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Abstract
The objectives of this article are to examine the practicality of on-farm precision experi-
ments to sufficiently lower the costs of acquiring the information necessary to make site-
specific nitrogen (N) fertilizer management profitable, and to examine the potential value 
of on-farm precision experiments in uniform rate N fertilizer management. After pre-
senting a simple economic model as theoretical background, two hypotheses are  tested. 
Hypothesis 1 is that if on-farm precision experiments are conducted over sufficiently many 
growing seasons on a “flat and black” central Illinois cornfield, the information gained can 
be used to make site-specific N application management more profitable than uniform rate 
N application management. Hypothesis 2 is that conducting on-farm precision experiments 
on that field for only a few years will provide information that can increase profits for a 
farmer who otherwise would follow the N application rate recommendation of the Maxi-
mum Return to Nitrogen project. Monte Carlo simulations rejected Hypothesis 1, but failed 
to reject Hypothesis 2. On the modeled central Illinois field, which was characterized by 
relatively little spatial heterogeneity, even fifteen years of on-farm precision experiments 
did not provide enough information to make using site-specific N management profitable. 
But the information gleaned from just a few years of on-farm precision experiments pro-
vided very profitable information to improve spatially uniform N rate management.

Keywords  On-farm precision experiments · Value of information · Nitrogen management

Site-specific input application technology (SST) has been commercially available for two 
decades. Using truly space-age methods to customize input management to small parts of 
farm fields was then and still is exciting. However, actual adoption of SST remains far below 
the expectations expressed in the late 1990s by enthusiastic farmers, agricultural scientists, 
farm equipment dealers, and popular news media. Addressing this subject amidst the early 
excitement, Bullock et  al. (1998, 2002), and Bullock and Bullock (2000) discussed how 
the economic complementarity between SST and information about yield response made 
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profitable use of SST unlikely without much more information about yield response than 
was then available.

The economic complementarity of SST equipment and yield response information has 
important research implications and, ultimately, important practical implications, which 
provide both bad and potentially good news about precision technology. The bad news: 
unless more information can be produced about yield response, the profitability of SST 
will remain limited. The potentially good news: using research methodologies now being 
called “on-farm precision experimentation” (OFPE), precision technology itself can be 
used to inexpensively run large-scale agronomic field trials, and so increase the supply of 
the information needed to make SST profitable. The data thus generated could be used 
profitably in concert with other agricultural “Big Data,” a topic generating much excite-
ment in agricultural and popular media.

The objectives of this article are to examine the practicality of the idea that OFPEs can 
be used to sufficiently lower the costs of acquiring the information necessary to make site-
specific nitrogen (N) fertilizer management profitable, and to examine the potential value 
of OFPEs in uniform rate N fertilizer management. In particular, two hypotheses are tested; 
these are necessarily narrow in scope, encompassing only two of dozens of important ques-
tions about OFPEs, and are examined using simulations with data from a single OFPE. It 
is hoped, however, that the reported research will encourage more applied and theoretical 
OFPE research. Hypothesis 1 is that if OFPEs are conducted over sufficiently many grow-
ing seasons on a “flat and black” central Illinois cornfield, the information gained can be 
used to make site-specific N application management more profitable than uniform rate 
N application management. Hypothesis 2 is that conducting OFPEs on that field for only 
a few years will provide information that can increase profits for a farmer who otherwise 
would follow the N application rate recommendation of the Maximum Return to Nitrogen 
(MRTN) project (Sawyer et al. 2006; Iowa State University Extension and Outreach 2019).

In pursuit of these objectives, first a simple economic theory is presented to argue that 
(a) current use of SST is low because many potential users possess too little information 
about crop yield response to use SST profitably; and (b) if the economic supply curve of 
that information can be shifted out, use of the technology will increase. Second, results 
of a Monte Carlo simulation are presented to gauge the practicality of this idea of using 
SST to increase the information needed to increase the demand for SST. Those simula-
tions quantify (a) how the values of SST and uniform technology change as the number 
of years of on-farm experimentation increases, (b) how the value of SST [as compared to 
conventional, uniform rate technology (URT)] increases as the number of years of on-farm 
precision experimentation increases, and (c) the value of OFPE information to farmers who 
otherwise would follow university-based uniform rate management advice. The principal 
results reject Hypothesis 1, but fail to reject Hypothesis 2. At least on the modeled cen-
tral Illinois field, which was characterized by relatively little spatial heterogeneity, even 
fifteen years of OFPEs did not provide enough information to make using site-specific N 
management profitable. But the information gleaned from just a few years of OFPEs pro-
vided very profitable information to improve spatially uniform N rate management.
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A simple economic theory of SST adoption (and the lack thereof)

