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Abstract
Automatic detection of kiwifruit in the orchard is challenging because illumination varies 
through the day and night and because of color similarity between kiwifruit and the com-
plex background of leaves, branches and stems. Also, kiwifruits grow in clusters, which 
may result in having occluded and touching fruits. A fast and accurate object detection 
algorithm was developed to automatically detect kiwifruits in the orchard by improving 
the YOLOv3-tiny model. Based on the characteristics of kiwifruit images, two convolu-
tional kernels of 3 × 3 and 1 × 1 were added to the fifth and sixth convolution layers of the 
YOLOv3-tiny model, respectively, to develop a deep YOLOv3-tiny (DY3TNet) model. It 
takes multiple 1 × 1 convolutional layers in intermediate layers of the network to reduce 
the computational complexity. Testing images captured from day and night and comparing 
with other deep learning models, namely, Faster R-CNN with ZFNet, Faster R-CNN with 
VGG16, YOLOv2 and YOLOv3-tiny, the DY3TNet model achieved the highest average 
precision of 0.9005 with the smallest data weight of 27  MB. Furthermore, it took only 
34 ms on average to process an image of a resolution of 2352 × 1568 pixels. The DY3TNet 
model, along with the YOLOv3-tiny model, showed better performance on images cap-
tured with flash than those without. Moreover, the experiments indicated that the image 
augmentation process could improve the detection performance, and a simple lighting 
arrangement could improve the success rate of detection in the orchard. The experimental 
results demonstrated that the improved DY3TNet model is small and efficient and that it 
would increase the applicability of real-time kiwifruit detection in the orchard even when 
small hardware devices are used.
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Introduction

China is the largest country producing kiwifruits worldwide, with a yield of 2,390,287 t in 
2016 from a cultivated area of 197,048 ha (UN FAO 2018). Within China, Shaanxi Prov-
ince has the most significant production, accounting for approximately 70% and 33% of 
the Chinese and global productions, respectively (Hu et al. 2017). Harvesting kiwifruits in 
this area mainly depends on manual picking, which is labor-intensive (Fu et al. 2016), and 
introducing mechanical harvesting is needed.

Kiwifruits are commercially grown on sturdy support structures such as T-bars and per-
golas. The T-bar trellis is common in China because of its low cost (Lu et  al. 2016). It 
consists of a 1.7-m high post and approximately a 1.7-m wide cross arm, which may have 
slightly different widths depending on the orchard geometry. Wires run on the top of cross 
arms and connect them from the middle on both sides. The upper stems of the kiwi plants 
are tied to the top wires so that the egg-sized kiwifruits are hanging downwards, mak-
ing them easy to be picked during the harvest season (Fu et  al. 2015; Mu et  al. 2018). 
This workspace is more structured than with other fruit trees, and thus easier to perform 
mechanical work. The setback is that kiwifruits grow in clusters, which make the fruits 
occluded and adjacent to each other.

Like other orchard fruits such as apples (Silwal et al. 2017; Liu et al. 2018; Fu et al. 
2020; Gao et al. 2020) and citrus (Wang et al. 2018; Zhuang et al. 2018; Lin et al. 2020), it 
is necessary to design an intelligent robotic machine with human-like perceptive capabil-
ity. Fast and effective detection of kiwifruit in the orchard under natural scenes is essen-
tial and the first step for its robotic harvesting system. Research on kiwifruits detection 
is mainly being conducted in China and New Zealand, because China is the largest kiwi 
fruit producer while New Zealand is the second largest producer. Scarfe (2012) subtracted 
a predefined reference RGB (Red, Green and Blue) color range and used a Sobel filter 
to detect fruit and calyx edges, then used template matching to detect kiwifruit but didn’t 
use the shape information of the fruit. Fu et al. (2015) segmented bottom-viewed kiwifruit 
images using the Otsu threshold in a 1.1R-G color component, and used minimal bounding 
rectangle and elliptical Hough transform to detect fruits in single cluster. Fu et al. (2017) 
developed a kiwifruit detection system for night use using artificial lighting by identifying 
the fruit calyx, which detected 94.3% of target fruits and took 0.5 s on average to recognize 
a fruit. Fu et al. (2019) separated linearly clustered kiwifruits by scanning each detected 
cluster to find the contact points between the adjacent fruits and drawing a separating line 
between the two closest contact points, which correctly separated and counted 92.0% of the 
kiwifruits. Most of these traditional methods utilized hand-engineered features to encode 
visual attributes that discriminate fruit from non-fruit regions. Although these approaches 
were well suited for the dataset that they were designed for, feature encoding was generally 
unique to a specific kiwifruit and the conditions under which the data were captured (Fu 
et al. 2018a). Therefore, it is necessary to find a general feature extraction model to over-
come the limitations of the traditional image detection model limited by their algorithm.

In recent years, deep learning as a powerful technique in the artificial intelligence field 
is becoming a prevalent way of object detection and semantic segmentation. It could learn 
the differences between similar things autonomously and transform the original data into 
a higher level and more abstract expression through training of non-linear models (Peng 
et al. 2018; Russakovsky et al. 2015; Simonyan and Zisserman 2014; Zhou et al. 2018). Sa 
et al. (2016) might be the first work exploring the use of deep learning networks for fruit 
detection. Wang (2017) established PCANet deep learning model to identify kiwifruit with 
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a detection rate of 94.9%, but it was limited to detect objects in a single cluster with few 
fruits. Fu et al. (2018b) used Faster R-CNN (Region Convolutional Neural Network) with 
ZFNet (Zeiler and Fergus Network) that depends on feature extraction and region proposal 
networks named two-stage detection on kiwifruit images, which achieved an AP (average 
precision) of 0.92 and took 0.27 s on average to process an image with 2352 × 1568 pixels. 
Williams et al. (2019) employed Fully-Convolutional Network (FCN) with VGG16 to per-
form semantic segmentation for calyx, cane and wire in a kiwifruit image of 1900 × 1200 
pixels, which detected 76.3% target fruit with an average processing time of 3 s. Liu et al. 
(2020) improved Faster R-CNN by combining two VGG16 architecture for feature extrac-
tion to detect kiwifruits from color and infrared images, and reached an AP of 0.91 with 
average processing time of 0.13 s on kiwifruit images of 512 × 424 pixels.

