
Vol:.(1234567890)

Precision Agriculture (2021) 22:154–178
https://doi.org/10.1007/s11119-020-09734-2

1 3

Real-time detection of rice phenology through convolutional 
neural network using handheld camera images

Jingye Han1 · Liangsheng Shi1  · Qi Yang1 · Kai Huang2 · Yuanyuan Zha1 · Jin Yu1

Published online: 28 June 2020 
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Smallholder farmers play an important role in the global food supply. As smartphones 
become increasingly pervasive, they enable smallholder farmers to collect images at very 
low cost. In this study, an efficient deep convolutional neural network (DCNN) architec-
ture was proposed to detect development stages (DVS) of paddy rice using photographs 
taken by a handheld camera. The DCNN model was trained with different strategies and 
compared against the traditional time series Green chromatic coordinate (time-series Gcc) 
method and the manually extracted feature-combining support vector machine (MF-SVM) 
method. Furthermore, images taken at different view angles, model training strategies, 
and interpretations of predictions of the DCNN models were investigated. Optimal results 
were obtained by the DCNN model trained with the proposed two-step fine-tuning strategy, 
with a high overall accuracy of 0.913 and low mean absolute error of 0.090. The results 
indicated that images taken at large view angles contained more valuable information and 
the performance of the model can be further improved by using images taken at multiple 
angles. The two-step fine-tuning strategy greatly improved the model robustness against 
the randomness of view angle. The interpretation results demonstrated that it is possible to 
extract phenology-related features from images. This study provides a phenology detection 
approach to utilize handheld camera images in real time and some important insights into 
the use of deep learning in real world scenarios.
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Introduction

Smallholder farmers, defined generally as those who own plots smaller than 2 ha, are esti-
mated to produce 30–50% of the global food supply (Ricciardi et al. 2018), and account 
for over 80% of farms worldwide (Lowder et al. 2016). In regions where smallholder farm-
ing dominates the agricultural landscape—for example, in sub-Saharan Africa, India, and 

 * Liangsheng Shi 
 liangshs@whu.edu.cn

1 State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan 
University, Wuhan 430072, Hubei, China

2 Guangxi Hydraulic Research Institute, Nanning 530023, Guangxi, China

http://orcid.org/0000-0003-0583-4031
http://crossmark.crossref.org/dialog/?doi=10.1007/s11119-020-09734-2&domain=pdf


155Precision Agriculture (2021) 22:154–178 

1 3

China—food security and sustainability depend on how smallholders farm their land (Cui 
et  al. 2018). Precision agriculture comprises a set of technologies that combine sensors, 
information systems, and informed management to optimize production (Gebbers and 
Adamchuk 2010). One method of implementing precision agriculture is based on real-time 
and accurate information on crop growth and the relevant environmental conditions (Zhang 
et al. 2002). As smartphones become cheaper and ubiquitous, they can be used as sensors 
to help smallholders, who typically have limited resources and knowledge, access precision 
agriculture technologies.

For efficient crop management, phenology information is essential to meet the right 
dates for irrigation, fertilizing, and crop protection (Schwartz 2013; Jamieson et al. 2007; 
Zheng et al. 2016). According to the sensor platform used, methods of phenology monitor-
ing can be divided into three groups: (1) satellite platforms with low temporal frequency 
(from 12 h to 10 days) time-series data at a global scale using sensors with a coarse res-
olution (from 250 m to 1 km), such as Moderate Resolution Imaging Spectroradiometer 
(MODIS) (Huete et al. 2013); (2) unmanned aerial vehicle platforms equipped with digi-
tal cameras and multispectral sensors to collect images and vegetation index at a regional 
scale at high temporal (every day) and spatial (from 1 cm to 1 m) resolutions (Klosterman 
et al. 2018; Park et al. 2019); and (3) near-surface platforms with digital cameras and ther-
mal infrared cameras that continuously (every hour) acquire images at an ultra-high spatial 
resolution (from 1 mm to 1 cm) (Melaas et al. 2018; Petach et al. 2014; Sonnentag et al. 
2012).

Satellite remote sensing is the most common method. Although it provides image cover-
ing a wide range, its lack of spatial and temporal resolution, in general, makes it unsuitable 
for the continuous monitoring of plant phenology (White et al. 2009; Zhang et al. 2006). 
Moreover, UAVs are unsuitable for collecting data in rainy or windy weather. A given phe-
nological stage of paddy rice, such as heading or anthesis, takes 5 to 14 days to complete 
(Yoshida 1981), which means that when rain lasts longer than a week, satellite data (e.g., 
MODIS eight-day product) and UAV data cannot be used in time to detect key stages of 
growth.

