineyard. The amount of irrigation water to apply was calculated multiplying 
the reference evapotranspiration (ETo), obtained from the local CIMIS station, by an 
empirical crop adjustment coefficient (Kc) estimated on the basis of the ground shaded 
area by the vines according to the methodology reported by Williams and Ayars (2005). 
The growing degree days (GDD) were calculated based on the average air temperature 
determined from the local CIMIS weather station as:

where Max T is daily maximum air temperature, Min T is the minimum air tempera-
ture, and Tref is the reference temperature of 10 °C.

(1)GDD =

[

(MaxT −MinT)

2

]

− Tref
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Experimental design

A regular 30  m × 30  m grid was used to set equidistant points throughout the vineyard 
with the size of approximately 0.5  ha where field measurements were collected. The 
grid allowed to identify 14 experimental units that included 3 grapevines per unit. The 
geolocations of the center grapevine within each experimental unit were registered with 
a GPS device (Yuma 2, Trimble Inc., Sunnyvale, CA, USA) connected to a Trimble Pro 
6 T DGNSS receiver (Trimble Inc., Sunnyvale, CA, USA) to assist further GIS analysis 
(Fig. 1).

Vineyard soil physical–chemical characteristics

Soil samples were taken on 29 May 2019, 52 days after bud break (DAB), from two depths 
in the 14 experimental units, including deep soil (0.75–1.5 m) and shallow soil (0–0.75 m). 
Soil pH, cation exchange capacity (CEC), soil organic carbon (SOC), total nitrogen (TN), 
and soil texture were measured according to the soil analysis methods of the North Ameri-
can Proficiency Testing (NAPT) program, western states section. Soil pH was measured 
with the saturation paste method (S–1.10), CEC was calculated from the extractable cati-
ons measured by ammonium acetate method (S–5.10), SOC and TN were measured by 
combustion method (S–9.30), soil texture was acquired by hydrometer analysis (S–14.10). 
Soil moisture content, gravel content were determined by the method in Sect. 26 in USDA 
Handbook No. 60 (Diagnosis and Improvement of Saline and Alkali Soils).

Assessment of spatial and temporal variations of soil features

Soil ECa was measured with an EM38 portable device (Geonics Ltd., Mississauga, ON, 
Canada), using both the vertical dipole mode (VDM) and horizontal dipole mode (HDM) 

Fig. 1   Location of the experiment site in Oakville, California, USA. a Highlighted area indicates the vine-
yard location in California, U.S.A. b Map of the experimental block with 14 experimental units marked, 
yellow squares illustrate the locations of each experimental unit. MHW mechanical high wire. (Fig. 1b pre-
viously appeared in Yu and Kurtural 2020) (Color figure online)
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to obtain ECa at two depths, i.e. 0–0.75 m and 0–1.50 m for shallow and deep soil lay-
ers, respectively. The EM38 device was calibrated prior to each soil survey following the 
manufacturer’s instructions in order to minimize errors. The instrument was placed on a 
sled consisting of PVC frame and was pulled by an all-terrain vehicle along the inter-rows 
at a distance of about 0.5 m from the vines to minimize interference phenomena due to 
metal wires of the trellis system, and about 0.15 m above the soil surface. The soil ECa 
was first assessed when the vineyard was around field capacity, i.e. 52 DAB. Three more 
measurements were taken on 94, 129, and 166 DAB using the same EM38 mobile device 
and settings.