Some researches employed recent two-stage detection algorithms for other fruits. 
Yu et  al. (2019) used Mask R-CNN with ResNet-50 and FPN (Feature Pyramid Net-
work) architecture for feature extraction of ripe and unripe strawberry, which obtained 
mIoU (mean Intersection over Union), overall precision and recall rates of 89.9%, 95.8% 
and 95.4%, respectively and took 0.13 s on a images of 640 × 480 pixels. Williams et al. 
(2020) employed Faster R-CNN with Inception V2 to detect kiwifruit and its calyx, which 
required 0.2 s on an image of 2100 × 1700 pixels and reached APs of 0.91 and 0.94 for the 
calyx and kiwifruit, respectively. Jia et al. (2020) applied Mask R-CNN with ResNet and 
DenseNet to detect overlapped apples, which achieved precision and recall rates of 97.3% 
and 95.7% and took 0.12 s on an image of 512 × 341 pixels. Gené-Mola et al. (2020) tried 
Mask R-CNN for apple detection and reported an AP of 0.86 and F1-score of 0.86, which 
required 3.6 s to process an image of 1024 × 1024 pixels. Vasconez et al. (2020) applied 
Faster R-CNN with Inception V2 to detect avocado, lemon and apple under different field 
conditions, which achieved mean AP of 0.93 and needed approximately 0.22  s on aver-
age to compute an image of 640 × 360 pixels. However, those two-stage detection method 
required large amounts of resources for selecting region proposal, which still shows limita-
tions in the detection speed so that it cannot be applied for field real time detection.

Unlike the two-stage detection pipeline that first predicts proposals and then refines 
them, single-stage detectors directly predict the final detections. YOLO (You Only Look 
Once) is the most representative work with real-time speed, which divides the image into 
sparse grids and makes multi-class and multi-scale predictions per grid cell (Redmon 
et  al. 2016). Redmon and Farhadi (2017, 2018) also presented YOLOv2 and YOLOv3 
to improve the performance of YOLO. The YOLOv3 uses a deeper convolutional model 
and three size layers to predict the detection object so that it has better ability for feature 
extraction for small object detection than other region-based methods. Tian et al. (2019) 
employed YOLOv3 with DenseNet to detect apples in orchards, which reached an F1-score 
of 0.817 and IoU of 0.896 and required 0.304 s to process an image of 4000 × 3000 pixels. 
Koirala et al. (2019) merged feature maps with different resolutions from intermediate lay-
ers to improve YOLOv3 network for mango detection, which achieved an AP of 0.98 and 
spent 0.07 s per 2048 × 2048 pixel image. Liu et al. (2020) replaced the traditional rectan-
gular bounding box with a circular bounding box in YOLOv3 model for tomato detection, 
which obtained an AP of 0.96 and detection speed of 0.054 s on an image of 3648 × 2056 
pixels. To the authors’ knowledge, there has been no research on applying YOLO models 
to kiwifruit detection. Therefore, this paper considers applying the YOLO model to the 
detection of kiwifruit.

Although those studies drastically reduced the detection speed to around 0.03 s for an 
image with high resolution of more than 1920 × 1080 pixel, the YOLOv3 network requires 
a powerful GPU (Graphic Processing Unit) with more than 4  GB (Gigabyte) memory, 
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which is a hardware challenge for most computers. On the other hand, YOLOv3-tiny 
model, which is a reduced version of YOLOv3 for further faster processing and has the 
potential to be applied in portable devices, could be trained with only 1 GB GPU (Huang 
et  al. 2018). It is a smaller version of YOLOv3 algorithm based on one-stage detection 
method. The network structure of YOLOv3-tiny model is a simple lighter model contain-
ing a reduced number of layers that enables faster performance of YOLOv3-tiny model. 
In general, YOLOv3-tiny model is much quicker than YOLOv3 model and can meet the 
requirements of real-time application. However, the network structure of YOLOv3-tiny 
model only has a two-size layer to predict the detection object, which may cause a problem 
of precision as it may miss some small objects (Yang et al. 2019), such as small kiwifruit 
objects in a far view image.

To improve the overall detection accuracy of deep learning networks, researchers have 
done some work in making the convolutional neural networks deeper. Szegedy et al. (2015) 
proposed a deep convolutional neural network architecture codenamed Inception, which 
was based on the Hebbian principle and the intuition of multi-scale processing. It allowed 
for increasing the depth of the network while keeping the computational budget constant. 
He et al. (2016) addressed the degradation problem by introducing a deep residual learning 
framework, which evaluated residual nets with a depth of up to 152 layers; 8 deeper than 
the VGG16 on the ImageNet dataset. An ensemble of these residual nets achieved 3.57% 
error on the ImageNet dataset. Also, the deep residual nets can easily enjoy accuracy gains 
from greatly increased depth, producing results substantially better than previous networks. 
These researchers showed that the depth of representations is of central importance for 
many visual recognition tasks and deep convolutional networks, which can improve the 
precision of network detection significantly.