To address the above problems, a near-surface remote sensing method has been devel-
oped to monitor the growth of vegetation from the organ to the landscape scale (Ichard-
son et al. 2009; Putra and Soni 2019; Sunoj et al. 2016). Sakamoto et al. (2012) estimated 
maize biophysical characteristics using digital photographs. Guo et al. (2015) used field-
acquired time-series (every 5 min from 8:00 to 16:00) RGB images to automatically char-
acterize the dynamics of flowering in the anthesis stage of rice. Bai et al. (2018) used a 
fixed camera to detect rice spikes and proposed a method for the automatic observation of 
the heading stage. In addition, the Phenocam network, a network consisting of dedicated 
surveillance digital cameras that capture photographs of the plant canopy at a desired time 
interval over the duration of plant growth, provided a series of images for studying the phe-
nological impacts of climate change (Petach et al. 2014; Sonnentag et al. 2012; Sunoj et al. 
2016; Zhang et al. 2018).

However, owing to the significant differences in features among the development stages, 
traditional methods of identifying crop phenology based on near-surface remote sensing focus 
on specific stages, such as the emergence and three-leaf stages of maize (Yu et al. 2013), head-
ing stages of wheat and rice (Hufkens et  al. 2018; Zhu et  al. 2016), and anthesis stage of 
rice (Guo et al. 2015). Most of these methods require images taken by a fixed camera, which 
are not suitable for smallholders who have many scattered fields. To overcome this shortcom-
ing, Hufkens et al. (2018) assessed the capability of phenocam-style time-series data collec-
tion to support phenology monitoring in agriculture and found it can be used to quantify the 
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development stages. But the demand for time-series data made this method difficult to apply 
to real-time estimation. For the convenience of practical application, a robust method is still 
required to detect all development stages of crops using ordinary handheld camera images.

In recent years, significant advances in data collection techniques and computing resources 
led to a boom of deep learning (DL). The application of DL to agriculture by using UAV 
imagery and near-surface photograph has been reviewed by Kamilaris and Prenafeta-Boldú 
(2018) and Patrício and Rieder (2018). Among all DL methods, the deep convolutional neural 
network (DCNN) exhibits impressive performance on image classification (Krizhevsky et al. 
2012) and regression tasks (Liu et  al. 2015). For the application of the convolutional neu-
ral network to precision agriculture, considerable attention has been paid to disease detection 
(Ferentinos 2018; Sladojevic et al. 2016), fruit or ear counting (Chen et al. 2017; Koirala et al. 
2019; Liu et al. 2018; Madec et al. 2019; Stein et al. 2016), weed detection (Milioto et al. 
2018; Sa et al. 2018), and crop segmentation (Dyson et al. 2019). Yang et al. (2019) proposed 
the use of DCNNs for yield prediction  (R2 = 0.585) and Ma et al. (2019) proposed a network 
to estimate above ground biomass  (R2 = 0.808).

The hypothesis of this study is that the features of the crop phenotype can be captured by 
machine learning through analyzing images, while they are traditionally recognized by agri-
cultural expert through observation. However, deep learning studies for crop phenology detec-
tion are still very limited. Yalcin (2017) applied the DCNN to classify the development stages 
by using fixed-angle images. Bai et al. (2018) used the support vector machine and DCNN to 
distinguish the image patches of rice spike. The number of spike patches detected determined 
the rice heading stage. The above two studies focused on images at a fixed view angle and 
location, while the smallholder famers may take images at a random view angle and position. 
It is necessary to develop a versatile method for the convenience of dealing with these random 
images. It will be attractive to extract maximum phenology information from images taken at 
multiple angles. A training strategy is also required to enhance the performance of deep learn-
ing method by lessening the influence of the uncertainty of image view angle.

Three contributions are made in this study. First, a method which can identify rice phenol-
ogy using handheld camera image is proposed in contrast to most studies that have employed 
satellite and UAV remote sensing data or RGB photos at a fixed view angle and location. Sec-
ond, real-time images are used to identify rice phenology. This is superior to approaches based 
on time-series data, where the phenology can be identified only after data for the entire growth 
season have been collected. Third, all development stages were detected by a DCNN model, 
whereas most previous studies have focused on single-stage identification. The objectives of 
this study are to (1) develop a new DCNN architecture to identify phenology using handheld 
camera RGB photos and to simultaneously utilize multi-angle images for maximum utiliza-
tion of different images; (2) develop a new training strategy to improve the model robustness 
against the randomness of view angle caused by handheld shooting; and (3) attempt to inter-
pret predictions of deep learning method for phenology detection of paddy rice by visualizing 
the result of predictions.

Study area

The experimental site (23° 5′ 52″–23° 7′ 23″ N, 108° 57′ 7″–108° 58′ 34″ E) was located 
in Binyang county of Guangxi province of China (Fig.  1). The 160 ha of the area were 
divided into more than 800 plots managed by local farmers. The yearly average precipita-
tion over this region was approximately 1600 mm with an average temperature of 21 °C.
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A total of 70 plots owned by different holders were randomly selected and 12 plots man-
aged by us were used for analysis. The rice seedlings were transplanted from 22 July to 15 
August 2018 and were harvested from 2 November to 25 November 2018.