This section presents a simple economic theory to explain the current low adoption rates of 
SST, and discusses how equilibrium adoption rates would be increased if more information 
about yield response were available. Figure 1 features a model of two markets. The left-hand 
panel shows a market for SST equipment. The curve labeled SE′ represents the supply of 
equipment in an initial period. The demand for SST equipment is initially DE(PE, PI

0), where 
PI

0 is the initial price of yield-response information. (At this level of abstraction, no attempt is 
made to define in exact quantitative terms what is meant by “information.” For a more rigor-
ous treatment of the subject, see Bullock et al. (2009).) These initial curves have been drawn 
such that the vertical intercept of SE′ exceeds that of DE(PE, PI

0), implying that in the initial 
equilibrium SST equipment is neither bought nor sold (QE

0 = 0). This is meant to represent 
a state in which SST has not yet been invented—that is, is “so expensive” to produce that no 
buyers are willing to pay enough for any to be produced in equilibrium. In the initial state, 
even without SST, farmers do have some use for information about yield responses to inputs 
on their fields, because it can be helpful as they make URT management decisions. There-
fore, as shown in the right-hand panel of Fig. 1, in the initial equilibrium a positive but small 
amount of information, QI

0, is bought and sold at a price per unit PI
0.

Figure 1 illustrates that a subsequent equilibrium arises when SST equipment is brought 
to  market (“invented”), which is modeled as an outward shift of the supply curve from 
SE′ to SE″. This shift results in the emergence of the market for SST equipment and an 
expansion of the information market. The subsequent equilibrium is shown with prices and 
quantities PE

1, PI
1, QE

1, QI
1. (In the subsequent equilibrium, demand for site-specific tech-

nology equipment has shifted in slightly from DE(PE, PI
0) to DE(PE, PI

1), because the price 
of information has risen.)

The purpose here is to consider whether the subsequent equilibrium illustrated in Fig. 1 
must be the long-run equilibrium. Figure 2 illustrates why it may not have to be, because it 
is possible to use precision technology itself to lower the costs of generating yield-response 
information. Following early discussions (Bullock et  al. 1998, 2002; Bullock and Bullock 

Fig. 1   Effects of the invention of site-specific technology equipment on the markets for site-specific tech-
nology equipment and yield-response information
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2000), here it is assumed that SST and yield-response information are economic comple-
ments; the technology is more valuable if the information is available, and the information 
is more valuable if the technology  is available. The use of precision technology to cheaply 
generate yield-response information is represented by a shift down and out in the information 
supply curve, from SI′ to SI″. This drops the price of information, which in turn, because of the 
complementarity between information and precision equipment, shifts out the demand for pre-
cision equipment. In the new equilibrium, quantities have risen to QE

2, and QI
2, and prices are 

PE
2, and PI

2. Precision technology has been used to supply the information needed to increase 
the value of precision technology in crop production, and thereby create demand for itself.

Supply of information about site‑specific yield response: how precision 
technology can be used to make precision technology profitable

Crop scientists and agricultural economists have been attempting for generations to esti-
mate yield response functions with small amounts of data (e.g. Heady and Pesek 1954; 
Day 1965; Stauber et  al. 1975; Cerrato and Blackmer 1990; Bullock and Bullock 1994; 
Tembo et al. 2008; Marenya and Barrett 2009). But that research has been insufficient to 
provide farmers needed detailed, site-specific knowledge about yield response. The costs 
of conducting yield-response studies limited data generation. Trials were conducted using 
labor-intensive techniques; workers marked off plots of land using measuring tapes and 
orange flags, applied inputs by hand or with specialized equipment, and harvested without 
the benefit of large-scale farm machinery. This labor intensity meant that it was generally 
only financially feasible to run trials on very small areas of land, at few locations, usually 
only for a few years. Consequently, despite generations of research, little is known about 
optimal fertilizer management; university- and industry-provided fertilizer management 
recommendations still often rely on “rules-of-thumb” (e.g., Hoeft and Peck 2007) that are, 
at best, based only loosely on data analysis and science (Rodriguez et al. 2019).

Fig. 2   OFPE lowers the cost of generating information, so demand for precision technology equipment rises
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On‑farm precision experimentation methods

At the end of the 1990s, a few small agronomic research projects (e.g., the develop-
ment of Donald Bullock’s and Ronald Milby’s Enhanced Farm Research Analyst soft-
ware (Rund 2000), and Cook et al. (1999)) began demonstrating that precision tech-
nology could be used to conduct OFPEs on very large fields at very low costs. More 
recently, the Data-Intensive Farm Management (DIFM) project (Bullock et al. 2019) 
has expanded those early efforts, conducting hundreds of OFPEs in the US and South 
America). Figure  3 depicts a corn OFPE, conducted by DIFM in 2018 on a 30-ha 
central Illinois commercial farm field. A participating farmer put the experiment “in 
the ground” by operating the farm machinery in his usual manner while rates of side-
dressed N application were controlled by computer and Global Navigation Satellite 
Systems equipment according to the researchers’ pre-programmed randomized field 
trial design, which included five N application rates.