To meet all-day-long operation requirements of a multi-arm kiwifruit picking robot in 
commercial orchards, it is necessary to increase the kiwifruit detection speeds while main-
taining high detection accuracy. Therefore, in this study, a detection model based on the 
YOLOv3-tiny algorithm for kiwifruit in the orchard was developed. A deep YOLOv3-tiny 
network (DY3TNet) model was proposed and tested by introducing deep convolutional net-
works into the YOLOv3-tiny model. The goal was to support the multi-arm operations of 
robotic harvesting and fruit picking technology.

Materials

Image acquisition

The images for this application were captured using a camera placed underneath the fruits, 
with its central axis perpendicular to the canopy. An ordinary single-lens reflex camera 
(Canon S110, Canon Inc., Tokyo, Japan) on "P" mode with a resolution of 2352 × 1568 
pixels was used. It was placed at around 1 m underneath the fruits, which is the same posi-
tion of the vision system as in the kiwifruit harvesting robot prototype of this research work 
(Mu et al. 2018). RGB images of ‘Hayward’ kiwifruits were taken during three harvest sea-
sons of 2016, 2017 and 2018 from Meixian Kiwifruit Experimental Station (34°07′39′’N, 
107°59′50′’E, and 648 m above sea level), Northwest A&F University, Shaanxi, China.

Images of the kiwifruits were randomly captured at three different times (morn-
ing, afternoon and night). At each time, 400 different positions far from each other were 
selected to make sure the images do not contain overlapping regions. Two images in two 
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different illumination conditions (with or without flash of the camera) were acquired, at 
each position, in the morning and afternoon, respectively, as shown in Fig. 1a to Fig. 1d. At 
night, two images were acquired with either white LED (Light Emitting Diode) illumina-
tion or flash, as shown in Fig. 1e, f. The LED illumination produced an average illumina-
tion of 40  lx (± 10  lx) in the imaging region. In total, 1200 pairs of images (2400 total, 
with 800 each taken in the morning, afternoon and night) were collected, and each image 
included around 30 to 50 fruit.

The overall dataset of 1200 pairs of 2400 images was divided into raw training datasets 
(60% of the images) and testing datasets (40% of the images), as shown in Table 1. The 
raw training datasets included 720 pairs of 1,440 original images, which were randomly 
selected from the overall dataset. The remaining 480 pairs of 960 original images were 
set as the testing datasets. All the datasets were separated into two groups based on imag-
ing with or without flash. For example, the raw training datasets were divided into two 
groups: 720 images with flash (AD720F) and 720 images without flash (AD720NF). Each 
group, in the case of AD720F, was divided into three subgroups based on the three differ-
ent imaging times: morning (M240F), afternoon (A240F) and night (N240F). Table 1 lists 
the detailed information for each group and subgroup. The aim was to test the sensitivity of 
the proposed network under different daytime and illumination conditions.

Data augmentation

Deep learning for object detection requires a large dataset of images to provide generalization 
and robust performance. Zhang et al. (2017a) and Sun et al. (2017) found that a broader set 
of image data could improve the success rate of object detection. However, the raw training 
datasets in this study only contained self-collected 1440 images (AD720F and AD720NF). To 
address this issue, the raw training datasets were augmented. Data augmentation is a common 
way to expand the variability of the training data by artificially enlarging the dataset using 
label-preserving transformations (Bargoti and Underwood 2017). More training images can 
increase the network capability to generalize and reduce overfitting (Bargoti and Underwood 

Fig. 1   Kiwifruit images under different illumination conditions in the orchard environment. a Morning 
without flash, b Morning with flash, c Afternoon without flash, d Afternoon with flash, e Night with flash, f 
Night with illuminations (Color figure online)
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2017). To achieve sensitive detection of kiwifruit in the orchard, this study took into consider-
ation most kinds of interference that may occur when detecting fruits. As described in Taylor 
and Nitschke (2018), Shorten and Khoshgoftaar (2019) and Tian et al. (2019), data augmenta-
tion methods such as color brightness transformation, image rotating and histogram equaliza-
tion can improve the network performance. Data augmentation, including adaptive histogram 
equalization, brightness transformation, motion blur transformation and image rotation, were 
implemented using the software Matlab R2018b (Math Works Inc., Natick, MA, USA). The 
specific augmented methods were described as follows.

Firstly, the adaptive histogram equalization method was used to improve the quality of the 
training sample images and the variety of illuminations. The original RGB (Red, Green, Blue) 
color image was converted to HSV (Hue, Saturation, Value) color space using the Matlab 
function ‘rgb2hsv’ (Smith 1978). Then the adaptive histogram equalization was performed on 
the V component of the HSV using the Matlab function ‘adapthiseq’ with default parameters 
(Pizer et al. 1987). After that, the new V component with original H and S were converted 
back to the RGB color image using the Matlab function ‘hsv2rgb’ (Smith 1978), which was 
employed as the augmented image by the adaptive histogram equalization method.

Secondly, the brightness transformation was applied six times in this study to enhance the 
illumination range of the raw training datasets. The brightness transformation is a common 
data augmentation method often used to improve the robustness of a network to brightness 
variation in different environments, such as apple detection in the field (Tian et  al. 2019). 
Multiplying a proportional coefficient near 1.0 by the original RGB image, which can adjust 
the value of each color component to make the image brightness higher or lower (Tian et al. 
2019), as shown in Eq. (1). Manual annotation is based on the process of visually observing 
the outline of the fruit on the image and using a rectangular frame to mark the fruit one by 
one. Therefore, if the image brightness is too high or too low, bounding boxes will be difficult 
to draw during manual annotation because the edge of the target is unclear. Coefficients k of 
0.7–0.9 and 1.1–1.3 in increments of 0.1 were selected based on the target edge which can be 
accurately identified during manual annotation.

where f(x, y) is the original RGB image and g(x, y) is an RGB image after brightness 
change. If the multiplied value was higher than 255, it was automatically adjusted to 255.