Time domain reflectometry (TDR) sensors were installed at four of the 14 experimen-
tal units, including MHW1, MHW4, MHW9, and MHW12, which were selected on the 
basis of two main plant water status zones that were previously determined across the study 
orchard within a parallel research work (Yu and Kurtural 2020). Each soil moisture meas-
urement location was equipped with an access tube, TDR sensors for in-situ determination 
of soil water content and with soil pore water electrical conductivity (ECe) meter to assess 
the soil–water salinity. The soil at the study site corresponds to the Bale soil series and is 
classified as fine-loamy, mixed, superactive, thermic Cumulic Ultic Haploxerolls according 
to the USDA soil classification system. The Bale soil series consists of very deep, some-
what poorly drained soils formed in stratified, gravelly and sandy alluvium from mixed 
sources. In these soil series, Ap horizon is distributed from 0 to 0.15 m deep, B horizon 
distributed from 0.15 to 0.61  m, Ab horizon is distributed from 0.61 to 1.12  m, and C 
horizon is distributed from 1.12 to 1.47 m. Three TDR sensors (TDR-315, Acclima, Inc., 
Meridian, ID, USA) were installed at 0.375 m, 0.75 m, and 1.45 m at each location to col-
lect soil measurements for 0 – 0.75 m and 0–1.5 m soil depths by assessing horizons B, 
Ab, and C. However, the Ap horizon was not monitored by TDR due to the mechanical 
soil tillage periodically conducted throughout the growing season. The TDR sensors func-
tion within ± 0.1 vol %, for percent soil volumetric water content between 0 and 100 vol 
%, and ECe between 0 and 55 dS m−1. All the soil moisture sensors measured a width of 
about 0.15 m. As such, the sensors installed at 0.375 m and 0.75 m measured the volume 
corresponding to a depth of 0.75 m by 0.15 width for shallow soil, whereas the sensors at 
0.75 m and 1.5 m measured a volume corresponding to a depth of 1.5 m. The values of 
soil volumetric water content (vol %) from both the analyses conducted on soil samples 
and those resulting from the TDR sensors were converted to cumulative soil water content 
(mm). At each location, the TDR sensors were connected to a DataSnap data logger (SDI-
12, Acclima, Inc., Meridian, ID, USA) and the measurements were logged automatically 
every 10 min. The soil moisture data were then averaged at a daily time-step and cleaned 
following the Tukey rule by removing the outliers whose values were either lower than the 
first quartile minus 1.5 times the interquartile range (IQR) or higher than third quartile plus 
1.5 times the IQR. The soil ECe, which was continuously monitored by TDR sensors at 
three depths, was consistently stable throughout the season without considerable increase 
approaching the harvest. Especially for the sensors at 0.375 m deep, consistently yielded 
ECe values below 2.5 and 3.0 dS m −1. Hence, it was assumed that the soil at this specific 
vineyard was non-saline and soil salinity did not act as a temporal fluctuating factor which 
could dominate ECa.

Soil ECa assessed by EM38 was corrected to a reference temperature of 25 °C according 
to Hayashi (Hayashi 2004) with the following equation:

(2)EC25 = ECT∕[1 + �(T − 25)]
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where EC25 is the ECa value at a referenced temperature of 25 °C, ECT is the ECa value 
at a measured temperature T by TDR sensors, and δ is set to 0.0191 °C−1 as the commonly 
used value based on the EC and temperature relationship of 0.01 M KCl solution.

Measurements of grapevine canopy parameters

Leaf area index (LAI) was measured with a smartphone based program “VitiCanopy” (De 
Bei et al. 2016) coupled with an iOS system (Apple Inc., Cupertino, CA, United States). 
The gap fraction threshold was set to 0.75, the extinction coefficient was set to 0.7, and 
sub-divisions were 25. The device was positioned at about 0.75 m underneath the canopy, 
with the maximum length of the screen being perpendicular to the cordon, and the cordon 
being located at the center of the screen according to the user’s instructions.

Normalized differential vegetation index (NDVI) was acquired with Crop Circle ACS-
430 (Holland Scientific, Lincoln, NE, USA) at canopy closure on 13 May 2020, and calcu-
lated as,

where rNIR was the reflectance in the near-infrared band, and rRED was the reflectance 
of the red (visible) band (Kriegler et al. 1969). The measurement was conducted the two 
sensors mounted on each side of the vineyard vehicle to a height accommodating the trel-
lis. The data was recorded at 1 Hz to a GeoScout datalogger (Holland Scientific Inc., Lin-
coln, NE, USA) and geolocated with a Garmin 18 × 5 Hz GPS (Garmin Ltd., Olathe, KS, 
USA).

The spatial homogeneity was tested for LAI and NDVI by Cambardella index (CI), and 
calculated as,

where c0 is the nugget, c0 + c1 is the sill. When CI is less than 25, there is a strong spa-
tial dependency; between 25 and 75, there is a moderate spatial dependency; more than 75, 
there is a weak spatial dependency (Cambardella et al. 1994).

