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Abstract
Early and accurate diagnosis is a critical first step in mitigating losses caused by plant dis-
eases. An incorrect diagnosis can lead to improper management decisions, such as selec-
tion of the wrong chemical application that could potentially result in further reduced 
crop health and yield. In tomato, initial disease symptoms may be similar even if caused 
by different pathogens, for example early lesions of target spot (TS) caused by the fun-
gus Corynespora cassicola and bacterial spot (BS) caused by Xanthomonas perforans. In 
this study, hyperspectral imaging (380–1020 nm) was utilized in laboratory and field (col-
lected by an unmanned aerial vehicle; UAV) settings to detect both diseases. Tomato leaves 
were classified into four categories: healthy, asymptomatic, early and late disease devel-
opment stages. Thirty-five spectral vegetation indices (VIs) were calculated to select an 
optimum set of indices for disease detection and identification. Two classification methods 
were utilized: (i) multilayer perceptron neural network (MLP), and (ii) stepwise discrimi-
nant analysis (STDA). Best wavebands selection was considered in blue (408–420 nm), red 
(630–650 nm) and red edge (730–750 nm). The most significant VIs that could distinguish 
between healthy leaves and diseased leaves were the photochemical reflectance index (PRI) 
for both diseases, the normalized difference vegetation index (NDVI850) for BS in all 
stages, and the triangular vegetation index (TVI), NDVI850 and chlorophyll index green 
(Chl green) for TS asymptomatic, TS early and TS late disease stage respectively. The 
MLP classification method had an accuracy of 99%, for both BS and TS, under field (UAV-
based) and laboratory conditions.
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Introduction

Fresh-market tomato plants face challenges from numerous diseases in Florida production. 
Foliar diseases on fresh-market tomato, specifically TS and BS, are intensively managed 
in Florida through cultural and chemical means (Sharma and Bhattarai 2019; Onofre et al. 
2019). Target spot (TS) is a serious disease problem on tomato probably due to its ability 
to survive over season between crops on plant debris and weed hosts, but also by becoming 
increasingly resistant to registered fungicides (Shazia et al. 2018; MacKenzie et al. 2018). 
Bacterial spot (BS) disease on tomato is a chronic problem in Florida’s warm and humid 
environment, and reduces plant vigor and marketable yield (Liao et al. 2019). Target spot 
on tomato can decrease yield by 33% (Pernezny et al. 1996) causing an estimated $3.5 mil-
lion loss to Florida tomato growers (MacKenzie et al. 2018). Both diseases affect leaves, 
stems and fruit, thereby adversely affecting tomato yields. Growers are reliant on the 
timely application of fungicides and bactericides for management of these diseases. One of 
the big issues that growers face is the similarity of early disease symptoms of TS and BS as 
expressed by tomato. Particularly when lesions are small, additional expertise is needed to 
diagnose and identify each pathogen (Pernezny and Raid 2001).

Bacterial leaf spot is caused by four species of Xanthomonas (Potnis et al. 2015) with 
X. perforans being the most common species occurring in Florida tomato. Leaves infected 
with BS disease will initially show small, dark, irregular water-soaked lesions and eventu-
ally the leaves may turn yellowish in color and the plant can be defoliated. Leaves, stems 
and fruit are susceptible. Fruits are especially susceptible in the immature stage of develop-
ment. In the late stage, the lesions expand and increase from approximately 3.2 to 6.3 mm 
in diameter (Zitter 1985).

Target spot disease is caused by the fungus Corynespora cassiicola. This disease is 
widespread throughout North, South and Central America, Africa, the Caribbean, Asia and 
Europe (Singh and Allen 1979). It is considered a major foliar disease in the tomato pro-
duction industry (Pernezny et  al. 2002). The fungus attacks the older leaves at the plant 
base, then moves up to the young leaves rapidly. The fungal disease can eventually defo-
liate the whole plant. The first symptoms on leaves appear as tiny lesions in an irregu-
lar shape (> 1 mm) and may have a yellow margin. In the late disease stage, the lesions 
increase up to 10 mm in size and have ring-shaped outlines. The spots spread throughout 
the plants causing the leaves to turn yellow and necrotic. Small lesions can occur on the 
fruit as well.