Thirdly, the motion blur transformation was employed four times to make the convolutional 
network model to have strong adaptability to blurred images. The degradation function of a 
motion blurred image is shown in Eqs. (2) and (3) (Tani et al. 2016). Since the telephoto dis-
tance of the camera, incorrect focusing and camera movement would cause blurred images 
that are difficult to estimate, parameters L and θ of the motion filter were employed. L (length, 
represents pixels of linear motion of camera) and θ (theta, represents angle between horizontal 
line and direction of camera movement) were set as (20, −15), (20, 15), (30, −20) and (30, 
20), respectively.

(1)g(x, y) =

{

f (x, y) × k, if g(x, y) < 255

255, if g(x, y) ≥ 255

(2)g(x, y) = h(x, y) ∗ f (x, y)

(3)h(x, y) =

�

1∕L ,
√

x2 + y2 ≤ L and y∕x = tan �

0, other
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where (x, y) are pixel co-ordinates in the image; * is the spatial convolution operation; 
g(x, y) is a motion blurred image, h(x, y) is a degenerate function and f(x, y) is the original 
image.

Finally, the original images were rotated by 90˚ and 270˚ using the Matlab function 
‘imrotate’. The rotated images can also improve the detection performance of the neural 
network by correctly identifying the kiwifruits at different orientations.

The raw training datasets were augmented 13 times (one time of histogram equalization, 
six times of brightness transformation, four times of motion blur transformation and two 
times of rotation) by the above methods, and the training images of each subgroup were 
augmented from 240 to 3360 (including the raw datasets), as shown in Table 1. In total, the 
training datasets were expanded from the raw 1440 images (AD720NF and AD720F) to 
20,160 images (AD10080NF and AD10080F).

In order to verify whether the selected augmented method has an impact on the detec-
tion results, an ablation study on the augmented method was conducted in this study. Four 
tests were conducted by removing one of the four data augmentation transformations from 
the all expanded training dataset (AD10080NF and AD10080F), respectively. In the first 
test (HisTest), the dataset augmented by histogram equalization was removed to verify the 
effect of histogram equalization. In the second test (BriTest), the dataset augmented by 
brightness transformation was removed to verify the effect of brightness transformation. In 
the third test (MotTest), the dataset augmented by motion blur transformation was removed 
to verify the effect of motion blur transformation. In the fourth test (RotTest), the dataset 
augmented by rotation was removed to verify the effect of rotation. Ground truth data for 
network training and testing was created using manual labeling (using rectangular bound-
ing boxes) of the fruits on all the training and testing dataset images.

Methodologies

Classical YOLO deep learning model

The separate components of object detection were unified into YOLO network, which uses 
features from target area in the image to predict each bounding box. The input image was 
divided into an N × N grid in YOLO. If the center of an object falls into a grid cell, that 
grid cell is responsible for detecting that object. Each grid cell predicts bounding boxes 
and confidence scores for those boxes. If no object exists in that cell, the confidence scores 
should be zero. Each bounding box consists of five predictions: x, y, w, h and confidence. 
The (x, y) co-ordinates represent the center of the box relative to the bounds of the grid 
cell. The width (w) and height (h) are predicted relative to the whole image. Each grid cell 
also predicts conditional class probabilities. These probabilities are conditioned on the grid 
cell containing an object. One set of class probabilities are only predicted by each grid cell, 
regardless of the number of boxes (Shinde et al. 2018). The value of Pr (Object) is 1 when 
a grid cell contains a part of a ground truth box and 0 otherwise. The detection pipeline of 
YOLO is shown in Fig. 2.

YOLOv3-tiny model gives good trade off of speed and accuracy that developed from 
the one-stage detection method YOLOv3 (Redmon and Farhadi 2018; Liu et  al., 2016; 
Ren et al. 2017). It uses deeper convolutional models than the Faster R-CNN with ZFNet 
and Faster R-CNN with VGG16, as shown in Table 2. It could achieve a good trade-off in 
improving the detection speed and accuracy to meet the real-time requirements. However, 
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the setback of the one-stage detector may be losing small objects as the sliding window 
scheme is used to detect candidate objects in the output feature map.

Improved YOLOv3‑tiny model

As described earlier, the reduced nature of the YOLOv3-tiny model in comparison to 
YOLOv3 makes it a potential candidate for faster processing applications as it could be 
trained with only 1 GB GPU. Since the GeForce GTX 960 M 4 GB GPU used in the study 
is not powerful, the YOLOv3-tiny model that has a simple structure and low computational 
complexity was selected to meet the accuracy and real-time requirements. YOLOv3-tiny 
model contains 25 layers with 17 convolution layers and has fewer convolution layers than 
other single-stage detector methods. However, deeper convolution networks can contribute 
to the learning of objective features (He et al. 2016). In this study, two convolutional ker-
nels of 1 × 1 and 3 × 3 were added to the fifth and sixth convolution layers of the YOLOv3-
tiny model, respectively, to develop the DY3TNet model, as shown in Table 2.