Data collection and processing

Image acquisition

The handheld camera RGB images were taken using a handheld digital camera. A QX-1 
(SONY, Japan) was used for the first time and the remaining images were acquired by a 
DSC-RX1RM2 (SONY, Japan). The RGB sensors had 7952 × 5304 pixels and 5456 × 3632 
pixels for the DSC-RX1RM2 and the QX-1, respectively. The camera was operated with 
automatic exposure control and exposure compensation was employed when the illumina-
tion was insufficient. Most of the images were taken between 9:00 and 17:00. Due to the 
large number of plots, it was difficult to control the consistent ambient light when taking 
images during this period. Therefore, the images taken at different times did have differ-
ences in ambient light, but the effect of ambient light could be reduced by data augmenta-
tion scheme in “Data augmentation”. To utilize the images taken at different view angles 
for phenology identification, four vertical directions—0° (A), 20° (B), 40° (C), and 60° 
(D)—between the direction of photography and that of gravity were chosen (Fig. 2a). In 
the study area, most plots were transplanted by drill planter. When images were taken in 
the sowing direction, the soil between the two rows of rice would be well captured, while 
in other directions, the soil was less captured by images. Three horizontal directions—0° 
(a), 45° (b), and 90° (c)—between the directions of photography and the sowing direc-
tion were thus set to avoid the effects of drilling (Fig. 2b). Twelve photos were taken in 
each observation for a plot, and the view angle was roughly controlled by hand at 1.5 m 

Fig. 1  Study area: RGB orthostatic map on 13 September 2018 (right) of summer-autumn rice experiment 
in Guangxi province, China. Management units of 12 experimental plots with development stage record are 
displayed as white polygons and the 70 plots managed by local farmers are displayed as purple polygons 
(Color figure online)



158 Precision Agriculture (2021) 22:154–178

1 3

above the ground (Fig. 2a). Image collection was deployed seven times for 70 plots man-
aged by local farmers (Fig. 1) and 11 times for 12 experimental plots (Fig. 1). A dataset 
with 622 observations (70 plots × 7 times + 12 plots × 11 times) containing 7 464 images 
(622 × 12 angles) was constructed, and 7 320 (610 × 12 angles) of them were used for anal-
ysis. The other images were poor in quality and could not be used. The 610 observations 
were divided into 10 groups according to the DVS, and each group was divided further into 
training (60%), validation (20%), and testing (20%) sets.

Field data acquisition

The field DVS observations and image acquisition were conducted at the same time. Five 
clusters were chosen randomly from a plot, and they were further classified according to 
the principal code for the development stages of the BBCH (Lancashire et al. 1991). Aver-
ages of the code for the development stages based on the five clusters were calculated as 
true stages.

Data augmentation

A DCNN trained by the original dataset tends to overfit because labeled samples are scarce 
(Perez and Wang 2017). Therefore, a data augmentation scheme was used to increase the 
size of the image dataset and reduce chances of overfitting (Fig. 3).

First, the image dataset was cropped by a square region with a side length 8/9th of 
the height of the image. Owing to the imbalanced data distribution (Fig. 5a), a cropping 
scheme (Table 1) was used to balance the training and validation sets. The photos in the 
test set were cropped six times. Figure 4 shows a cropped patch from the original image. 
After cropping, the resulting distribution of the dataset was more even than the original 
distribution (Fig. 5b).

Second, a horizontal flip was used to double the size of the dataset. The datasets were 
then further augmented by simulating changes in illumination change by transferring the 
images to HSV color space and adjusting the values of V (Smith 1978). The value was 
increased and decreased by 20%, respectively, to triple the training and the validation sets. 
No flip or HSV adjustment was applied to photos in the test set.

Fig. 2  Image acquisition by the handheld camera: a four photos were taken at the vertical angles of 0°, 20°, 
40° and 60° and at the height of 1.5 m; b three horizontal directions were chosen to take the photos
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Finally, images in the three sets were resized to three sizes: 128 × 128, 256 × 256, 
and 512 × 512. The 128 × 128 images were resized again to 256 × 256, and the 512 × 512 
images were divided into four 256 × 256 images. These three datasets with low, middle, 
and high resolutions were used to compare the effects of spatial resolution on the DCNN.

Methods

DCNNs were used to identify the DVS of rice, and their performance was compared with 
that of the Gcc-time-series (Melaas et al. 2018) and manually extracted feature-combining 
SVM approaches (Yalcin 2017; Ma et al. 2019).

Fig. 3  The data augmentation scheme. The original photo with the size of 7952 × 5304 is taken by DSC-
RX1RM2. As for QX-1, the size of the original photo is 5456 × 3632, and the size of the image cropped 
from it is 3228 × 3228. The ellipsis indicates that the image will be processed the same as other images

Table 1  The cropping scheme of three datasets

X and Y are the abscissa and ordinate of point O in Fig. 4

DVS class Training and validation set Test set

Number of X Number of Y Crop time Number of X Number of Y Crop time

0 11 10 110 3 2 6
1 6 3 18
2 3 1 3
3 2 2 4
4 3 2 6
5 8 5 40
6 5 3 15
7 3 2 6
8 3 1 3
9 10 8 80
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The performance of the different models was evaluated in terms of overall accuracy 
(ACC, Eq. 1) and mean absolute error (MAE, Eq. 2):

where TP denotes the true positive, FP denotes the false positive, n denotes the total num-
ber of samples in the testing set, ŷ denotes the predicted DVS, and y denotes the real DVS.