Fig. 3   Nitrogen-rate trial design for a 30-ha field in central Illinois, 2018, the farmer “putting the trail in the 
ground,” and scatterplot of the (N, yield) data generated
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A Monte Carlo simulation of the relationships between application rate 
technologies and information from on‑farm precision experimentation

To examine the potential value of conducting OFPEs such as the one depicted in Fig. 3, a 
1000-round Monte Carlo simulation of the physical and economic results of N fertilizer 
experimentation and management in corn production was conducted to examine the rela-
tionships between N application strategies and yield response information.

The simulated field and simulated production

A farm field with spatially autocorrelated production characteristics was simulated, then 
used in the simulation rounds. The simulated field’s size and grid design were typical of 
DIFM’s (N, corn) OFPEs. As in Fig.  3, it was assumed that the trial design included a 
“buffer zone” inside the simulated field’s perimeter, both for headlands to provide turn-
around room, and also to not subject different parts of the experiment to different levels 
of wind exposure and self-shading of the crop. The buffer zone was not considered to be 
part of the experiment, just as it was not part of the 2018 OFPE illustrated in Fig. 3. The 
“in-trial” part of the field was partitioned into a rectangular grid of 160 plots, each 91.44 m 
(300 ft) long and 18.288 m (60 ft) wide. Following DIFM’s usual practice, each plot was 
partitioned into five 18.288 m × 18.288 m (60 ft × 60 ft) subplots, as shown in Fig. 3, result-
ing in 800 subplots in total. Thus, the “in-trial” part of the field was rectangular, 731.52 m 
(2400 ft) long, and 365.76 m (1200 ft) wide, making the trial 26.76 ha (66.12 ac) in size.

The simulated field’s characteristics maps

The simulated field was assigned the two “characteristics maps,” depicted in Fig.  4. 
The characteristics modeled were the field’s stream power index (SPI) and its Illi-
nois Soil Nitrate Test (ISNT) map. ISNT values are meant to indicate in-soil nitrate 

Fig. 4   ISNT and SPI maps of the simulated field
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concentration, and SPI values describe topography. Ruffo et al. (2005, 2006) provided 
more detailed descriptions of the properties and agronomic implications of these field 
characteristics. For the purposes of the simulations, the ISNT and SPI values were 
treated as exogenous and constant over time. The ISNT map was generated using the 
geoR package in R (Ribiero et  al. 2007) to run a  Gaussian random field simulation, 
assuming a nugget of 300, a sill of 1617, and range of 418, which were parameters 
reported for the SY03 field in Champaign County, Illinois in Ruffo et al. (2005, 2006). 
The nugget/sill ratio of the field’s semi-variogram is under 30%, indicating strong spa-
tial autocorrelation, and therefore was useful for the purposes of the simulations. The 
calculated ISNT values were normally distributed, having a high p-value form the Shap-
iro–Wilk test, with mean 217.1 and standard deviation 26.9.

Creating SPI maps requires a topographical slope map, and a Specific Catchment Area 
(SCA) map. A set of digital elevation data at a 1 m level of resolution were obtained for 
field SY03 from U.S. Geological Survey (2017), and then slope values were calculated 
(Arundel et al. 2015). The SCA map data was then derived from the slope map data using 
the System for Automated Geoscientific Analyses (SAGA) tool in QGIS (Conrad et  al. 
2015, QGIS Development Team 2019), according to Eq. (1). The resultant SPI data had a 
mean of 1.76 and a standard deviation of 1.61.

Trial design

In each experimental year, to each of the field’s 160 plots, one of the five N fertilization 
target rates was randomly assigned: 125, 150, 175, 200, or 225 kg/ha. In each Monte Carlo 
round, each of the five rates was assigned to 32 plots, and all five subplots in a plot received 
the same N rate.

The “true” response function

It is assumed that the “true” response function is that reported in Bullock et  al (2009), 
which was derived from regression analysis on data from an early central Illinois OFPE:

where the f function describes how a subplot’s crop yield responds to the nitrogen fertilizer 
application rate N, May rainfall M, the subplot’s ISNT and SPI values, I and S, and a ran-
dom yield disturbance term, u.

Calling Ibj and Sbj the ISNT and SPI values in subplot j of plot b, each subplot’s reduced-
form yield response function can be defined as,

where fbj denotes Mg yield on the 18.3  m × 18.3  m subplot, and N is kg nitrogen ferti-
lizer applied to that subplot. The coefficient values assumed are from Champaign 
County field D in Bullock, et  al. (2009): β0 = 5524, βN = 154.97, βD = − 2440, βI = 52.33, 

(1)SPI = SCA × slope (%).