The parameters in the hierarchical structure were adjusted to improve the neural net-
work structure of the DY3TNet model. The 1 × 1 convolutional layers are reduction layers 
that can increase non-linearity without changing the receptive fields of the convolutional 
layers (Akcay et al. 2018; Zhang et al. 2017b). The 1 × 1 convolutional layer is equivalent 
to the cross channel parametric pooling layer, which may obtain the complex and learnable 
interaction information by crossing channels (Lin et al. 2013). It could maintain detailed 
information on small objects (Yang et al. 2019). The added 3 × 3 convolutional layers out-
put feature maps of different sizes and channels, thus improving feature expression of the 
DY3TNet. The route layer in YOLO is mainly for concatenating shallow and deep features 
maps by specifying the index layer in different positions of network to improve the detec-
tion effect of kiwifruit at different scales, because shallow features contain more detailed 
information about kiwifruit, and deep features contain more contour information.

Fig. 2   Detection pipeline of YOLO. a N × N grids on input, b predict class probabilities map, c predict 
bounding boxes in each grid and confidence, d detection result (Color figure online)
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Proposal boxes with different sizes, namely anchors, were generated in the detection 
layer to generate predicted candidates’ boxes (Redmon and Farhadi 2018). The IoU is cal-
culated by the predicted bounding box (P) and ground truth (G) using Eq.  (4) to select 
anchors around the ground truth (kiwifruit) as candidates. The training objective is to 
reduce losses between the P and G, and the loss (lossiou) is defined in Eq. (5).

where the λnoobj is the weight of the IoU loss, S2 is the number of grids in the input image, 
and B is the number of bounding boxes generated by each grid. 1obj

ij
= 1 denotes that the 

object falls into the jth bounding box in grid i, otherwise 1obj
ij

= 0 . Ĉi is the predicted confi-
dence and Ci is the true confidence.

As the kiwifruit sizes vary in the orchard, a multi-scale training strategy was employed 
for kiwifruit detection to let the DY3TNet model have good detection effect on different 
input image sizes. Because the kiwifruit in the image looked small and dense, the main 
problem is that the fine features of the object extracted from the shallow-layer are noto-
bvious and the features from the deep-layer extraction may lose the object information 
(Yang et al. 2019). To increase the kiwifruit detection accuracy, higher resolution inputs 
and multi-scale strategy were employed to train the DY3TNet. The input image size was 
modified from 416 × 416 pixels of the YOLOv3-tiny to 512 × 512 pixels which is the high-
est affordable image size for the computer hardware employed in this study. During net-
work training, 10 different training scales of 288 × 288, 320 × 320, 352 × 352, 384 × 384, 
416 × 416, 448 × 448, 480 × 480, 512 × 512, 544 × 544 and 576 × 576 were resized from the 
input image, and each of them was randomly selected for training in every ten batches. 
This training strategy helped to make the network have good performance on different 
image sizes.

As shown in Fig. 3, the DY3TNet model was constructed using the end-to-end detec-
tion method to achieve fast operation in the orchard. It performs up-sampling in the last 
layer and uses a small box to detect the kiwifruit objects on a large-scale feature map. This 
study used the layer extraction network with a 16 × 16 feature map to predict the kiwi-
fruit bounding box co-ordinates and confidence value of the kiwifruit probabilities by three 
anchor boxes. Besides, a 32 × 32 feature map of up-sampling on the last layer was also 

(4)IoU =
area(P) ∩ area(G)

area(P) ∪ area(G)

(5)lossiou =

S2
∑

i=1

B
∑

j=1

1
obj

ij

(

Ci − Ĉi

)2

+ �noobj

S2
∑

i=1

B
∑

j=1

1
obj

ij

(

Ci − Ĉi

)2

Fig. 3   The pipeline of the DY3TNet model for kiwifruit detection using two-size feature maps (Color figure 
online)
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used to predict the detection results. The detection results of both feature maps were then 
compared to determine the final detection results, which might be possible to improve the 
accuracy by using the two features maps instead of just one.

To observe the accuracy, applicability and stability of the proposed DY3TNet model for 
kiwifruit detection, four other competing techniques for contemporary detection models, 
including Faster R-CNN with ZFNet, Faster R-CNN with VGG16, YOLOv2 and YOLOv3-
tiny model, were also carried out on the same datasets, as shown in Table 2. Each of these 
networks has its strengths on image detection and presents many efficient tricks by building 
blocks for constructing deep learning networks (Zhang et al. 2017b). Also, all of them can 
be implemented on the 4 GB GPU computer employed in this study.

Network training

The training platform was a desktop computer with Intel i5 6400 (2.70 GHz) quad-core 
CPU, a GeForce GTX 960  M 4  GB GPU (1536 CUDA cores), and 16  GB of memory, 
running on a Windows 7 64 bits system. The software tools used included CUDA 7.5, 
CUDNN 5.0, OpenCV3.0, Pthread and Microsoft Visual Studio 2013.

To train the deep learning networks, two sets of data were required, including the 
images and a corresponding label for each image. The labeling data comprised the object 
type along with the normalized center co-ordinates, followed by the normalized width and 
height of the kiwifruit bounding box. The stochastic gradient descent (SGD) was used to 
train the DY3TNet model with a mini-batch size of 64, and the momentum of the network 
was set to a fixed value of 0.9 and a weight decay of 0.0005. In this work, a learning rate 
of 0.001 was applied for all layers in the network. It took about 12 h to perform a total of 
10,000 iterations over the training set. To provide well-differentiated weights for object 
and background, leading to faster and more accurate training results, the transfer learning 
method was utilized for training the DY3TNet model. One of the advantages of transfer 
learning is that a network trained with a small ground-truth dataset can also reach a high 
detection accuracy. Therefore, transfer learning from ImageNet for YOLOv3-tiny darknet 
framework was carried out. A fine-tuning method was also applied to modify the DY3T-
Net model so that it can be more suitable for the detection of kiwifruit images. During 
training, the convolutional neural network fine-tuned these weights by adjusting them to 
minimize the functional loss to classify the object as annotated training images through 
a supervised learning process. The other deep learning networks were also trained in the 
same parameters.