Furthermore, the ability to recognize a specific DVS was evaluated in terms of the 
F-score (F, Eq. (5)). A criterion is given that when the F-score of the DVS reached 0.75, 
the DVS was considered to have been correctly identified.

(1)ACC = TP/(TP + FP)

(2)MAE =

n
∑

i=1

ŷ − y

Fig. 4  The cropping scheme 
to balance DVS distribution. 
 A1B1C1D1 is the original photo, 
and the  A2B2C2D2 is the crop-
ping region. The solid points, 
which divide the  A3B3C3D3 into 
several same parts, represent 
where the O (center point of 
 A2B2C2D2) could be. This figure 
demonstrates how to crop 15 
images from the original photo 
with a DVS of six

O

B1A1

C1 D1

A2 B2

C2 D2

A3

B3

C3

D3

H

0
10
20
30
40
50
60
70
80
90

100

0 1 2 3 4 5 6 7 8 9

N
um

be
r o

f o
bs

er
va

tio
n

DVS
(a)

0

50

100

150

200

250

300

0 1 2 3 4 5 6 7 8 9

N
um

be
r o

f o
bs

er
va

tio
n

DVS
(b)

Fig. 5  Rice DVS distribution of training set: a DVS distribution of original statistic; b DVS distribution 
after cropping



161Precision Agriculture (2021) 22:154–178 

1 3

Gcc‑times series approach

The Green chromatic coordinate (Gcc, Eq. (6)), which can calculate the development 
of the canopy, is defined as the ratio of the green digital number (DN) to the sum of all 
digital numbers (or image brightness values) (Schwartz 2013):

where DN is the constituent value of a given color in RGB color space.
Because the Gcc varied with both vertical and horizontal view angles, 12 time-series 

Gccs of a plot were derived from images shot at different angles, and the individual 
time-series Gcc were smoothed using a fitted locally weighted regression (LOWSS) 
model with a fixed span of 0.4 (Fig. 6a). The time-series Gcc was normalized by divid-
ing by maximum value of the series to render the data comparable because the Gcc 
might have varied in the same DVS when crops were affected by planting density, ferti-
lizer, and other factors.

A set of thresholds were derived to link the Gcc values with the DVS. For example, the 
smoothed and normalized time-series Gcc of the training set were compiled. A threshold 
was then used between the minimum and maximum values of the set. The DVS of the point 
located to the left of the maximum value of the time-series Gcc and below the threshold 
was assumed to be zero, and the DVS values of other points were assumed to be one. The 
thresholds for DVS = 0 and 1 were determined when the accuracy reached its highest value, 
and thresholds for the other DVS values were determined in the same way (Fig. 6b).

(3)ACCi = TPi∕
(

TPi + FPi
)

(4)Recalli = TPi∕
(

TPi + FNi

)

(5)Fi = 2 × ACCi × Recalli∕
(

ACCi + Recalli
)

(6)Gcc = Green DN∕(Red DN + Green DN + Blue DN)

Fig. 6  The Gcc approach to determine development stage. a Smoothed and normalized Green Chromatic 
Coordinate (Gcc) time series; b The thresholds of 10 development stages and part of time-series-Gcc from 
the dataset with a vertical view angel of 20° and horizon view angle of 45°
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Manually extracted feature combining SVM approach

Color and texture features are two types of manually extracted features used for image clas-
sification. The color features used here consisted of mean and variance values, and the 
texture features consisted of contrast, correlation, energy, and homogeneity as derived from 
a gray-level co-occurrence matrix (GLCM) at 0°, 45°, 90°, and 135°. These features were 
extracted from 15 channels in five color spaces (R, G, B in RGB color space, H, S, V in 
HSV color space, H, S, I in HSI color space, L, a*, b* from CIE L*a*b* color space, and 
Y, Cb, Cr from YCbCr color space). This resulted in a vector consisting of 270 feature val-
ues (2 features × 15 channels + 4 features × 4 directions × 15 channels).

To compare the conventional classifiers and the DCNN, these features were processed 
through a SVM to determine the DVS, and calculated the ACC and MAE of the manually 
extracted feature combining SVM approach (MF-SVM).

Deep convolutional neural network approach

To integrate images obtained at different view angles, an architecture was proposed that 
uses four separate branches to process four RGB images taken at four angles (A, B, C, D) 
(Fig. 7). A single branch is an AlexNet (Krizhevsky et al. 2012). Therefore, a pre-trained 
AlexNet can be fine-tuned to this dataset. A concatenation layer is designed to combine the 
features extracted from A, B, C, and D. Every branch provides a DVS prediction while the 
combined feature provides another based on the information of the four input images.