Rapid and accurate identification of a plant pathogen is essential for implementing 
timely disease management tactics (Ampatzidis et  al. 2017; Cruz et  al. 2017). Scouting 
of plants for disease detection is an essential component of Integrated Pest Management. 
Visual scouting is labor-intensive, expensive, requires a level of expertise in pest identi-
fication, and the observations may be subjective in terms of disease identification (Cruz 
et  al. 2019). Accurate disease identification at the beginning of an outbreak is essential 
for the selection of effective active ingredients in spray treatments and to reduce the dos-
age required with significant environmental and economic benefits. Tomato diseases are 
currently detected in the field by visual scouting of plants and fruits. However, diagnosis 
based on visual symptoms is difficult due to the inability to differentiate among similar 
foliar symptoms of diseases. Initially, symptoms for these diseases may appear alike requir-
ing additional confirmatory tests in a lab that could delay the diagnosis by several days. A 
misidentification could result in the application of non-effective chemical treatment. When 
favorable environmental conditions for disease development exist, preventative fungicide 
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applications are not sufficient for disease management and control alone. Thus, timing of 
fungicides and/or bactericides is critical.

An automated system to detect and identify disease symptoms that assesses the entire 
field would increase the actual area scouted, and thus increase the likelihood of identifying 
disease hot spots, reduce the man-hours needed for scouting and increase the precision of 
disease identification (Luvisi et  al. 2016). An automated system can generate the spatial 
distribution of a disease outbreak for targeting precise management tactics. The tomato 
industry would benefit from an automated method for early detection to assist growers in 
making timely management decisions and to limit disease spread. The rapid development 
of new technologies provides a unique opportunity for developing intelligent agricultural 
systems for precision applications (Ampatzidis et  al. 2016, 2018) and food traceability 
(Ampatzidis et  al. 2012; Ampatzidis and Vougioukas 2009; Galvez et  al. 2018). Tech-
nological advances in computer vision, mechatronics, artificial intelligence and machine 
learning have enabled the development and implementation of remote sensing technologies 
for plant symptom identification and management. These technologies can be used to dis-
tinguish between a variety of similar insects (Partel et al. 2019a), disease symptoms (Cruz 
et al. 2019; Hariharan et al. 2019), and weeds (Partel et al. 2019b).

Several techniques based on unmanned aerial vehicles (UAV) have been developed for 
plant phenotyping and disease detection. Ampatzidis and Partel (2019) developed a UAV-
based high throughput phenotyping system for citrus crops utilizing machine learning and 
artificial intelligence. This automated system can accurately detect and count citrus trees, 
measure their canopy size, count tree gaps and generate individual tree health status maps 
using the normalized difference vegetation index (NDVI). Ampatzidis et al. (2019) utilized 
this UAV-based system to evaluate citrus rootstock varieties. Smigaj et al. (2015) utilized 
low-cost fixed-wing UAVs equipped with two types of camera, hyperspectral in the near 
infrared (NIR) range and thermal, to monitor vegetation coverage in a forest. The data were 
collected and analyzed to monitor the spread of non-native invasive species within a stand 
of Scots pine trees. Calderon et al. (2013) monitored the progress of Verticillium wilt in 
olive trees using different types of camera mounted on a UAV (e.g., thermal, hyperspectral 
and multispectral cameras). They calculated chlorophyll concentration (a + b) and carot-
enoid blue/green/red (B/G/R) indices to monitor water stress because the flow of water is 
blocked by the Verticillium wilt pathogen which colonizes the vascular system that ulti-
mately leads to water stress. Zarco-Tejada et  al. (2012) utilized UAVs and hyperspectral 
and thermal imaging to monitor plant water stress remotely. Vivaldini et  al. (2019) con-
firmed that the UAV-based images provided low cost data acquisition and fast scanning 
of large areas planted with eucalyptus, and could lead to methods to prevent outbreak of 
diseases to larger areas by controlling the disease expansion. Huang et  al. (2019) evalu-
ated wheat fields affected by Helminthosporium leaf blotch, in four disease development 
stages, to determine the infected area and to develop new target-based spraying techniques. 
Abdulridha et al. (2018, 2019) developed an aerial remote sensing technique for the early 
detection of laurel wilt in avocado plants utilizing hyperspectral and multispectral imaging 
and neural networks for disease identification. They evaluated several vegetation indices 
(VIs) for early detection of laurel wilt and achieved an overall detection accuracy of more 
than 95%. Dash et al. (2017) monitored forest health, by using UAVs, with higher temporal 
and spatial resolution than satellite images. Di Gennaro et  al. (2016) developed a UAV-
based technique utilizing multispectral imaging to distinguish grapevine leaf stripe disease 
in asymptomatic stages with high accuracy. Several other studies developed UAV-based 
techniques for plant health monitoring (Thomas et al. 2018; Albetis et al. 2017; Mahlein 
2016; Salami et al. 2014).
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Lu et al. (2018) used a spectroradiometric device for tomato disease detection in labo-
ratory conditions and they recommended the need of developing a remote sensing tech-
nique to detect diseases in the field. There is limited study on disease detection in tomato 
in field conditions by using UAV-based hyperspectral imaging; the current study attempted 
to cover this gap. To achieve this goal, a remote sensing system was developed to early 
detect and distinguish two major Florida tomato diseases, BS and TS. The objectives of 
this study were to: (i) utilize hyperspectral imaging to develop disease detection techniques 
to distinguish BS and TS symptoms on plants at different stages of disease development 
under indoor (laboratory) and outdoor (UAV-based) conditions; and (ii) select the optimal 
spectral bands and VIs for distinguishing between BS and TS symptoms on tomato in both 
indoor and outdoor (UAV-based) conditions.