Measurements of plant water status: mid‑day stem water potential and leaf gas 
exchange

Mid-day stem water potential (Ψstem) measurements were taken bi-weekly over the course 
of the 2019 growing season. The measurements were taken on 2 July, 17 July, 1 August, 
15 August, 29 August, and 20 September in 2019. From the main shoot axes on the grape-
vines, three shaded leaves were chosen and concealed in pinch-sealed Mylar® bags up 
to two hours prior to the measurements in each experimental unit. A pressure chamber 
(Model 615D, PMS Instrument Company, Albany, OR, USA) was used to take the Ψstem 
readings (Williams and Araujo 2002).

On the same dates, leaf gas exchange measurements were also taken at mid-day 
using a portable infrared gas analyzer CIRAS-3 (PP Systems, Amesbury, MA, USA). 
Three sun-exposed leaves were chosen from the main shoot axes, and three readings 
were taken on each selected leaf. In 2019, the sunlight was close to saturating condi-
tions when the leaf gas exchange measurements were taken, where the average PARi 
was 1749.3 ± 203.7  µmol  m−2  s−1. And the average vapor-pressure deficit (VDP) was 

(3)NDVI = (rNIR − rRED) ÷ (rNIR + rRED)

(4)CI = [c0/(c1 + c0)] × 100
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4.4 ± 1.7 kPa, average leaf temperature was 37.0 ± 4.2 °C. The standard environmental con-
dition in the infrared gas analyzer was set with a relative humidity at 40% and a reference 
CO2 concentration at 400 μmol CO2 mol−1. Net carbon assimilation rate (AN, μmol CO2 
m−2 s−1) and stomatal conductance (gs, mmol H2O m−2 s−1) were directly read by the gas 
analyzer. Intrinsic water use efficiency (WUEi, μmol CO2 mmol−1 H2O) was calculated as 
the ratio between AN and gs, according to equation WUEi = AN/gs.

Carbon isotope ratio analysis of berry must sugars (δ13C)

One-hundred berries were randomly collected at harvest from each experimental unit for 
δ13C analysis. The berries were crushed by hand and 1.5 mL of must was transferred into 
2 mL conical tubes, and centrifuged at 4,000 RPM for 15 min. Afterwards, 10 µL of the 
supernatant from each sample was transferred into tin capsules (Thermo Fisher Scientific, 
Waltham, MA, USA) and placed in a microplate. The microplates were placed in oven at 
80 °C overnight until completely dehydrated. The open tin capsules were then folded into 
a cubit, and wrapped, folded with another tin capsule to ensure the seal. The samples were 
analyzed for isotope ratio on a Vario MicroCube elemental analyzer coupled in a continu-
ous flow mode to an isotope ratio mass spectrometer (IsoPrime, Elementar, Ronkonkoma, 
NY, USA). The δ13C values are reported in parts per thousand (‰) relative to the Vienna 
Peedeebelemnite-CO2 (VPDB-CO2) international reference.

Data processing and analysis

Geostatistical analysis, including kriging for proximal soil sensing, LAI, NDVI and soil 
characteristics were performed using ArcGIS (version 10.6, Esri, Redlands, CA, USA). 
The soil and NDVI were filtered by the speed that the vehicle was driving, which was 
between 3.2 km per hour and 8.0 km per hour. The specific soil ECa values were extracted 
from each experimental unit location, and then used for further analysis.

The R software package (R Foundation for Statistical Computing, Vienna, Austria) was 
used with the ‘dplyr’ package (Wickham et  al. 2020) to perform multivariate regression 
analysis and derive the model between ECa and soil characteristics, including SOC, gravel 
content, silt content, clay content, soil ECe, and soil water content. Specifically, a multivari-
ate regression model was developed to allow using the relationships between measured soil 
characteristics as predictors and ECa. An analysis of relative importance was performed 
with ‘relaimpo’ package (Grömping 2006). Linear regression analysis and graphing were 
performed using SigmaPlot 13.0 (Systat Software Inc., San Jose, CA, USA). The coeffi-
cient of determination between variables was calculated with linear regression analysis, 
and p values were determined to appraise the significance of the linear fittings, while root-
mean-square errors (RMSE) were calculate to evaluate the standard deviation of the unex-
plained variance.