(2)

f (N,M, S, I, u) ≡ �
0

+ �NN + �D + �I I + �MM + �SS + �NNN
2 + �NINI + �NMNM + �NSNS

+ �NNIN
2I + u,

(3)fbj(N,M, u) ≡ f
(
N,M, Sbj, Ibj, u

)
,
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βM = − 108.5, βS = − 194.7, βNN = − 0.4461, βNI = − 0.4866, βNM = 0.1624, βNS = 0.7537, and 
βNNI = 0.001318. The subplots’ error terms in year t are specified as ut, an 800 × 1 vector, as 
presented in Kapoor et al. (2007). Mathematically,

where μ is 800 × 1 vector of subplot-level time invariant characteristics, εt is 800 × 1 sub-
plot-level vector of error terms that vary over both plot and time, and W is a distance-based 
spatial weights matrix, where weights decrease with distance between subplots.

Simulated data generation

In one thousand rounds of Monte Carlo simulation, a 20-year series of agronomic experi-
ments simulated yield in each of the field’s 800 subplots in every year. For every year of 
modeled experimentation, a value for the random variable May precipitation, in millim-
eters, was drawn from a normal distribution with mean of M = 70 and standard deviation 
of σM = 15. These parameters were taken from Champaign County, Illinois rainfall data, 
1895–2018. It was assumed that in a given year t, the same amount of rain, Mt, fell on 
every subplot in the field. For each of the field’s 800 subplots, a random yield disturbance 
term was drawn from a normal distribution with mean 0 and standard deviation 200 kg/
ha. Thus, every observation in the resultant simulated data set had a value for the applied 
N fertilization rate, a value for May precipitation, a value for its random disturbance term, 
and a yield value. Since in each Monte Carlo round yield was simulated on 800 subplots 
for twenty years, there were 16,000 observations in each round’s data set. Since one thou-
sand rounds were run in the Monte Carlo process, one thousand “20-year” datasets were 
created. To simulate varying lengths of agronomic experimentation, for each Monte Carlo 
round data from years of its 20-year data set were simply omitted. For example, a simula-
tion’s 19-year data set contained the observations from experiment years 2 through 20. In 
this manner, data sets simulating experiments of 2, 3, 4, …, 19, and 20 years of length were 
generated.

Econometric methods

In each round, the spatial random effects (SPRE) model (Kapoor et al. 2007) of the R pack-
age splm (Millo and Piras 2012) was used to estimate the yield response function. In the 
presence of spatial dependence in the error term, Ordinary Least Squares is not in general 
efficient. On the contrary, the SPRE is a Generalized Least Squares estimator that takes 
into account the spatial dependence of both the plot-level effects and idiosyncratic errors 
specified above. In the context of the dynamic on-farm trial problems considered in this 

(4)ut = �Wut + v,

(5)v = � + �t,

(6)� ∼ N
(
0, �2

�
⋅ IM

)
,

(7)�t ∼ N
(
0, �2

�
⋅ IM

)
,
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article, statistical efficiency has economic value. The more accurate the estimate of yield 
response function with given amount of information obtained through on-farm experi-
ments, the greater the potential benefit of site-specific management in subsequent years.

Definitions of values of information and technology

The term full information is used here to describe the situation in which the farmer knows 
the field characteristics maps, the distributions from which the yield disturbance ε and 
May precipitation M are drawn, and the “true” meta-response function in Eq. (2). A farmer 
is said to have partial information when (s)he does not know the true subplot-specific 
response functions fbj, but has access to the OFPE data, with which the fbj functions can be 
estimated. The “amount of information” depends on the number of years of experimental 
data to which the farmer has access. (Following the microeconomic theory presented by 
Laffont (1989), Bullock et al. (2009) provide a formal mathematical treatment of “informa-
tion” in the context OFPEs.)

Net revenues under SST and full information

For simplicity, it is assumed that farmers desire to maximize expected profits. (In reality, 
of course, farmers’ objectives can be more complicated. Risk-averse farmers are willing to 
receive lower expected monetary returns if the variance of those can be diminished. Some 
farmers may simply want to tell their neighbors about high yields. Most farmers care about 
the environmental impacts of their production practices.) Let B = 160 be the number of 
plots in the OFPEs, and j be the index for subplots within a plot. In a representative year t, 
under full information, the farmer using SST for fertilization solves,

where p is the output price, and w is the price of N fertilizer, and E is the expectations 
operator. It is assumed that the delays in yield monitor and variable-rate applicator accu-
racy mean that producer can only choose N fertilizer rates by plot, not by subplot. That is, 
all subplots within a plot must be managed in the same way. The solution to (8) is the vec-
tor of ex-ante optimal site-specific N fertilization rates under full information:

Ex-ante maximized profits under SST with full information are then,

which because M and u enter the response function linearly, can be rewritten,

(8)Max E
N1,...,NB≥0

{
B∑

b=1

5∑
j=1

[
pfbj

(
Nb,Mt, ubjt

)
− wNb

]}
,

(9)

�
ssfi(p,w) ≡

(
N

ssfi

1
(p,w), ...,N

ssfi

B
(p,w)

)
≡ argMax

N1,...,NB≥0

E

{
B∑

b=1

5∑
j=1

[
pfbj

(
Nb,Mt, ubjt

)
− wNb

]}
.