Materials and methods

Experimental plot design

The field experiment (26° 27′ 36.9″ N and 81° 26′ 24.2″ W) was conducted at the Univer-
sity of Florida’s Southwest Florida Research and Education Center (SWFREC), Immoka-
lee, USA. Six-week-old tomato seedlings ‘FL47’ were transplanted on 5 Sep 2018 into 
Immokalee fine sand. Guidelines, established by the University of Florida/IFAS, were fol-
lowed for land preparation, fertility, irrigation, weed management and insect control. Beds 
were 0.81  m wide with 1.83  m centers covered with white polyethylene film. Each plot 
consisted of ten plants spaced 0.46 m apart within a 4.57 m row with 3.05 m between each 
plot (Figs. 1d and 2d). The experiment was divided into two blocks and plots within each 
block received only one treatment of inoculation with either TS or BS and untreated.

Tomato plants inoculation

Bacterial spot disease

Plants were inoculated with X. perforans races 3 and 4 on 17 Oct 2018. Bacteria were 
grown in 25 ml of Difco Nutrient Broth (NB) overnight on a shaker incubator and trans-
ferred to 500  ml NB and incubated as before for 24  h. The bacterial suspension was 
adjusted to  106  CFU  ml−1 and applied to tomato plants to run-off using a hand pump 
sprayer. Lesions of BS disease were confirmed by re-isolation of the bacteria onto Difco 
Nutrient Agar to verify presence of bacteria.

Target spot disease

Plants in plots were inoculated with C. cassiicola on 15 Oct 2018. Cultures of CC #19 and 
CC# 20 (kindly provided by Gary Vallad) were grown for 14 days on ¼ Potato dextrose 
agar + rifampicin and ampicillin (MilliporeSigma, St. Louis, MO 63103, USA). Plates 
were flooded with sterile water and fungi were scraped from surface. The suspension con-
taining mycelium and spores was filtered through three layers of cheesecloth and adjusted 
to approximately  104 spores’  ml−1 in sterile water. The inoculum was applied with a hand 
pump sprayer and plants were sprayed to runoff. Confirmation of TS lesions was through 
microscopic examination of the lesions for presence of spores.
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Tomato leaf sampling

The leaves were collected over time during Oct (18, 23) and Nov (1, 6, 9, 15) 2018 and 
analyzed by an indoor hyperspectral sensing system (Fig.  3a). The UAV data were col-
lected during Oct/Nov 2018, by a UAV-based hyperspectral sensing system (Fig. 3b). The 
leaves were collected by plant pathologists to avoid any confusion in sampling collection. 
Leaves were collected in several disease development stages; for example, in the asympto-
matic stage (leaves without any sign of lesions), early disease development stage (leaves 
with small lesions appearing slightly), and in the late stage (leaves with clear lesions). Fig-
ures 1 and 2 show the TS and BS symptoms on tomato leaves. The TS late stage showed 
the leaves twisted and chlorotic from coalescing lesions containing concentric, target-like 
rings (Schlub et al. 2007). The symptoms of BS in the late stage showed the spots start as 

Fig. 1  Tomato leaves inoculated with X. perforans causing BS disease in three developmental stages: a 
asymptomatic stage post-inoculation; b early stage; and c late stage; and d Tomato plants infected with BS 
in the SWFREC field
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dark green, and then gradually becoming purple and gray with black centers. The BS dis-
ease may result in starting tinny and cracked leaf tissue. Healthy leaves, without any symp-
toms, were obtained and inspected visually to confirm absence of lesions.