Results and discussion

Weather at experiment site

The experiment site received 10% of the yearly precipitation during the growing season 
(Table 1). This amount is typical for the study region and most semi-arid grape production 
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areas. The study site received 970.3 mm of precipitation from October 2018 to April in 
2019, whereas 103.1 mm of precipitation occurred from April to September in 2019. Dur-
ing the period from June to September in 2019, only 1.7  mm of precipitation occurred. 
The highest air temperatures occurred from June to September in 2019, with an average air 
temperature of 19.8 °C and a maximum air temperature of 29.9 °C. The GDD accumula-
tion was calculated from April 1 and reached 1668 at harvest by late September in 2019. 
According to the Köppen climate classification (Peel et al. 2007), the experiment site was 
classified as having dry and warm summer climate and noted as ‘Csb’ and as Region III 
according to Winkler’s index (Winkler et al. 1974).

Spatial distribution of soil physical and chemical properties at experiment site

For the deep soil layer (0.75–1.5 m), the percentages of clay and silt were greater in the 
southwestern section of the vineyard (Fig.  2a, b). Conversely, the percentage of sand 
was lower in the southwestern section (Fig.  2c). A lower plant water status from this 
portion of the vineyard was reported in previous research work conducted on the same 
study site, where, surprisingly, higher clay and silt contents resulted in more water defi-
cits although the plants were irrigated uniformly at 0.5 ETc (Yu and Kurtural 2020). 
Although clay and silt are assumed to provide higher water holding capacity and greater 
soil moisture storage, the results indicated better plant water status in the portion with 
lower clay and silt contents with deficit irrigation. This was attributed to the fact that 
water can be more easily taken up by the plants in the sandy soil compared to clay soil 
when irrigated with water deficit as previously reported (Tramontini et  al. 2013). The 
gravel proportion varied at the experiment site, ranging from 1.65% to 20.3% with the 
central section of vineyard with less gravel (Fig.  2d). The southwestern corner of the 
vineyard had greater Ca+, but in general there was not a spatial pattern as significant 
as for the soil texture (Fig. 2e). Soil pH showed lower values in the southeastern and 
northeastern section and higher values in the rest of the vineyard, ranging from 4.7 to 
7.5 (Fig. 2f). There was a similar spatial pattern in CEC as for the soil texture, where 

Table 1   Weather information at the experiment site as obtained from California Irrigation Management 
Information System (CIMIS) Station (#77 Oakville, Napa)

Month-year Total precipi-
tation (mm)

Average max air 
temperature (°C)

Average min air 
temperature (°C)

Average air tem-
perature (°C)

Growing 
degree days 
(°C)

Oct-18 36.3 26.4 7.2 15.8 –
Nov-18 135.0 21.3 3.7 11.4 –
Dec-18 77.5 21.3 3.5 9 –
Jan-19 248.5 15.9 4.7 9.7 –
Feb-19 224.3 12.9 2.7 7.5 –
Mar-19 145.6 17.5 4.9 11 –
Apr-19 12.5 23.3 8.8 15.4 217.6
May-19 88.9 22.4 8.4 14.6 384.35
Jun-19 0.0 29.2 11.2 19.7 690.1
Jul-19 0.2 29.9 11.1 19.6 1016.55
Aug-19 0.0 31.2 12.3 20.8 1381.05
Sep-19 1.5 29.4 9.7 19.2 1668.85
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greater CEC was observed in the southwestern section of the vineyard (Fig.  2g). The 
SOC was relatively uniform except in the northeastern section of the vineyard where 
slightly higher values were measured (Fig.  2h). Although the central section showed 
lower TN compared to the rest of the vineyard, as expected, the values were low in the 
deep soil and the variability was not visible (Fig. 2i).