All the deep learning networks were firstly trained using the all-day augmented train-
ing datasets, which included both the images with flash (AD10080F) and without flash 
(AD10080NF); and tested on the all-day testing datasets that also included both the images 
with flash (AD480F) and without flash (AD480NF). The new DY3TNet model and its 
original YOLOv3-tiny model were then compared specifically on all-day augmented train-
ing datasets of images with flash (AD10080F) or without flash (AD10080NF) only and 
also tested using all-day testing datasets AD480F or AD480NF, respectively. The goal was 
to investigate how the flash could influence kiwifruit detection in the orchard. Besides, the 
new DY3TNet model was trained and tested on all the different datasets, as well as small 
datasets (such as the images with flash in the morning M240F and M160F), to evaluate its 
performance on different imaging times, illumination condition and data size.
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Evaluation

The performance of the models was evaluated by precision (P), recall (R), average preci-
sion (AP) and detection speed. Among them, the P and R are defined in Eq. (6) and Eq. (7) 
respectively.

where TP, FP and FN mean the number of correctly detected kiwifruit objects (true posi-
tives), the number of falsely detected kiwifruit objects (false positives), and the number of 
missed kiwifruit objects (false negatives), respectively.

AP is defined in Eq. (8) as the area under the P and R curve. It is a standard for measur-
ing the sensitivity of the network to an object, and an indicator that reflects the global per-
formance of the network. The speed of the five models were tested on the same computer 
for network training with an input image resolution of 2352 × 1568 pixels.

Results and discussion

Comparison of DY3TNet model with other deep learning models

The detection results of all the deep learning networks trained on AD10080NF and 
AD10080F datasets and tested on AD480NF and AD480F datasets are shown in Table 3. 
The AP of the DY3TNet model was higher than the other four networks, and it was 0.9005 
for kiwifruit images acquired from the orchard under different illumination conditions of 
day and night, which was 17.55%, 2.89%, 11.45% and 2.04% higher than Faster R-CNN 
with ZFNet (0.7250), Faster R-CNN with VGG16 (0.8761), YOLOv2 (0.7860) and 
YOLOv3-tiny model (0.8801) respectively. It shows that the DY3TNet model has more 
sensitivity to lighting variations than the other four networks. The AP of the Faster R-CNN 
with ZFNet was less than the 0.9230 that was obtained by Fu et al. (2018b), which was 
trained and tested only on kiwifruit images in the daytime and captured without flash. 

(6)P = TP∕(TP + FP)

(7)R = TP∕(TP + FN)

(8)AP = ∫
1

0

P(R)dR

Table 3   Detection results of each deep learning network trained on AD10080NF and AD10080F datasets 
and tested on AD480NF and AD480F datasets

Same letters in the third column represent no significant difference at the 0.05 level

Models AP Detection speed (ms) Size (MB)

Faster R-CNN with ZFNet 0.7250 270 ± 10.5a 225
Faster R-CNN with VGG16 0.8761 347 ± 12.0b 512
YOLOv2 0.7860 54 ± 0.4c 192
YOLOv3-tiny 0.8801 31 ± 0.5d 33
DY3TNet 0.9005 34 ± 0.4e 27
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On the same image dataset of Fu et  al. (2018b), another deep learning network (LeNet) 
obtained an AP of 0.8929 (Fu et al. 2018a).

Kiwifruit image detection examples of the five models on an image captured at morn-
ing with flash are shown in Fig. 4. Many kiwifruits in Fig. 4a (12 out of 50) were false 
negatives detected in the Faster R-CNN with ZFNet model showing its low performance. 
Likewise, the low AP of YOLOv2 was caused by the many false positive detected kiwi-
fruits where fruits were adjacent to each other, as shown in Fig. 4c. The same phenom-
enon was also reported by Xue et  al. (2018), who applied YOLOv2 to detect mango in 
an orchard. Some of the fruits partly covered by branches (the yellow circle mark at the 
upright of Fig. 4b) or leaves (two yellow circle marks at the bottom-left of Fig. 4d) could 
not be detected by the Faster R-CNN with VGG16 or YOLOv3-tiny but were successfully 
identified by the DY3TNet.

In terms of the detection time, the DY3TNet model took 34 ms on average per image, 
which is 3  ms longer than the YOLOv3-tiny model (31  ms) but noticeably shorter than 
that of the YOLOv2 (54  ms), Faster R-CNN with VGG16 (347  ms) and Faster R-CNN 
with ZFNet (270 ms). The detection time of the Faster R-CNN with ZFNet was similar 
to the speed obtained by Fu et  al. (2018b) (274  ms), who used the same image resolu-
tion (2352 × 1568 pixels). All the above models were faster than LeNet (Fu et al. 2018a), 
which required 270  ms to detect each fruit on average. If every kiwifruit image has 40 
fruits on average, the LeNet would spend 10,800 ms to process one image. LeNet, in turn, 
still spends less average time in detecting each kiwifruit if compared to any of the tradi-
tional image processing algorithms, which were 280 ms (Scarfe 2012), 1640 ms (Fu et al. 
2015) and 500 ms (Fu et al. 2017).