Hyperspectral data collection

Indoor hyperspectral data collection

All the collected samples were scanned using a benchtop hyperspectral imaging system 
(Fig. 3), Pika L 2.4 (Resonon Inc., Bozeman MT, USA) equipped with a 23 mm lens which 
has a spectral range of 380–1020 nm, 281 spectral channels, 15.3º field of view and a spec-
tral resolution of 2.1 nm. Resonon hyperspectral imagers (RHI) are line-scan imagers (also 

Fig. 2  Tomato leaves inoculated with the fungus, C. cassicola, causing TS disease in three developmental 
stages: a asymptomatic stage post-inoculation; b early stage; and c late stage (this image presents an exam-
ple of spectral data collection on six RoI); and d Tomato plants infected with TS in the SWFREC field
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referred to as push-broom imagers). The system also consists of a linear stage assembly 
which is moved by a stage motor. There are regulated lights placed above the linear stage to 
create optimal conditions for performing the scans. The hyperspectral imaging system was 
placed such that the distance from the lens to the linear stage was 0.5 m. The lights were 
also at the same level as the lens on a parallel plane. All the scans were performed using the 
Spectronon Pro (Resonon Inc., Bozeman MT, USA) software, which was connected to the 
camera system using a USB cable. Before performing the scans of the leaves, dark current 
noise was removed using the software and then the camera was calibrated by using a white 
tile (reflectance reference), provided by the manufacturer of the camera system, placed in 
the same conditions as in where the scans were to be performed. The regions of interest 
(RoIs) were chosen manually by randomly selecting six spectral scans from each leaf to 
avoid any bias. The number of pixels for each RoI was about 800–900 included representa-
tive leaf tissue (symptomatic and asymptomatic) in order to collect data from the whole 
leaf (Fig. 2c). The detached leaves were kept in container (cooler) and delivered to the lab 
within 15 min. Leaves were scanned immediately after receiving from the field. Each scan 
consisted of 4–6 leaves based upon their size such that they fit in the total scan size. After 
collecting each scan, the spectral data of the leaves were collected using a post-processing 
data analysis software (Spectronon Pro, Resonon Inc., Bozeman MT, USA). Several areas 
containing the symptoms on the leaves were selected using the selection tool and the spec-
trum was generated. In case of healthy and asymptomatic stages, several random spots on 
leaves were selected. Once the spectra were generated, the reflectance data were exported 
from the software in the form of excel sheets using the export option.

Outdoor hyperspectral data collection

Hyperspectral data were collected using an unmanned aerial vehicle (UAV) (Matrice 600 
Pro Hexacopter, DJI, Shenzen, China) and the same imaging system, Resonon Pika L 2.4 
(Fig.  3b); the same hyperspectral camera was used indoors and outdoors after replacing 
lenses covering the same spectral range. The UAV-based imaging system included: (i) 
Pika L 2.4 hyperspectral camera (Resonon, Bozeman, MT, USA); (ii) visible-near infrared 
(V-NIR) objective lenses for the Pika L camera with a focal length of 17 mm, field of view 

Fig. 3  a Benchtop Hyperspectral camera Resonon Pika L 2.4 and samples of tomato leaves; b DJI Matrice 
600 pro equipped with Resonon Pika-L 2.4
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(FOV) of 17.6 degrees and instantaneous field of view (IFOV) of 0.71 mrad, (iii) a Global 
Navigation Satellite System (GNSS) (Tallysman 33-2710NM-00-3000, Tallysman Wire-
less Inc., Ontario, Canada)/Inertial Measurement Unit (IMU) (Ellipse N, SGB Systems 
S.A.S., France) flight control system for multi-rotor aircraft to record sensor position and 
orientation; (iv) a hyperspectral data analysis software (Spectronon Pro, Resonon, Boze-
man, MT, USA) with an ability to correct the GNSS/IMU data using a geo-rectification 
plugin. Data were collected at 30 m above the ground with a speed of 1.5 m  s−1. RoIs were 
selected randomly, 3–4 pixel for each region, to avoid background interactions. Six RoIs 
for each plant were chosen; forty tomato plants were chosen in this study (Fig. 4).

After the hyperspectral data were acquired, the maps and images were analyzed by using 
the Spectronon Pro software. The spatial resolution of the hyperspectral data collected was 
0.1 m. The RoIs were selected manually (and randomly) for each plant, and multispectral 
scans were performed to ensure that the entire canopy was covered spectrally (Fig. 4). The 
RoIs were then exported as a text file and processed using the SPSS software (SPSS 13.0, 
Inc., Chicago; Microsoft Corp., Redmond, WA, USA).