In the shallow soil layer (0–0.75 m), the soil texture was relatively homogenous com-
pared to that of the deep soil layer. There was only very small area in the northeastern 
section of the vineyard showing significant difference for clay and sand, where there was 
higher clay and lower sand compared to the rest of the vineyard. (Fig. 3a, c), while another 
small portion of the northeastern section showed lower values in silt content (Fig. 3b). Sig-
nificant variability in the gravel content was observed, where the northeastern section had 
higher values compared to the rest of the vineyard, from 19.6% to 9.2% (Fig.  3d). Soil 
Ca+ showed some variability in the vineyard, where the central section had lower values 
(Fig. 3e). The pH was relatively homogenous in the shallow soil layer with little variability 
ranging from 5.5 to 5.9 (Fig. 3f). The CEC was also homogenous in shallow soil, except for 
one unit in the southwestern section having 36.7 meq. per 100 g of soil, which was signifi-
cantly higher than the rest of the vineyard (Fig. 3g). The soil organic carbon showed a simi-
lar pattern as that observed for the deep soil layer, where the northeastern section of the 
vineyard had higher organic carbon (Fig. 3h). As expected, there was proportionally higher 
total nitrogen in the shallow soil layer compared to deep soil layer (Fig. 3i). The northwest-
ern corner and northeastern section of the vineyard showed higher nitrogen content.

Fig. 2   Soil characteristics for deep depth (0.75–1.5 m). a Clay in %, b silt in %, c sand in %, d gravel in %, 
e Ca + in millequivalent per 100 g of soil, f pH, g cation exchange capacity (CEC) in milliequivalent per 
100 g of soil, h soil organic carbon (SOC) in %, i total nitrogen (TN) in % (Color figure online)
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Spatial distribution of soil ECa across the study vineyard

The soil ECa was periodically measured during the 2019 crop season and showed progres-
sive decreases with time towards the harvest (Fig.  4). For deep soil, 52  days DAB, the 

Fig. 3   Soil characteristics for shallow depth (0–0.75 m). a Clay in %, b silt in %, c sand in %, d gravel in 
%, e Ca+ in milliequivalent per 100 g of soil, f pH, g cation exchange capacity (CEC) in milliequivalent per 
100 g of soil, h soil organic carbon (SOC) in %, i total nitrogen (TN) in % (Color figure online)

Fig. 4   Soil apparent electrical conductivity (ECa) sensing by EM38 throughout the growing season in 2019. 
a DAB 52 deep ECa, b DAB 94 deep ECa, c DAB 129 deep ECa, d DAB 166 deep ECa, e DAB 52 shallow 
ECa, f DAB 94 shallow ECa, g DAB 129 shallow ECa, h DAB 166 shallow ECa. DAB days after bud-break 
(Fig. 4d and 4h previously appeared in Yu and Kurtural 2020) (Color figure online)
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northeastern section of the vineyard showed lower ECa values (Fig. 4a). The same spatial 
pattern was evident at 94 DAB, although there was a smaller portion in the southeastern 
section of vineyard having relatively higher ECa (Fig. 4b). At 129 DAB, the spatial pattern 
observed previously became not evident (Fig. 4c) and at 166 DAB, when harvest started, 
the central section showed lower ECa relative to the rest of the vineyard (Fig. 4d).

In the shallow soil layer, a small portion of the southwestern section and the north-
eastern section of the vineyard had lower ECa values (Fig. 4e). The smaller portion in the 
northeastern section appeared to be confined within one or two vineyard rows. However, 
the irrigation was not applied to the vineyard before 63 DAB. Thus, the spatial pattern 
was derived exclusively from the soil conditions prior to the occurrence of the first irriga-
tion. At 94 DAB, lower ECa values kept occurring southwestern section of the vineyard 
(Fig.  4f). And similar to what was observed in deep soil, the spatial pattern at 94 DAB 
became unclear on 129 DAB (Fig.  4g). On the 166 DAB, which corresponded with the 
harvest date, relatively lower ECa values were measured in the northwestern section of the 
vineyard compared to the rest of the vineyard (Fig. 4h).

Relationship between soil ECa and soil properties

Previous studies have observed a positive correlation between soil water content and soil 
ECa (or negative correlation with soil ERa) (Brillante et al. 2014). This was possibly among 
the reasons why the ECa values kept decreasing throughout the season at the study vine-
yard due to the progressive soil moisture depletion during the course of the hot and dry 
summer. Also, since the soil ECa is an integrated variable reflecting many individual soil 
characteristics, some previous research works indicated that other soil parameters can be 
used to predict its values (E. A. Costantini et al. 2010; Rodríguez-Pérez et al. 2011; Peralta 
and Costa 2013). A multivariate regression analysis was performed and a model was fitted 
with six soil variables, including soil organic carbon, gravel content, silt, clay, ECe, and 
water content, to the soil ECa assessed with EMI (Table 2). Such model could provide a 
prediction of ECa with R2 = 0.96 and p = 1.288e-13, degree of freedom = 21. The equation 
of the multivariate regression model is:

(5)
ECa = 8.669 + 1.844 SOC + 1.363 GR + 1.384 S + 0.762 ECe − 0.699 C + 0.127 SWC

Table 2   Multivariate regression 
analysis of soil electrical 
conductivity based on soil 
predictors

a Significance codes: ‘***’: 0.001, ‘**’: 0.01, ‘*’: 0.5, ‘.’: 0.1

Estimate Std. Error t value Pr( >|t|)

(Intercept) 8.669 3.784 2.291 0.032*
SOC 1.844 10.387 0.178 0.861
GRAVEL 1.363 0.438 3.111 0.005**
SILT 1.384 0.503 2.750 0.012*
ECe 0.762 6.315 0.121 0.905
CLAY − 0.699 0.378 − 1.850 0.078
WATER 0.127 0.050 2.545 0.019*
Residual standard error: 3.79 on 21 degrees of freedom
Multiple r-squared: 0.9603, Adjusted r-squared: 0.949
F-statistic: 84.7 on 6 and 21 DF, p-value: 1.288e-13
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where SOC is soil organic carbon (converted from % to g), GR is gravel (converted 
from % to g), S silt (converted from % to g), ECe is soil pore water electrical conductiv-
ity (mS m −1), C is clay (converted from % to g), and SWC is soil water content (con-
verted from vol % in volume to mm). These soil variables were considered in this model 
since they are relatively stable in the vineyard soils and there was no need for recurring (or 
periodic) measurements except ECe, and soil water content. Thus, this model worked well 
when transferring soil water content to soil ECa. When regressing the values of ECa esti-
mated with this model and the ECa values observed in the field from EM38 readings, an r2 
of 0.5770, p value of 0.0002, and root mean square error (RMSE) of 4.8349 mS m−1 were 
obtained (Fig. 5). When the analysis of relative importance was conducted, it was found 
that soil water content contributed the most and significantly to soil ECa, at 24% (Fig. 6). 
Soil texture was the second contributor to soil ECa, including silt with 22.4% and clay with 
18.2% relative contributions, respectively. The soil–water ECe had the least contribution 
towards soil ECa among these six predictors with 5.5%. Some previous studies have shown 
that ECe might be a direct soil property affecting soil ECa, hence it can be assessed proxi-
mally (Corwin and Lesch 2013). This seemed not to be the case in this study due to the low 
soil–water ECe at the study site in Napa County, California (Weber et al. 2014). However, 
when ECe is more pronounced in the vineyard soils, there would be the need to adjust the 
model, as salinity may very likely have greater influence on soil ECa (E. A. Costantini et al. 
2010). It was noted that specific soil physical conditions should be properly considered 
when relating soil water content to ECa (Morari et al. 2009). In this study, results provided 

Fig. 5   Predicted and observed values for the multivariate model with soil apparent electrical conductivity 
(ECa) from the soil predictors. Grey lines indicate 95% confidence interval, red line indicates the line with a 
slope of 1 and an intercept of 0 (Color figure online)
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evidence that the soil texture acted as the main soil variable on soil ECa, as it has strong 
influence on the soil moisture content. The proposed multivariate approach allowed taking 
into consideration various soil properties that are both spatially and temporally variable. 
The measurement of these parameters may be labor intensive and time consuming, and 
thus difficult to conduct during the dry and hot summers typically occurring in the study 
region. Given that the soil texture is stable over time, once the soil texture is determined, 
then the spatially-distributed plant water status could be easily inferred from the soil ECa 
with periodic EMI surveys. Furthermore, some physiological responses of the plant that 
are water-related may also be assessed and interpreted from soil ECa.