The size of the network is another index that is used to evaluate different deep learn-
ing models, especially for off-line field real-time application and further application in a 
portable device. YOLOv3-tiny was 33 MB, which is less than Faster R-CNN with ZFNet 

Fig. 4   Kiwifruit image detection examples of the five deep learning models. a Faster R-CNN with ZFNet. 
b Faster R-CNN with VGG16. c YOLOv2. d YOLOv3-tiny and e DY3TNet on an image captured in the 
morning with flash. Note The yellow and aqua circles highlight the undetected and wrongly detected kiwi-
fruits, respectively (Color figure online)
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(225 MB), Faster R-CNN with VGG16 (512 MB) and YOLOv2 (192 MB). However, the 
developed DY3TNet model was the smallest (27 MB), although it was modified from the 
YOLOv3-tiny model by adding two convolutional kernels of 3 × 3 and 1 × 1 to the fifth and 
sixth convolution layers to the model. The reason might be that the 1 × 1 followed by the 
3 × 3 convolutional layers are reduction layers, which can increase the non-linearity with-
out changing the receptive fields of the layers and avoid the computational complexity of 
the new structure.

Besides, the AP of the DY3TNet was decreasing as the required IoU threshold 
increased, as shown in Fig. 5. The IoU was changed from 0.1 to 1.0 with an interval of 
0.05. The AP was evaluated on the AD480NF and AD480F datasets by the DY3TNet 
trained on the AD10080NF and AD10080F datasets. The AP was slowly decreasing as the 
IoU increased from 0.1 to 0.75, but suddenly dropped largely from 0.75 to 1.0. For a more 
accurate localization while maintaining a high success rate, IoU of 0.75 can be applied.

Overall, the DY3TNet model was more efficient and sensitive than the other deep learn-
ing models for the 960 testing images of all-day, and it maintained the fast speed of one-
stage detectors and achieved a breakthrough in detection accuracies for kiwifruit in the 
orchard. In addition, the DY3TNet model produced a good trade-off in improving the run-
ning speed and reducing memory. The algorithm of this work indicated that the DY3TNet 
model could provide reliable support for field working requirements.

Comparison of DY3TNet and YOLOv3‑tiny models on images with/
without flash

As the two best-performed models on all the images datasets, the DY3TNet and YOLOv3-
tiny models were evaluated on kiwifruit images with and without flash. The training was 
on the AD10080F and AD10080NF and the testing on the AD480F and AD480NF data-
sets, which are illustrated in Fig. 6; Table 4.

The P–R curves of the YOLOv3-tiny and DY3TNet models are shown in Fig. 6. The P 
of the DY3TNet model was higher than the YOLOv3-tiny model under the same R condi-
tion on both datasets. The detection results of the AD480F datasets (images with flash) 

Fig. 5   AP of the DY3TNet 
decreased as the required IoU 
threshold increased
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were higher than the AD480NF datasets (images without flash) on both deep learning 
models. As shown in Table 4, the DY3TNet model obtained higher AP than the YOLOv3-
tiny model on both datasets. Both models showed higher AP on images with flash than 
that without. The DY3TNet model achieved the highest AP of 0.9032 on the images with 
flash, which was 1.83% higher than the YOLOv3-tiny model on the same dataset. It can 
be concluded that the flash is promising on kiwifruit image detection, but statistical sig-
nificance tests are needed for a further conclusion. The flash would reduce ambient light 
effects through the canopy gaps and highlight the calyx of the fruits, as also reported by 
Scarfe (2012) and Fu et al. (2018c).

DY3TNet model on different image datasets

The DY3TNet model trained and tested on different images datasets with different number 
of images and illumination conditions are shown in Table 5. Same as the results in Table 4, 
the flash may help the image datasets as the APs were higher than those of image datasets 
without flash in the morning and afternoon. Taking the raw training datasets of A240NF 
and A240F in the afternoon as an example, the DY3TNet model trained on the image data-
set with flash A240F and tested on image dataset with flash A160F showed a higher AP of 
0.8973 than that trained on the image dataset without flash A240NF and tested on image 
dataset without flash A160NF 0.8971.

When the images with and without flash were combined for training and testing, the 
lowest APs were found for all times. Taking the raw training datasets M240NF and M240F 

Fig. 6   Precision-Recall (P-R) 
curves of the YOLOv3-tiny and 
DY3TNet models which were 
evaluated on kiwifruit images 
with/without flash respectively 
(Color figure online)

Table 4   Results of the YOLOv3-tiny and DY3TNet models trained on the AD10080F and AD10080NF 
datasets respectively and then tested on the AD480F and AD480NF datasets respectively

Same letter in the fifth column represent no significant difference at the 0.05 level.

Networks Training datasets Testing datasets AP Detection time 
(ms/per image)

YOLOv3-tiny AD10080NF AD480NF 0.8778 31 ± 0.5a

AD10080F AD480F 0.8849 31 ± 0.5a

DY3TNet AD10080NF AD480NF 0.8988 34 ± 0.4b

AD10080F AD480F 0.9032 34 ± 0.4b
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in the morning as an example, the DY3TNet model was trained on the combined dataset 
M240NF & M240F and tested on the combined testing dataset M160NF & M160F. The 
AP was 0.8957, which is lower than that of the DY3TNet model trained and tested on the 
image datasets with and without flash separately. Also, in the all-day raw image datasets 
of AD720NF & AD720F, the same results were obtained. It can be said that a simple and 
consistent illumination condition is positive for kiwifruit detection in the orchard.