(10)�ssfi(p,w) ≡ E

{
B∑

b=1

5∑
j=1

[
pfbj

(
N

ssfi

b
(p,w),Mt, ubjt

)
− wNb

]}
,

(11)�ssfi(p,w) ≡

B∑
b=1

5∑
j=1

[
pfbj

(
N

ssfi

b
(p,w),M, 0

)
− wN

ssfi

b
(p,w)

]
.
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Net revenues under uniform technology and full information

A farmer who will use uniform-rate technology under full information has the following N 
fertilizer demand function, which gives the optimal uniform application rate as a function 
of prices:

where fwf(N, M, u) is the whole-field-response-to uniform-N function. Ex-ante maximized 
profits under uniform technology with full information are then,

Net revenues under SST and partial information

A farmer with partial information knows the estimated yield response functions. Since the 
estimates are generated from data from OFPEs, then in some sense the “amount” of infor-
mation to which the farmer has access depends on the number of years that OFPEs have 
been run on the field. Since the number of observations in the data set increases with the 
number of experiment-years, the trend will be for estimates of the f function to improve as 
OFPEs are run for additional years.

To model different information settings, the effects of conducting OFPEs for different 
numbers of years was simulated. The number of experiment-years is denoted by the vari-
able T, which takes values between 2 and 20, depending on the simulation. Using “experi-
ment T” to denote the experiment run for T years, call the estimated coefficients 𝛽T

0
 , 𝛽T

N
 , 𝛽T

D
 , 

𝛽T
I

 , 𝛽T
M
, 𝛽T

S
, , 𝛽T

NN
, 𝛽T

NI
, 𝛽T

NM
, 𝛽T

NS
, and 𝛽T

NNI
 . Then, for b = 1, … 160, j = 1, …, 5, and T = 2, … 

20, the estimated reduced-from site-specific response function for subplot j of plot b after T 
years of experiments is,

Letting M denote expected May precipitation, a farmer using uniform technology is 
assumed to maximize expected profits from the whole field. If the only information that he/
she has is the estimated whole-field response function, then his/her objective is,

(12)Nunfi(p,w) ≡ argMax
N≥0

E

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

B�
b=1

5�
j=1

pfbj
�
N,Mt, ubjt

�

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

fwf (�,Mt ,�)

−w

B�
b=1

5�
j=1

N

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

,

(13)

�unfi(p,w) ≡ E

{
B∑

b=1

5∑
j=1

[
pfbj

(
Nunfi(p,w),Mt, ubjt

)
− wNunfi(p,w)

]}

≡

B∑
b=1

5∑
j=1

[
pfbj

(
Nunfi(p,w),M, 0

)
− wNunfi(p,w)

]
.

(14)

f̂ T
bj
(N,M) ≡ 𝛽T

0

+ 𝛽T
N
N + 𝛽T

D
+ 𝛽T

I
Ibj + 𝛽T

M
M + 𝛽T

S
Sbj + 𝛽T

NN
N2 + 𝛽T

NI
NIbj + 𝛽T

NM
NM

+ 𝛽T
NS
NSbj + 𝛽T

NNI
N2Ibj.
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The solution to the problem above is the vector of ex-ante optimal block-specific N ferti-
lization rates under information from an experiment of length T:

Expected ex-ante maximized profits under SST with information from T years of OFPEs 
are then,

(Note that the true profits with incomplete information depend on the true reduced-form 
response functions fbj, not the estimated response functions.)

Net revenues under uniform technology and partial information

The farmer operating with URT with information from an OFPE of length T years solves

The solution to the problem above is the ex-ante optimal whole-field N fertilization rate 
under information from an experiment of length T:

Expected ex-ante maximized profits under uniform technology with information from T 
years of experiments are then,

(15)Max
N1,...,NB≥0

E

{
B∑

b=1

5∑
j=1

[
pf̂ T

bj

(
Nb,Mt

)
− wNb

]}
.

(16)

�
ssT (p,w) ≡

(
NssT
1

(p,w),… ,NssT
B

(p,w)
)
≡ argMax

N1,…,NB≥0

B∑
b=1

5∑
j=1

[
pf̂ T

bj

(
Nb,M

)
− wNb

]
.