Vegetation indices

The similarity of initial symptoms of TS and BS makes it difficult to distinguish between 
the lesions of these two diseases visually, therefore 35 VIs were calculated in this study to 

Fig. 4  Image captured by Resonon hyperspectral Pika L 2.4; zoomed in pixels image displays the RoIs of 
tomato plants in the field, inoculated with BS and TS
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select the appropriate VI for disease detection at each disease development stage (Table 1). 
To obtain better results and to compare the classification accuracies of all VIs, each dis-
ease development stage (asymptomatic stage, early stage and late or advanced development 
stage) was analyzed individually. Some vegetation indices are associated with chlorophyll 
absorbances such as the chlorophyll index green (Chl green) (Vincini et al. 2007) and the 
anthocyanin reflectance index (ARI) (Gitelson et al. 2001), and could be potentially used 
for detecting abnormalities and diseases. The most common VI utilized in remote sens-
ing is the normalized difference vegetation index (NDVI); when the value of this index is 
significantly low, it usually indicates vegetation stress caused by diseases, nutrient deficien-
cies or other factors. In general, plant diseases can cause changes in chlorophyll, reduce 
plant water content and create water stress, as well as affect canopy structure and pigment 
concentration. The 35 VIs, selected in this study, target to detect changes in plant’s chloro-
phyll, water content and pigment concentration (among other factors).

Data analysis

Three parameters were utilized to explore in which wavelength, significant differences 
occurred in order to distinguish diseases and disease development stages: (i) spectral dif-
ference value which was calculated by subtracting the mean reflectance value of BS and 
TS infected leaves from the mean reflectance value of healthy leaves at each wavelength; 
(ii) sensitivity value, which was calculated as the mean reflectance value of diseased leaves 
divided by the mean reflectance value of healthy leaves (at each wavelength); (iii) linear 
correlation coefficient (r), which visualizes the intensity of each spectrum band.

SPSS software (SPSS Statistics ver.13.0, IBM Corporation, Aramonk, NY, USA) was 
utilized in this study for hyperspectral analysis. The classifications were between putative 
healthy leaves, BS and TS in different diseases stages (asymptomatic, early and late disease 
stage) by using the spectral reflectance measurements for each stage. The analyses were 
performed independently for the asymptomatic, early and late stage spectral measurements, 
as well as in a data set composed of all the reflectance data in order to select the best bands 
for each development stage.

Classification methods

Two classification methods were used in this study: Multilayer Perceptron (MLP), and 
Stepwise Discriminate analysis (STDA).

Multilayer perceptron (MLP)

The most popular classification method in artificial neural networks (ANN) architecture 
is the MLP, which is extensively used for explaining issues related to data classification. 
The MLP networks are qualified using back propagation learning algorithms (Foody 
2004). MLP classification is a very common method because it provides a precise clas-
sification prediction. The perceptron computes a single output from multiple real-valued 
inputs by forming a linear combination according to its input weights, and then putting 
the output through some non-linear activation function (Das and Sengur 2010). MLP is a 
controlled network, so it needs a desired response to be qualified. In this study, input data 
were determined as training 70%, testing 20% and holdout 10%; so, the training of data set 
taken approximately from 2/3 of the whole data and the residual has been taken as test and 
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holdout sets. The activation functions under investigation were TS and BS in the laboratory 
and field conditions. The input data included spectral data of healthy versus asymptomatic, 
early and late development stages for both diseases. Several studies have utilized the MLP 
method to detect and classify diseases in different crops (Tamouridou et  al. 2018; Lowe 
et al. 2017; Barbedo 2013).

Stepwise discriminate analysis (STDA)

In this study, healthy, TS and BS with different categories of disease development stages 
(asymptomatic, early and late stage) were used as input data. STDA was chosen to build a 
model to best predict in which group a dataset (spectral data) belong. In order to improve 
the analysis, a backwards process was used to eliminate the variables with low contribu-
tion to the prediction of group membership. Therefore, the effective discriminant analysis 
would keep only the variables that contribute the highest to the discrimination between 
clusters (Reynolds et al. 1988). The F-value is utilized as indicator for entering and remov-
ing value from the prediction model. If the F value for a variable is statistically significant 
in the discrimination group, that means that the variable contributes to the estimation of 
group participation (Huberty 1984). In this study, the training dataset was 70%, and the 
testing data set was 30%. Pydipati et al. (2006) and Burks et al. (2000) used STDA in agri-
cultural applications, especially in plant disease detection.