Relationship between soil ECa and plant water status

The spatial interpolation for LAI and NDVI were performed, and the spatial homoge-
neity for these parameters was also tested (Fig. 7). The CI value for LAI was more than 
75 with c0 of 1.017 and c0 + c1 close to 0; the CI value for NDVI was 90.48, which was 
also more than 75. Since the grapevine LAI and NDVI did not show spatial depend-
ency, the plant water status can be assumed derived directly from soil. Linear relation-
ships were investigated between ECa and plant water status expressed in terms of Ψstem 

Fig. 6   Relative importance 
analysis of each predictor for the 
multivariate model deriving soil 
apparent electrical conductivity 
(ECa) by soil physical–chemi-
cal properties as predictors, 
including soil water content, silt, 
clay, SOC (soil organic carbon), 
gravel, and soil pore water elec-
trical conductivity (ECe)

Fig. 7   Canopy assessments in a Cabernet Sauvignon (V. vinifera L.) vineyard in Oakville, California, USA. 
a Leaf area index (LAI), b normalized difference vegetation index (NDVI) (Color figure online)
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and gs to evaluate the existence of direct relationships (Fig. 8). It was noticed that deep 
soil ECa was closely related to Ψstem with an r2 of 0.7214, p value of 0.0038, and RMSE of 
0.1694 MPa (Fig. 8a). However, the same relationship was not evident for the shallow soil 
layer (Fig. 8b). A similarly close relationship was observed between deep soil ECa and gs 
with an r2 of 0.5007, p value of 0.0221, and RMSE of 56.5192 mmol H2O m−2 s −1. The 
higher the soil ECa became, the greater stomatal conductance was measured for the leaves 
(Fig. 8c). However, the relationship between ECa and gs was not as close for the shallow 
soil layer (Fig. 8d). The Ψstem and gs were the two factors that very well reflected the plant 
water status, and they were also interrelated. In the case of the study vineyard, the season-
long Ψstem and gs integrals were regressed and indicated an r2 of 0.6559, p value of 0.0004, 
and RMSE of 20.9512 mmol H2O m−2 s −1 (Fig. 9). A conceptual model developed within 
an earlier study on wheat indicated that the shallow soil was likely to increase the level of 
root-sourced signals due to most roots distributed within or close to top soil (Whalley et al. 
2008). In the study vineyard, the soil ECa measured for the soil depth between 0 and 1.5 m 
showed strong and positive correlations with Ψstem and gs, which was explained with the 
fact that most of the active roots were likely distributed within the top 0–1.5 m depth of the 
soil root zone.

Several other studies have evaluated the relations between the soil ECa (or ERa) and soil 
properties, which can help explaining plant water availability (Morari et  al. 2009; Rod-
ríguez-Pérez et al. 2011; Brillante et al. 2015). Similar relationships were observed in this 
study as those reported by previously. However, with the ability to measure two soil depths, 

Fig. 8   Correlation between soil apparent electrical conductivity (ECa) assessed by EM38, corrected to a ref-
erence temperature of 25 °C by time domain reflectometer (TDR) sensors, and stem water potential (Ψstem) 
and leaf stomatal conductance (gs) for 2019. a Ψstem and deep soil ECa, b Ψstem and shallow soil ECa, c gs 
and deep soil ECa, d gs and shallow ECa
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these relationships can be elucidated with more accuracy. Most of the previous studies have 
applied soil ECa sensing to test its applicability in delineating management zones in com-
mercial orchards and vineyards (Brevik et al. 2006; Bramley et al. 2011a, 2011b), but with-
out exploring the linkages between ECa and plant physiology. Previous works have shown 
that the soil ECa (or ERa) assessed with proximal sensing had a positive relationship (or 
negative with ERa) with grapevine trunk circumference (Trought et  al. 2008; Rossi et  al. 
2013). Similar positive relationships were also reported between soil ECa and grapevine 
pruning mass determined with active canopy reflectance sensors (Bramley et al. 2011b) and 
with vegetation indices (Zarrouk et al. 2012). However, those studies did not investigate the 
relationship between soil ECa and plant water status. Having positive correlation with deep 
soil ECa, NDVI also showed positive correlations with the applied water amount. Findings 
from these studies indicated that soil ECa could positively relate to the grapevine vegetative 
growth, which can vary across the field depending on access to water and nutrients and their 
uptake by plants, which in turn could be reflected in plant water status. Results presented 
herein provided evidence that soil ECa could provide relevant information of both grapevine 
vegetative growth and reproductive growth, including berry maturity in both primary and 
secondary metabolism (Bonfante et al. 2015; Yu et al. 2020), which can be used for water 
and nutrient management purposes. The study described in the present article provided evi-
dence of the functional relationship between soil ECa and grapevine water uptake that could 
possibly be used to predict soil–plant water dynamics in commercial vineyards.