The parameters of the DCNN network were optimized using the back-propagation algo-
rithm. A loss function and an optimizer were thus essential for network parameter opti-
mization. Five cross-entropy losses were employed after the five predictions. In addition, 
three strategies— training from scratch (TFC), fine-tuning (FT), and two-step fine-tuning 
(TSFT)—were used to the optimize the network based on stochastic gradient descent with 
momentum (SGDM) acceleration

(Sutskever et al. 2013). The differences among these strategies in terms of data and the 
training process are described below.

Fig. 7  The architecture of DCNN in this study. The DCNN is composed of four branches processing images 
from different view angles separately. The size of each layer is: Input—-256 × 256 × 3, Conv1-62 × 62 × 96, 
Conv2-30 × 30 × 256, Conv3-14 × 14 × 384, Conv4-14 × 14 × 384, Conv5-14 × 14 × 256, Fc1-4096, Fc2-4096 
(Color figure online)
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Training from scratch

Because the images in the datasets were captured at four vertical angles, they were divided 
into four groups according to angle. In the training process, the four groups were shuffled 
according to the same random number list and divided into mini-batches to feed to the 
networks. This means that the four images fed to the DCNN network were from the same 
observations at the same horizontal angle but different vertical angles.

Fine-tuning and two-step fine-tuning

Fine-tuning a network is based on the concept of transfer learning (Hope 2012). The gen-
eral fine-tuning approach is to train a DCNN model with a classification function at the 
top of the network in a dataset with a large domain. Some layers are then replaced with 
new ones, the parameters of which are randomly initialized. Finally, a specific dataset 
with a small domain is employed to optimize the parameters of the network. In this study, 
the FT approach was first used to evaluate its capability to improve the performance of a 
pre-trained model. The parameters of four branches were all optimized by fine-tuning the 
Alexnet (BVLC AlexNet) (Jia et al. 2014) to the images of 0°, 20°, 40° and 60°, respec-
tively. However, this strategy cannot make full use of all data because each branch only 
employed images at one view angle while the images at other view angles could also help 
to optimize the parameters. Thus, a two-step fine-tuning strategy was proposed to utilize 
the images of all view angles. The TSFT was divided into two steps.

First, parameters of each branch were optimized by fine-tuning the pre-trained AlexNet 
(BVLC AlexNet) to images at the other three view angles. For example, images at angles 
A (0°), B (20°), and C (40°) were mixed, shuffled, and fed into the pre-trained AlexNet, 
resulting a pre-fine-tuning AlexNet dedicated to branch D. This step was repeated four 
times to get four pre-fine-tuning networks for the four branches for next step.

Second, the parameter of the four pre-fine-tuning AlexNets were used to initialize each 
branch of the network while the parameters of the pre-ABCD layer were randomly initial-
ized. The four images were then fed to the network in the same way as in TFS.

Testing

In the testing phase, the prediction was the average result of sample crops from the original 
image. For example, the four original images with the same horizontal angle were cropped 
six times, resulting in 24 samples. Four samples from four original images were fed into 
the network, and this procedure was repeated six times to get six predictions that were 
averaged and rounded to the nearest whole number as the final prediction.

Results

Classification of development stages using time‑series Gcc

The results for different view angles using the time-series Gcc approach are presented in 
Table 2 in terms of ACC and MAE. Overall, the time-series Gcc recorded an acceptable 
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ability to identify DVS. Of the 12 view angles, angle Bb produced the best result with the 
highest ACC (0.737) (Fig. 8a) and the smallest MAE (0.317). Even the worst result deliv-
ered a high ACC of 0.652 (Fig. 8b) and an MAE of 0.495.

However, the time-series Gcc approach classifies the DVS according to the threshold of 
greenness, which is sensitive to crop growth and senescence. According to Table 3, only 
the tillering stage (DVS = 2) and ripening stage (DVS = 8) were correctly identified, with 
F-scores of 0.93 and 0.87, respectively. This is because greenness increased rapidly in the 
tillering stage and decreased abruptly in the ripening stage, whereas only a small change 
occurred in the other stages. This means that the time-series Gcc can only be used to moni-
tor the DVS when greenness changes rapidly.

Two further weaknesses rendered the time-series Gcc unsuitable for DVS monitoring. 
First, the requirement of the time series limits its agricultural application. Second, the 
time-series Gcc approach uses time-series data to fit a curve, where these data need to be 
normalized by dividing by the maximum value of the series. The missing data, especially a 
missing maximum value, introduces error to the fitting curve.

Classification of development stages by MF‑SVM approach

The results obtained by the MF-SVM approach based on 270 features were better than 
those of the time-series Gcc approach (Table 4), and angle C yielded best results with an 

Table 2  The ACC and MAE of 
time-series-Gcc approach

ACC/MAE Horizon view angle

a: 0° b: 45° c: 90°

Vertical view angle
 A: 0° 0.722/0.356 0.726/0.358 0.701/0.395
 B: 20° 0.702/0.377 0.737/0.317 0.695/0.366
 C: 40° 0.695/0.390 0.713/0.343 0.721/0.340

D: 60° 0.660/0.450 0.660/0.452 0.652/0.495

Fig. 8  The best and worst performance of time-series-Gcc approach. a Confusion matrix yielded by the Bb 
set; b confusion matrix yielded by the Dc set
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ACC of 0.817 and a MAE of 0.208. Furthermore, the F-scores of angle C listed in Table 3 
indicate that seven stages of rice could be identified—germination, tillering, stem elonga-
tion, booting, flowering, development of fruit, and ripening.