(17)

�ssT (p,w) ≡ E

{
B∑

b=1

5∑
j=1

[
pfbj

(
NssT
b

(p,w),Mt, ubjt
)
− wNssT

b
(p,w)

]}

≡

B∑
b=1

5∑
j=1

[
pfbj

(
NssT
b

(p,w),M, 0
)
− wNssT

b
(p,w)

]
.

(18)Max
N≥0

E

{
B∑

b=1

5∑
j=1

[
pf̂ T

bj

(
N,Mt

)
− wN

]}
.

(19)NunT (p,w) ≡ argMax
N≥0

B∑
b=1

5∑
j=1

[
pf̂ T

bj

(
N,M

)
− wN

]
.

(20)

�unT (p,w) ≡ E

{
B∑

b=1

5∑
j=1

[
pfbj

(
NunT (p,w),Mt,bjt u

)
− wNunT (p,w)

]}

≡

B∑
b=1

5∑
j=1

[
fbj

(
NunT (p,w),M, 0

)
− wNunT (p,w)

]
.



1038	 Precision Agriculture (2020) 21:1027–1044

1 3

The value of information under uniform and site‑specific technologies

The per-ha value of the information gap between uniform management with full informa-
tion and uniform management with information from T years of experiments is the differ-
ence in maximized expected net revenues between the two situations:

where c = 0.0335 is the conversion rate from 18.3 × 18.3 m2 to ha−1. (That is, all values are 
measured per hectare, not per subplot.)

Similarly,  the per-ha value of the information gap between site-specific management 
with full information and site-specific management with information from T years of exper-
iments is,

Value of SST under full information

The maximization problem in (9) is less constrained than the one in (12). Therefore, under 
full information, if the cost of purchasing the technologies themselves is not considered, 
profits under site-specific management cannot be lower, and in general will be higher than 
under uniform management. Call the difference between these the ex-ante value of site-
specific technology under full information:

Value of site‑specific technology under partial information

Finally, the net revenues of the site-specific farmer with some amount of information are 
compared to those of a uniform-rate farmer with that same information. This is the ex-ante 
value of site-specific technology under partial information:

This value is the one most pertinent to farmers’s technology decision. If the difference 
in the costs of the technologies is less than the difference in the net revenues defined in 
(23), then the farmer’s best choice is to adopt site-specific technology.

The value of status quo information

In the above, it is assumed that the farmer obtains information solely from OFPEs. The value 
of the information provided by OFPEs depends on the amount of information (s)he would 
possess if no experiments were run. In reality, farmers try to garner management information 
from many sources, and use that information to make decisions. Different farmers manage 
their fields differently. Let Nsq denote the uniform N rate that the farmer would use in the sta-
tus quo situation, that is, in the situation in which no OFPEs are run. How close Nsq is to the 
farmer’s optimal uniform N rate will vary among farmers. For the purposes of illustration, in 
what follows it is supposed that the farmer’s status quo rate is that provided by the Maximum 

(21)vinun,T (p,w) ≡
[
�unfi(p,w) − �unT (p,w)

]
c−1,

(22)vinss,T (p,w) ≡
[
�ssfi(p,w) − �ssT (p,w)

]
c−1.

(23)vssfi(p,w) ≡
[
�ssfi(p,w) − �unfi(p,w)

]
c−1 ≥ 0.

(24)vssT (p,w) ≡
[
�ssT (p,w) − �unT (p,w)

]
c−1 ≥ 0.
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Returns to Nitrogen (MRTN) project’s website (Iowa State University Agronomy Extension 
and Outreach 2019). The MRTN system was developed and is supervised by researchers and 
extension personnel at seven land grant universities in the US Corn-Soy Belt. MRTN recom-
mendations are based on a series of on-farm strip trials that those researchers have conducted 
since the early 2000s. MRTN recommendations are provided by geographic region and by 
prices. At the time the research here reported was conducted, and for a field in central Illinois 
facing the N and corn prices assumed in the Monte Carlo simulation the MRTN recom-
mended N rate was 264 kg ha−1 (240 lbs ac−1). Let this number be denoted Nmrtn, and the 
profits resultant from this status quo N rate in Monte Carlo simulation m be denoted �mrtn

m
 . 

Let πmrtn =
�∑1000

m=1
�mrtn
m

�
∕1000 denote the mean of the status quo profits over the 1000 

Monte Carlo simulations. Throughout the analysis, a corn output price of p0 = $0.1535/kg 
($3.90/bu) and a N fertilizer price of w0 = $0.80/kg ($0.36/pound) for N fertilizer were 
assumed.