Results and discussion

Spectral reflectance analysis of the BS disease in laboratory conditions

The spectral signature of the healthy plants showed high absorption of photosynthetic pig-
ment in the visible range, which caused the peak region around 550  nm. It can also be 
noticed that the spectral reflectance values were high in the near-infrared range (NIR). 
These patterns were consistently maintained in spectral signatures of all healthy plants 
therefore, the spectral signature of healthy plants was used as a basis to compare with the 
spectral signatures of the diseased plants. Figure 5a shows the average of spectral signature 
of healthy and BS affected plants in three different stages (asymptomatic, early and late 
development stages). In the visible range (400–700) nm, the spectral signatures of healthy 
and asymptomatic plants have a similar pattern. The peak reflectance values of the spectral 
signatures in the visible range were 13.6% for healthy and 13.35% for early and asymp-
tomatic stages. In BS late stage, the spectral reflectance was higher, when compared to 
the other stages, in the green band (495–570 nm) and in the red band (550–690 nm). In 
NIR range (700–900 nm), the spectral reflectance of late stage displayed lower value and 
shifted down, while the curve of asymptomatic stage showed higher reflectance than the 
other stages (Fig. 5a).

The differences in the sensitivity values for different stages of BS can be clearly noticed 
in the visible range (447–693 nm). The maximum sensitivity value was at 693 nm in the 
BS late stage; the minimum value was recorded in the asymptomatic stage. In NIR range 
(700–900 nm), the sensitivity values were very close to each other (Fig. 5b).

Differences between healthy and BS diseased plants were noticed in early, asymp-
tomatic and late stages in the NIR band. The maximum spectral difference value was at 
around 1000 nm for all stages. In the visible range, a negative value was recorded in the 
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late stage, between 501 and 718 nm (Fig. 5c). Hence, the spectral difference values (like 
the sensitivity values) can be used to distinguish the three disease development stages.

The correlation coefficient for asymptomatic and early stage were completely identi-
cal in both visible and NIR range (both produce an identical curve, which cannot be dis-
tinguished in Fig. 5d). Figure 5d shows some differences between the early/asymptomatic 
stages and late stage in 735 nm and 813 nm.

Spectral reflectance analysis of the TS disease in laboratory conditions

The spectral signature of TS disease lesions showed a higher peak value in the late stage 
and it was consistently higher when compared to the other disease development stages in 
the green (495–570 nm) and red range (550–690 nm) (Fig. 6a). In early stage, the spectral 
signature displayed a lower peak value than other stages, but the spectral reflectance value 
in green range was almost the same as a healthy plant. In NIR (700–900 nm), the spec-
tral signature of asymptomatic plants shows a lower reflectance value than other disease 
development stages, while the late stage has a higher reflectance value than others. This 

Fig. 5  Plants affected with BS disease processed in laboratory conditions: a spectral reflectance curves; b 
sensitivity values; c spectral difference; d correlation coefficient (r)
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increment was most distinctive in the visible range (550–690 nm) and between 787 and 
900 nm in NIR range (Fig. 6a). These differences in NIR range can be used for early dis-
ease detection, as disease detection is crucial to be executed when no symptoms are visible 
(early stage) and proceed with spraying to avoid a disease outbreak. In late TS stages, the 
color of the leaves turned to yellow and brown in some areas. This would lead to reduction 
of chlorophyll content, increase of the lesion size, and increase of the darkness of the lesion 
in leaf structure; all these factors might affect the light absorption in visible range espe-
cially in red range and scatter the light in the NIR range.

From the sensitivity values (Fig. 6b), the three disease development stages of TS can be 
distinguished in the spectral area of 472–726 nm; especially the asymptomatic/early with 
the late stages. The sensitivity values of the early and asymptomatic stages showed a dif-
ference in 520–620 nm (Fig. 6b). In NIR range, there were significant differences between 
all stages.

The spectral difference values varied based on the severity of TS (Fig.  6c). In the 
asymptomatic stage, there were no changes occurring in leaf pigment, or it was not detect-
able by these methods. The most significant differences started in the red edge range when 
the lesions developed, as the lesion size increased, and leaves developed dark necrotic 
spots. At this moment, the light scattered depending on the quantity of leaf cell damage 

Fig. 6  Tomato plants affected with TS disease processed in laboratory conditions: a spectral signature; b 
sensitivity values; c spectral difference value; d correlation coefficient (r)
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(Wang et al. 2008). Due to senescent tissue and the accumulation of brown and reddish-
brown pigments, the spectral reflectance increased in red and red edge range (600–700 nm) 
for the TS disease when compared to the spectral signature of healthy tomato leaves. The 
correlation coefficient values of asymptomatic, early and late stages were similar (similar 
curves in Fig. 6d).