Three feature vectors consisting of different numbers of features were used to investi-
gate the effects of the number of features on DVS detection. According to Fig. 9, angle C 
of the MF-SVM, which delivered the best performance when the number of features was 
270, yielded an ACC ranging from 0.470 to 0.735 when the number of channels varied 
from one to six. This is because the features extracted from the GLCM contained pheno-
logical information that helps SVM to classify the DVS.

In general, the MF-SVM is a better choice than the Gcc approach for the following two 
advantages. First, it eliminates time-series data, and only a single photo can be used for 
DVS identification, which makes it possible to obtain phenological information in real 
time. Second, if more features can be designed and extracted from photos, the results of the 
classification can be rendered more accurate.

Classification of development stages using deep convolutional network

Results of DCNN based on middle-resolution dataset

The DCNN and MF-SVM are similar as both use a classifier to classify the DVS based on 
features extracted from the image. The difference is that the SVM uses manually extracted 
features while the DCNN uses features automatically extracted by the network. Therefore, 
the performance of the DCNN depends on whether the network parameters are well opti-
mized, which is related to the training strategy. The results of the DCNN using the middle-
resolution dataset are presented in Fig. 10, which shows that its performance was inferior 
to that of the MF-SVM if the model was trained from scratch. Although combining the 
features of the four branches, the best result was not remarkable (with ACC = 0.799 and 
MAE = 0.263), and the results of the four single branches were all worse than that of the 
MF-SVM. However, after the TSFT strategy was employed, each branch delivered out-
standing performance, with ACC values ranging from 0.829 to 0.857 and MAE ranging 
from 0.245 to 0.16. The results of the four single branches indicated that a well-trained 
DCNN model can better extract features to classify the DVS than the MF-SVM approach. 
Moreover, the performance of the DCNN significantly improved after combining features 
from the four branches, with ACC = 0.901 and MAE = 0.122.

Furthermore, the DCNN improved the F-scores of some stages (Table 3), which made 
it possible to classify more development stages correctly. In addition to the seven stages 
detected by the MF-SVM, two stages including leaf development stage and senescence 
stage were correctly identified, the F-scores of which improved from 0.55 to 0.76 and 
0.50 to 0.80, respectively. However, the result of the flowering stage deteriorated slightly, 

Table 4  The ACC and MAE of 
MF-SVM approach

Vertical view angle

A: 0° B: 20° C: 40° D: 60°

ACC 0.749 0.764 0.817 0.790
MAE 0.314 0.266 0.208 0.246
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making this stage difficult to identify. Thus, eight of 10 DVS were identified when four 
angle photos were combined.

Images at different spatial resolutions for DVS classification

Identifying development stages is particularly difficult during transitions from stage to 
another because the looming features are too small to distinguish at the beginning of a 
stage. Improving image resolution is beneficial for DVS detection. As shown in Fig. 11, 
the dataset with low-resolution images yielded the worst result (with ACC = 0.825 and 
MAE = 0.198), whereas high-resolution images improved the results slightly (with 
ACC = 0.912 and MAE = 0.102) compared with middle-resolution images. The results 
show that a higher image resolution remarkably improved classification ability, especially 
for stages with small size features. For instance, it was difficult to extract features from 
images of the booting stage and flowering stage because the former’s feature (the flag leaf) 
is difficult to distinguish from other leaves when it is small, and the latter is characterized 
by anthers that are very small. After improving the image resolution from low to high, the 
F-scores of the booting and flowering stages increased by 0.24 and 0.46.

Fig. 9  The performance of GLCM based on different numbers of channel and feature. a–d are results 
yielded by18 features from one channel, 54 features from 3 channels, 108 features from 6 channels, and 270 
features from 15 channels, respectively



168 Precision Agriculture (2021) 22:154–178

1 3

However, the heading stage was still difficult to identify although its F-score increased a 
little. As shown in Fig. 11d, the stage developed quickly between BBCH40 and BBCH60, 
and thus some clusters were still in the booting stage while others had transitioned to the 
heading stage or even the flowering stage. Furthermore, according to Fig. 5, the number of 
images of the heading stage was too small to train the network. Bai et al. (2018) have pro-
posed a method to identify the heading stage by cropping the high-resolution photos into 
mini-patches that are fed into an SVM and a DCNN to identify them as spike or non-spike, 
and the heading stage is identified by the number of mini-patches considered to be spikes. 
This approach is more like one based on manually extracted features than an end-to-end 