Results

Let m index the Monte Carlo runs, so that m = 1, …, 1000. Let �ssT
m

 be net revenues (crop 
revenues minus N fertilizer costs) measured in Monte Carlo round m from optimal site-
specific management, given that there have been T years of experiments (as in Eq. (17)). 
Let πssT =

�∑1000

m=1
�ssT
m

�
∕1000 be the mean of this measurement over all the 1000 Monte 

Carlo rounds. Similarly, referring to Eq.  (20), let πunT =
�∑1000

m=1
�unT
m

�
∕1000 . Figure  5 

compares how net revenues depended on information (either status quo information, full 
information, or information from various numbers of experiment years), and the technol-
ogy subsequently used. The result immediately apparent from Fig. 5 is that expected status 
quo profits are far lower than the profits the farmer could use with after just a few years of 
experiments. Using information from just two years of experiments would allow the 

Fig. 5   Means of the 1000 Monte Carlo simulations’ expected maximized profits of a uniform and a site-
specific farmer, when they have information from T years of on-farm precision experiments
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farmer, whether employing uniform rate technology or SST, to increase profits by nearly 
$200 ha−1, from $1578.88/ha to approximately $1770/ha. It may seem surprising that the 
MRTN recommendation is quite so poor in this particular example. In fact, however, the 
developers of MRTN have reported that their regionally-recommended MRTN rates have 
frequently differed by over 50 kg ha−1 from the estimated optimal uniform rates that they 
have measured for the same individual experimental fields. (See Fig. 1 of Nafziger (2018).) 
The fact is, it may be very difficult for farmers who do not have adequate data from their 
fields to closely approximate their economically optimal N rates. The lesson taught by 
Fig. 5 is that it may be possible to greatly ameliorate this situation with just a few years of 
OFPEs. A second lesson derived from Fig. 5 is that after just a few years of trials, addi-
tional trials provide little additional useful information. Both curves are asymptotically 
approaching full-information profits as the number of trial years surpasses five or six. That 
is, once a handful of experiments are run and analyzed, there is not much valuable informa-
tion to be gleaned from further experimentation. Indeed, the information from the first two 
years of field trials increased net revenues by almost $200  ha−1, but after about year 6, 
additional trial years increased net revenues by only a few dollars per ha.

Results from the one thousand Monte Carlo rounds show that the mean of the 
value of site-specific technology under full information, as defined in (23), was vssfi(p0, 
w0) = $0.216/ha. By using SST instead of URT, a farmer who knew every subplot’s true 
response function, fbj(N, M) could expect to increase annual net revenues by only $0.216/
ha. This does not include the costs of the precision agriculture equipment, nor account for 
the farmer possessing more information about the characteristics field maps and the func-
tional form of the “true” yield response function than is actually available. In short, the 
simulation results suggest that replacing uniform technology with site-specific technology 
would not pay for itself on this “flat and black” central Illinois cornfield, and so Hypoth-
esis 1 is rejected.

Note from Fig. 5 that for T < 17, ΠunT > ΠssT. This implies that, unless the farmer has a 
great deal of information, s(he) can make more money by using URT than by using SST. 
The vertical distance between the, ΠunT and ΠssT curves in Fig. 5 represents vssT(p0,w0) 
from (24), the Monte Carlo simulations’ ex-ante values of site-specific technology under 
various amounts of partial information. Note that for every experiment length from two 
to seventeen years, this value is negative. Until the farmer has information from seven-
teen years of field trials, uniform management outperforms site-specific management, 
even when the differences in the costs of production under these technologies are not 
accounted for. The intuitive explanation for this result is consistent with the discussion 
about how information and SST are complements in Bullock et al. (1998), Bullock and 
Bullock (2000), and Bullock et al. (2002), and later articles, which explain that site-spe-
cific application management is information-intensive. Loosely speaking, managing a 
field “on average” is a simpler task than managing it site-specifically. Site-specific man-
agement requires knowledge about how yield responds to management in many places on 
the field. With enough information, eventually the farmer can take advantage of the abil-
ity to customize input application according to site characteristics. But while the same 
amount of information may not be valuable for managing small sites within a field, that 
information may be more useful for describing the field “on average,” and therefore to 
managing the field “on average.” Of course, these results will depend on the heterogene-
ity of the spatial characteristics in the field. The field used in the model presented here 
simulated a central Illinois “flat and black” field, and the spatial heterogeneities of the 
SPI and ISNT values were limited. This leads to similar site-specific inputs rates among 
sites, and limits the value of the site-specific technology. Obviously, extending the 
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analysis to examine the values of OFPEs and technology on fields less spatially homoge-
neous is called for.