UAV‑based disease detection

Figure 7a shows the UAV-based spectral signature of healthy, TS and BS affected plants 
(measured in the field at the flowering growth stage). In the visible range, the spectral 
reflectance value of healthy plants was higher than other disease development stages, with 
a peak value of 15.8% at 556 nm (green band). The spectral reflectance value of healthy 
plants was lower than the other disease development stages in NIR range; the spectral sig-
nature of all the stages intersected at 746 nm (red edge). In the NIR (700–1000 nm) range, 
the spectral reflectance value of BS was higher than the healthy and the TS disease-affected 
plants. The upper portion (crown) of the tomato canopy showed few symptoms of the dis-
ease. Therefore, disease detection by using UAV at 30 m height is considered as a challeng-
ing task. The leaves at the bottom portion were showing a higher level of disease severity. 

Fig. 7  UAV-based disease detection; plants affected with TS disease and BS disease: a reflectance spectral 
signature; b sensitivity values; c spectral difference value; d correlation coefficient (r)
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The leaves in the upper portion of a plant were considered as an asymptomatic stage, 
because they did not have any visual symptoms. All plants were already infected, but most 
leaves looked visually in a good shape, except a few leaves that showed early symptoms. 
The TS disease starts in the bottom part of the plant and gradually infects the other parts of 
plant. The severity of disease affects the photosynthesis absorption of the plants especially 
in blue and red range, so the spectral signature would be varied based on progress of the 
disease (Mahlein et al. 2010). Abdulridha et al. (2016) and Jacquemoud and Baret (1990) 
presented that the pigment amount and the leaf structure would be the essential factors that 
might affect the light reflectance or scattering the light of a leaf. Figure 7b shows the sen-
sitivity values of BS and TS diseases; the highest sensitivity value was at 408 nm for both 
diseases. In the NIR, the sensitivity value increased at 933 nm for both diseases, but the 
BS was slightly higher than TS. Figure 7c illustrates the spectral difference values between 
healthy and BS, and healthy and TS. The maximum peak value was recorded for TS at 
730 nm; then, the values reduced dramatically (negative values). The highest value of the 
correlation coefficient (r = 0.87) was at 408 and 978 nm, while it showed a negative value 
at 876 nm (Fig. 7d). All these parameters (Fig. 7) can be used to identify both diseases and 
distinguish them from healthy plans in the field especially in lower canopy of the plants. 
Critical wavelengths must be used, based on Fig. 7, for accurate disease detection.

Classification results

Lab‑based analysis

Bacterial spot disease detection

Table  2 and Fig.  8 present the most significant spectral reflectance bands having 
higher classification weight values and can be used to distinguish between healthy 
and BS symptomatic plants for the indoor conditions. The MLP method recorded high 

Table 2  The most important wavebands selected for the indoor and outdoor conditions; the weight value of 
each selected wavelength is reported in parenthesis

Parameters category Significant wavelength (nm)

Lab-based
 H versus BS in asymptomatic 412 (100%), 420 (95%), 744 (84%), 996 (81%), 398 (80%),
 H versus BS in early stage 426 (100%), 429 (93%), 993 (83%), 991 (73%), 820 (74%)
 H versus BS in late stage 688 (100%), 666 (88%), 641 (88%), 643 (80%), 649 (72%)
 H versus TS in asymptomatic stage 382 (100%), 410 (80%), 412 (74%), 380 (61%), 408 (60%)
 H versus TS in early stage 966 (100%), 416 (77%), 386 (73%), 583 (69%)
 H versus TS late stage 675 (100%), 690 (76%), 688 (75%), 684 (73%), 679 (72%)
 TS versus BS in Asymptomatic stage 729(100%), 774 (80%), 794 (78%), 818(71%)
 TS versus BS in early stage 647 (100%), 402 (84%), 671 (83%), 922 (81%)
 TS versus BS in late stage 757(100%), 0.739 (89%), 759 (86%), 716 (85%), 1021 (78%)

Field-based (UAV)
 H versus TS 416 (100), 737 (98%), 420 (80%), 635(72%), 742 (70%)
 H versus BS 412 (100%), 416 (99%), 408 (78%), 428 (70%), 759 (70%),
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classification accuracy in asymptomatic and early stages of 97% and 98%, respectively. 
The STDA method recorded 98% accuracy in the laboratory-based analysis, on late 
disease development stage. The MLP method was selected to be the best classification 
method because it had higher values than STDA in most categories. The most signifi-
cant band (with high disease detection accuracies) was the 412 nm (100%). The high-
est classification accuracies (100%) for healthy versus BS asymptomatic, early and late 
stages were found at 1003, 426.9 and 688 nm, respectively. The most significant bands 
to distinguish between healthy and diseased plants were located in the red and blue 
bands (412, 416, and 426.9 nm). In the asymptomatic stage, the best bands to detect the 
disease were in the NIR with more than 1000 nm.