0.71

0.81
0.83

0.73

0.80

0.84

0.75

0.83
0.86

0.77

0.85 0.85

0.80

0.88
0.90

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Train from scratch Fine-tuning Two-step-fine-tuning

A
C

C

Train strategy
(a)

A B C D ABCD

0.42

0.25 0.23

0.40

0.27

0.20

0.36

0.23

0.18

0.34

0.19
0.16

0.26

0.16
0.12

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Train from scratch Fine-tuning Two-step-fine-tuning

M
A

E

Train strategy
(b)

A B C D ABCD

Fig. 10  ACC and MAE of different train strategy and different branch. A, B, C, D represent the 0°, 20°, 40° 
and 60°. ABCD represents the branch concentrates the features derived from four angles



169Precision Agriculture (2021) 22:154–178 

1 3

method based on the DCNN. This is a good means of identifying stages with features of 
small size. Therefore, future work should focus on integrating manually extracted features 
with the DCNN to improve the classification of development stages.

Discussion

Results of different training strategies

Because the performance of three strategies varied greatly, it is worthwhile comparing the 
differences among these strategies. The discussion in this section and “Classification of 
development stages by MF-SVM approach” section is based on the results obtained on the 
medium-resolution image dataset.

According to Fig. 10, the results were poor when the dataset was used to train the net-
work directly, as the highest ACC of the single branch was only 0.77. Tajbakhsh et  al. 
(2016) have noted that training a DCNN from scratch is difficult. Because it requires a 
large number of labeled training data (e.g., the DVS), which is difficult in agriculture 
because of the scarcity of labeled images. Thus, unless large datasets containing millions 
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of labeled data are available, training from scratch is not a good way to optimize the model 
parameters.

To overcome the shortcomings of training from scratch, the pre-trained Alexnet (BVLC 
AlexNet) was used. This greatly improved classification accuracy, with the ACC of each 
branch ranging from 0.803 to 0.852 and MAE from 0.271 to 0.189. Although the pre-
trained model can help networks converge quickly and improve the performance of the 
model, this general fine-tuning procedure did not make full use of all data because only a 
quarter of photos were used to fine-tune the parameters of a single branch.

The TSFT strategy was used to solve the above problem. Recent research by Azizpour 
et al. (2015) suggests that the success of knowledge transfer depends on the distance, or 
dissimilarity, between the database on which a DCNN is trained and that to which the 
knowledge is to be transferred. Compared with the distance between a natural object in 
ImageNet and photos taken at a view angle, the distance between photos taken at differ-
ent angles was smaller. Thus, the two-step strategy, the first step of which is to adapt the 
pre-trained model to the domain of paddy rice by fine-tuning parameters on the three of 
four photos and second is to fine-tune the parameters to fit the specific view angle, further 
improved the capability for DVS classification by reducing the MAE of four branches by 
5.7%, 26.6%, 23.9%, and 13.2%, respectively.

Results at different view angles

Owing to limited research on the impact of methods of field data acquisition on DVS esti-
mation, this dataset containing photos shot from four vertical angles can provide guidance 
for collecting high-value field data in future research.

Figure 10 demonstrates that the results of angle D were always better than those of the 
other three angles while angle A delivered the worst results. Note that regardless of the 
training strategy used, the performance improved as the view angle increased. Two fac-
tors might be related to this phenomenon. First, the photos were more representative as the 
view angle increased. The development stages of different rice crops were varied due to the 
heterogeneity of water and fertilizer distribution. As Fig. 12 shows, more rice clusters were 
captured in images with angle increasing. This reduced uncertainty caused by heterogene-
ity. Second, photos shot at large angles contained more features at different scales, which 
provided more information to the network to estimate phenology. Figure  12 shows that 
photos shot at 0° provided information only at the scale of organ (e.g., type and color), and 
those shot at 20° and 40° provided information at a median scale (e.g., proportion of rice 
ear, stem, and leaf, and the degree of bending of the rice ear) in addition to that at the organ 
scale. Photos shot at 60° provided organ information at the close range, plant information 
at the middle range, and group information (e.g., canopy greenness and closure level) at 
the global range. Note that the best result was obtained by photos shot at 60° because once 
the angle exceeded 60°, there would be a high probability for images to capture extraneous 
objects irrelevant to DVS. Thus, the best view angle at a height of 1.5 m for small plots was 
60°.

Although photos taken at large angles usually delivered better results than those at small 
angles, a counterexample is shown in Fig. 10 where angle B gave the worst result when 
the FT strategy was used. However, Fig. 10 shows that when the TSFT strategy was used, 
branch A was suppressed because “knowledge” gleaned from photos at the other three 
angles using branch B was more valuable than that obtained from branch A. As shown in 
Fig. 13, the view angle of Fig. 12a was larger than that of Fig. 13b, but both belong to the 
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20° dataset. This problem arose because the handheld camera could not precisely control 
the view angle, especially at 20° and 40° because 0° could be determined by gravity and 
60° according to the horizon. Figure 10 shows that after learning from photos taken at the 
other three angles, the MAE of branches B and C decreased by 0.7 and 0.5, respectively, 
while that of A and D decreased by only 0.3 and 0.2. Therefore, if the view angle can be 
controlled when collecting training data, the performance of the network can be improved.