Limitations

The research reported here simulated an OFPE on a single field. The size of the simu-
lated field, the “maps” used to describe the spatial distribution of the model’s field char-
acteristics, and the design of the agronomic experiment were realistic, but the possibili-
ties of running multiple similarly designed experiments on multiple fields, and using the 
data together to estimate yield response, were not examined. Therefore, the inference 
space of the research reported here is small, and no conclusion may be drawn about the 
value of running multiple trials on multiple fields in multiple yields. More OFPE trials 
are being and need to be run in new years and new locations. Research examining ques-
tions similar to those addressed in the current article, but using data from fields with 
highly heterogeneous characteristics maps would be especially interesting.

An additional limitation of the reported research is that the opportunity cost of run-
ning on-farm trials was not accounted for. However, in actual DIFM on-farm experi-
ments many farmers have made money, because using the experimental target applica-
tion rates ended up bringing in greater profits than those that would have been garnered 
had the producer used his status quo application rate. Therefore, the opportunity costs 
of the experiments depend highly on how close to optimal the farmer’s status quo rate 
would have been in the first place. More research is needed for reliable estimates of this 
type of opportunity cost.

The reported research ignored possibilities of dynamically optimizing field trial 
design. This could involve centering the range of targeted input application rates around 
the actual optimal rate, which would lower the opportunity costs of the trials. Only one 
managed variable, N fertilizer, was included in the simulations. In reality, the DIFM 
project often conducts field trials that vary both N and seed rates. Of course, all agro-
nomic field trials are limited because the mathematics of factorial design cause the 
number of treatments needed to increase rapidly as the number of variables in the trial 
increases.

OFPE methods are not applicable to all input management decisions. The methods have 
been proved to work well in examining N fertilizer application rates and seeding densi-
ties. But the nature of application machinery, for example of spinner spreaders, presents 
challenges to conducting phosphorous, potassium, or lime application OFPEs. Trying to 
conduct pesticide rate trials would also be difficult, as high rates in field trials would often 
violate government regulations. Given current commercially available planting technology, 
is not currently possible to implement gridded OFPEs to test hybrid varieties, and strip tri-
als must be run instead.

An important caveat to OFPE is that data generated in a trial in one growing season may 
provide only limited insight into management decisions in later seasons. When new genet-
ics are introduced, interactions among those genetics, field characteristics, weather, and 
managed inputs may cause optimal management strategies to change over time. For farm-
ers, the frequency of conducting OFPEs might be similar to the frequency of pulling and 
analyzing soil samples; after a few years, it simply has to be done again.

Finally, this study was limited because it only considered the effects of trial length; this 
is only one of a multitude factors in OFPE design that need to be considered. Plot length, 
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subplot length, buffer zone location, range of application rates, number of management 
variables considered, and number of application rates are among a multitude of factors that 
would need to be optimized to obtain “perfect” OFPEs. It is hoped that this article demon-
strates methods that will be used to examine efficient strategies for improving the choices 
of these other trial design factors.

Conclusions

Precision agriculture technology has been available now in commercial markets for 
twenty years. When the technology initially appeared, it generated great enthusiasm 
in the agricultural press. Very gradually, a market for the technology has developed, 
with private consulting firms attempting to increase farm profits by offering site-spe-
cific management advice. The results of the simulations reported here suggest that how 
profitable this advice is for the farmers who purchase it is open to question. Managing 
inputs site-specifically may require great amounts of information about how crop yields 
respond to managed inputs, and how those responses vary over time and space. Loosely 
speaking, it is simply harder to manage many sites within a field differently and “well” 
than it is to farm a field well “on average.” Purchases of precision agriculture equipment 
and consulting services continue to slowly increase in world markets, but a good deal of 
doubt about the effectiveness of commercial site-specific N management prescription 
remains. Whether the precision agriculture equipment, software “decision tools,” and 
consulting services being purchased are much more than “bells and whistles” remains 
to be seen.

On the other hand, the simulations reported here suggest that OFPEs, in which parts 
of fields, or even whole fields, are used for large-scale, randomized agronomic field tri-
als, may offer great economic promise. In the simulations reported here, the promise 
of profits came not so much from using the experiments’ data to improve site-specific 
management. At least on the “flat and black” field modeled, site-specific management 
offered little advantage over uniform management. In fact, even when the costs of site-
specific equipment and the opportunity costs of running on-farm trials were ignored, 
unless the producer possessed many years of field trial information, the best obtainable 
uniform rate strategy was more profitable than the best obtainable optimal site-specific 
strategy. The greatest part of the value in OFPE came from the information given by the 
first few years of trials. That information helped the farmer develop fairly accurate esti-
mates of the field’s optimal uniform application rate. For this particular field, the MRTN 
project’s recommended rate was far too high, and relying instead of information from 
two years of experiments showed potential to return to the farmer hundreds of dollars 
per hectare, providing strong evidence in support of Hypothesis 2.
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