In terms of data augmentation, all the augmented training datasets showed the same 
trend of higher AP than their corresponding raw training datasets when tested on the same 
datasets. Taking the augmented training dataset N3360NF in the night as an example, the 
AP of the DY3TNet model improved from 0.9038 to 0.9050 when trained on the aug-
mented dataset N3360NF and raw dataset N240NF and tested on the same testing dataset 
N160NF. This showed that more image data could improve object detection (Zhang et al. 
2017a; Sun et al. 2017). Xue et al. (2018), Al-masni et al. (2018) and Roy et al. (2018) also 
reached the same conclusion that image augmentations method can further improve detec-
tion accuracy or increase sensitivity.

The image augmentation process could slightly improve the detection performance for 
the DY3TNet model. The biggest improvement happened on the combined augmented 
training datasets A3360NF & A3360F with an AP of 0.9027 and corresponding raw mixed 

Table 5   Detection results of the DY3TNet model training on different images datasets with different size 
and illumination conditions

Training datasets Testing datasets AP

Morning M240NF M160NF 0.8972
M240F M160F 0.8973
M240NF & M240F M160NF & M160F 0.8957
M3360NF M160NF 0.8992
M3360F M160F 0.8998
M3360NF & M3360F M160NF & M160F 0.8971

Afternoon A240NF A160NF 0.8971
A240F A160F 0.8973
A240NF & A240F A160NF & A160F 0.8957
A3360NF A160NF 0.9028
A3360F A160F 0.9030
A3360NF & A3360F A160NF & A160F 0.9027

Night N240NF N160NF 0.9038
N240F N160F 0.9028
N240NF & N240F N160NF & N160F 0.9034
N3360NF N160NF 0.9050
N3360F N160F 0.9040
N3360NF & N3360F N160NF & N160F 0.9035

All-day AD720NF AD480NF 0.8950
AD720F AD480F 0.8968
AD720NF & AD720F AD480NF & AD480F 0.8947
AD10080NF AD480NF 0.8988
AD10080F AD480F 0.9032
AD10080NF & AD10080F AD480NF & AD480F 0.9005
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training datasets A240NF & A240F of an AP of 0.8957 when they were tested on the same 
mixed testing dataset A160NF & A160F. On the other hand, the DY3TNet model showed 
a detection performance with the lowest AP obtained of 0.8971 (A240NF) when it was 
trained on the raw datasets that have several images as small as 240. Therefore, the DY3T-
Net model that was based on the YOLO networks could achieve acceptable performance 
with few training samples. This was also reported by other researchers such as Xue et al. 
(2018), who obtained a precision rate of 0.9702 for on-tree mango detection when the 
YOLOv2 model was trained by 660 images. Also, Tian et al. (2019) achieved a F1 score of 
0.8170 through augmented the 480 images to 4800 images by motion blur transformation, 
image rotation, brightness transformation, color balance.

The highest AP of 0.9050 was shown in the images captured at night with the LED 
illumination for N3360NF. All the datasets of images captured at night obtained higher 
APs than their corresponding datasets in the morning and afternoon. The reason is that the 
images captured at night do not suffer from variable ambient light while the artificial light 
can provide constant illumination. Same conclusions were also reported by Scarfe (2012) 
and Fu et al. (2015) on kiwifruit detection and Linker (2018) on apple counting.

The results trained and tested on the different datasets generated by different augmented 
methods using DY3TNet model are shown in Fig. 7. The AP of RotTest was 1.28% lower 
than the AP of the All-dataset, which has the greatest influence on the detection results. 
MotTest reduced AP by 0.66% and BriTest reduced AP by 0.18%. Although the effect of 
motion blur and brightness transformation on the detection result was smaller than that of 
rotation transformation, the effect of motion blur transformation and brightness transfor-
mation cannot be ignored. However, HisTest had basically no effect on the detection result, 
and its AP was still about 90.05%. Therefore, the augmented method with histogram equal-
ization should not be adopted in future studies. The detection results of these tests provide 
a basis for future related studies to select the appropriate augmented methods.

Conclusion

According to the characteristics of kiwifruit images in the orchard, two convolutional 
kernels of 3 × 3 and 1 × 1 were respectively added to the fifth and sixth convolution lay-
ers of the YOLOv3-tiny model to develop a deep YOLOv3-tiny network (DY3TNet). It 
took several 1 × 1 convolutional layers in the intermediate layers of the DY3TNet to reduce 
the computational complexity. Field images were captured at different time and illumina-
tion conditions and augmented to test the proposed DY3TNet, which was compared to the 

Fig. 7   Testing results of the 
DY3TNet model training on 
different images datasets with 
different augmented methods
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other four deep-learning models (Faster R-CNN with ZFNet, Faster R-CNN with VGG16, 
YOLOv2 and YOLOv3-tiny). The AP, detection speed and model size (weights) were used 
to evaluate the performance of these models on detecting kiwifruit in the orchard. For the 
same training and testing datasets, the AP (0.9005) of the DY3TNet model was the highest, 
and it maintained a short detection time (34 ms per image).

Moreover, the weight of the DY3TNet model was the smallest with only 27 MB. The 
results illustrated that the DY3TNet model had better performance than the other deep 
learning models. Therefore, the DY3TNet model can provide reliable support for field 
working requirements in the practical application of a multi-arm kiwifruit picking robot. 
The DY3TNet model and the YOLOv3-tiny model showed better performance on images 
with flash than that without flash. It can be concluded that the flash is positive on kiwi-
fruit image detection. Besides, the experiments indicated that the image augmentation pro-
cess could improve the detection performance for the DY3TNet model, and a simple and 
consistent illumination condition can improve the success rate of detection in the orchard. 
Overall, the results demonstrated that the DY3TNet model is sensitive to light variance. It 
runs fast and is promising for detecting multi-cluster kiwifruit in all-day field conditions.
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