Relationship of δ13C with stem water potential and leaf photosynthesis

The must δ13C was closely and significantly correlated with plant water status, includ-
ing season-long cumulative Ψstem integrals (Fig.  10a) with r2 = 0.9127, p value < 0.0001, 
and RMSE = 0.0316  MPa, and also with gs integrals (Fig.  10b) with r2 = 0.6985, p 

Fig. 9   Relationships between 
stem water potential (Ψstem) inte-
grals and stomatal conductance 
(gs) integrals in 2019
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value = 0.0002, and RMSE = 19.6117 mmol H2O m−2 s−1, and also with An (Fig. 10c) with 
r2 = 0.5693, p value = 0.0018, and RMSE = 1.3489  µmol CO2 m−2  s−1. The relationship 
between δ13C and WUEi was not significant (Fig.  10d). Two earlier studies have already 
shown that δ13C may provide reliable predictions of plant water status as ancillary informa-
tion for managing spatial variability (Martínez-Vergara et  al. 2014; Brillante et  al. 2016). 
Results from previous works indicated that soil characteristics and topography may influ-
ence δ13C based on modifications in the water continuum between soil and plants (Brillante 
et al. 2018). When δ13C to soil ECa were regressed in the current study, the relationships 
were not significant (p > 0.05), with r2 = 0.0015 with deep soil ECa and r2 = 0.1331 with 
shallow soil ECa (Fig. 11). This was also observed in a previous study where the correlation 
between δ13C and soil ECa was not significant within the same vineyard (E. A. Costantini 
et al. 2010). According to previous research, δ13C showed close relations with stomatal con-
ductance, with δ13C values increasing with water deficits. Hence, δ13C can relate to net car-
bon assimilation rate as well (Farquhar et al. 1989; Brillante et al. 2018). One study showed 
that low nitrogen availability overruled the dominant effect of plant water status on δ13C (E. 
A. C. Costantini et al. 2013), so the relationship between plant water status and δ13C could 
be lost if the photosynthesis was severely impaired due to shortage of nutrient deficits. Bchir 
et al. (Bchir et al. 2016) showed that δ13C and plant water status were correlated in young 
and mature leaves as well as berries. Results of this work provided additional evidence of 
the relationship of δ13C with plant water status, including midday Ψstem and leaf photosyn-
thesis during the berry maturation. Previous studies on δ13C were conducted in regions with 
relatively cool climate and rain-fed production systems (Bchir et  al. 2016; Brillante et  al. 

Fig. 10   Relationships between carbon isotope ratio analysis (δ13C) with season-long stem water potential 
and leaf gas exchange measurements. a Stem water potential integrals, Ψstem, b stomatal conductance inte-
grals, gs, c net carbon assimilation integrals, An, d intrinsic water use efficiency integrals, WUEi
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2018). The present study can be fundamental for a region-wide calibration, being the first 
providing evidence that δ13C relates to plant water status and leaf photosynthesis in hot and 
dry region as California where the majority of grapevine is grown with micro irrigation.

Conclusion

Results presented here-in revealed the spatial variability of soil features across the studied 
vineyard. Soil ECa measured with proximal sensing in the deep soil layer can be related to 
grapevine water status. The main hypothesis of this study was confirmed that the soil water 
content and soil texture were the main factors influencing soil ECa in this study, which 
would further determine plant water status. Hence, once the vineyard soil is surveyed and 
its texture determined, the soil ECa can be used to infer spatial variations in plant water sta-
tus. Additionally, the results provided evidence that δ13C analysis on berry sugar can poten-
tially be used to back-track the spatial variability in plant water status and photosynthesis 
during berry maturation. These results provide relevant and applicable information to sup-
port the use of proximal soil sensing for monitoring soil–plant-water dynamics and changes 
in commercial production vineyards. Such information may help designing and implement-
ing management strategies that minimize or manage the spatial variability of grapevine 
productivity and wine grape quality in micro irrigated commercial production vineyards.
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