Robustness of well‑trained model against view angle

Error in the estimated view angle did not arise only in the training data, but also in data 
used to identify stages of development. To evaluate the robustness of the network against 
random view angle, images taken at incorrect angles were fed into the network. For exam-
ple, branches A, B, C, and D were fed images at angles ABCD, BCDA, CDAB, and DABC, 
respectively.

The results in Fig. 14a and c show that when the model was trained by FT strategy, 
its performance deteriorated if the angle of the image did not match the branch, and 
worsened further as the difference between the angles increased. For example, the ACC 
values obtained by branch A were 0.81, 0.78, 0.59, and 0.44 for images A, B, C, and 
D, respectively. However, with TSFT strategy, the robustness of the network improved 
significantly. As shown in Fig.  14b and d, performance gradually improved with an 

(a) (b)

(c) (d)

Fig. 12  Comparison of photos shot at different vertical angles. a–d were the photos shot at 0°, 20°, 40°, 
60°. One point in the photo represents one rice cluster while 4, 8, 15, 42 clusters are contained in these four 
photos. The region surrounded by red rectangle provides information of canopy greenness or canopy clo-
sure level (Color figure online)
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increase in the angle of images from A to D, but the results did not change considerably 
across branches. This means that the performance of the model no longer depended on 
the matching level between the input image and the branch, but on the information con-
tained in the input image itself. Therefore, the TSFT strategy improves the performance 
of each branch and makes the network more robust against the random angle at which 
the image is taken.

Features extracted by network

The artificial neural network (ANN) is often criticized for its lack of interpretability. 
Therefore, the gradient-weighted class activation mapping (Grad-CAM) (Selvaraju et al. 
2017) was used to explain how DCNN identified the development stages of rice from 
images.

As shown in the input images in Fig. 15, the rice crop in each DVS has distinctive char-
acteristics, such as yellow straws after harvest for DVS = 0, small rice clusters and a water 
surface for DVS = 1, and large rice cluster and the bare ground for DVS = 2. The class acti-
vation mapping (CAM) in Fig. 15 indicates that the DCNN correctly found and extracted 
these features as basis for phenology classification. However, it was difficult to understand 
the difference between the red area in images with DVS = 3 and 4, although the DCNN 
model correctly classified these two stages based on features contained in these areas. For 
DVS = 5, 6, 7, 8, and 9, the features were mainly concentrated in spikes, with only small 
differences between spikes in the different stage. Thus, it was easy for the DCNN to focus 
on the spikes but difficult to identify the small differences that are useful in distinguish-
ing similar stages. However, the DCNN model could classify images with DVS = 7 and 
8 although their features appeared similar, while the images with DVS = 5, 6, and 9 were 
difficult to identify even if the differences among them were more prominent. This might 
have occurred due to the difference in the numbers of samples in the training set. Accord-
ing to Fig. 16, the F-score improved as the number of samples increased. It was difficult for 
the network to acquire a enough knowledge from the small dataset, where the numbers of 
training samples with DVS = 5, 6, and 9 were only 24, 60, and 12 respectively. The data-
sets for DVS = 7 and 8 contained 168 and 336 photos, respectively. Therefore, when the 
features were not prominent enough for the network to learn, increasing the number of 
samples can compensate for this deficiency.

Fig. 13  The uncertainty of view angle caused by hand. a, b were both shot with a vertical angle of 20°
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Conclusion

This study proposed an approach for the identification of development stages of rice based 
on handheld camera RGB photos. To the best of our knowledge, this is the first investi-
gation of DVS classification by using random view angle RGB photos taken by a hand-
held camera. The proposed DCNN structure consists of four separate branches to process 
RGB images shot from four vertical angles. Compared with the time-series Gcc method 
(ACC = 0.731, MAE = 0.317) and the MF-SVM method (ACC = 0.817, MAE = 0.208), the 
DCNN method classified the DVS more accurately (ACC = 0.913) and with a smaller error 
(MAE = 0.090). It can thus be used by smallholder farmers to identify phenology using 
handheld smartphones in real time.

Furthermore, images taken at different view angles, different model training strategies, 
and interpretations of predictions of DCNN model were investigated. The results showed 
that photos taken at a large angle were more valuable because they contained more infor-
mation than photos taken at a small angle. The proposed two-step-fine-tuning strategy 
greatly improved the robustness of the model and lessened the influence of the uncertainty 

Fig. 14  The ACC and MAE for different branches to identify development stage based on images of differ-
ent angles. a, c are obtained by the FT-network. b, d are obtained by the TSFT-network
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in the CAM represents the importance of the region for DCNN and the red area contributes a lot to the final 
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of view angle. Grad-CAM showed that the network can automatically find information 
related to development stage from images. This study offers a promising deep learning 
approach for the real-time identification of development stages of rice on small plots as 
RGB photos at a high spatial resolution become increasingly available.
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