Fig. 8  Classification results of using the STDA and MLP methods for distinguishing healthy, BS and TS 
infected tomato plants in both conditions: a indoor (benchtop); and b outdoor (UAV-based) conditions
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Target spot disease detection

Best bands that were selected to distinguish the asymptomatic, early and late disease devel-
opment stages were the 382  nm (100%), 966.8  nm (100%), and 675.4  nm (100%). The 
bands that were selected for TS detection were in the visible and NIR range. The classifica-
tion method with the highest accuracy was the MLP (99%) for indoor conditions. The MLP 
classification rates in the asymptomatic, early and late disease development stages (98%, 
98% and 99% respectively) were higher than the STDA rates (Fig. 8a). The highest classifi-
cation value of 99% was recorded at TS late stage.

Classification and best bands selection for the TS and BS diseases

The MLP classification method for distinguishing between TS and BS diseases achieved 
92%, 83% and 84% accuracy for asymptomatic, early and late stages, respectively. The 
STDA methods recorded lower classification rates in all stages (88%, 80% and 82% in the 
three disease stages) (Table 2 and Fig. 8a). The most significant bands were selected in the 
red and red edge range. It was impossible to identify the two disease lesion types visually, 
since initial disease symptoms are very similar for both diseases (e.g., lesion color).

Field (UAV)‑based analysis

The results of the UAV-based classification and the best bands selection were similar to the 
lab-based results. The best bands selected for TS and BS diseases were in blue range and 
red edge range (412–759 nm) (Table 2; Field-base). More specifically, the most significant 
bands with high classification weight values for the TS disease at the UAV-based analysis 
were the 416 nm (100%) and 737 nm (98%) (Table 2), and for the BS the 412 nm (100%) 
and the 416 nm (99%).

The MLP and STDA methods have similar overall classification rates for detecting BS 
(98%) and TS (97% for MLP and 96% for STDA) (Fig. 8b). It is to be noticed that both the 
lab and field analyses achieved similar disease detection accuracies, even though they had 
different procedure to be followed (e.g., the lab experiments were conducted in optimal 
conditions, in contrast to the field conditions).

Most significant VIs for detecting BS and TS diseases

Lab‑based analysis

Thirty-five VIs, related to different physiological plant parameters, were calculated for 
each disease in different stages. Based on the progression of the disease development 
stage, some indices are more suitable than others for disease detection. The NDVI850 
accurately distinguished healthy plants from BS asymptomatic, early, and late develop-
ment disease stages. Most spectral changes occurred in the visible range, especially in 
the red band. After inoculation of tomato plants with X. perforans, the spectral reflec-
tance value started to change from the asymptomatic stage up until the late stage of 
disease infection, when the necrosis increased dramatically with the formation of dark 
lesions, which would affect the pigment value (Franke et al. 2005; Devadas et al. 2009). 
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The photosynthesis process would be also affected, by the reduction of the chlorophyll 
content; therefore, the Chl green was also able to distinguish BS affected from healthy 
plants. Franke et al. (2005) indicated that NDVI and chlorophyll indices are able to dis-
tinguish the rust infection in individual wheat leaves spots on the basis of associated 
changes in photosynthetically-active biomass.

The triangle vegetation index (TVI, the NDVI850 and the Chl green gave the highest 
classification weight values to distinguish the TS in asymptomatic, early and late develop-
ment stage respectively (Table 3; Lab-based). The TVI indicates the radiant energy absorp-
tion of chlorophyll (De Tomás et al. 2012). Shi et al. (2018) selected the TVI to be as one 
of the VIs to differentiate between diseased rice from healthy rice in the various stages 
of the disease development. Some VIs could be used to detect both BS and TS diseases 
and distinguish them from healthy plants; for example, the NDVI850 and the Chl green. 
Both diseases affect photosynthetic pigment absorption and chlorophyll content. In TS late 
stage, the most significant VIs for disease detection were the NDVI, Chl green and WI. The 
water index (WI) was also utilized by Naidu et al. (2009) to detect grapevine leaf roll, asso-
ciated with virus-3 in wine grape cultivars; the results showed that the WI was the most 
significant VI to distinguish between healthy and non-healthy wine grapes.

Field (UAV)‑based analysis

The most suitable VIs for distinguishing between healthy and TS or BS affected plants 
in the UAV-based analysis were the PRI and Chl green (Table 3; Field-base). The most 
significant VI that could distinguish between healthy plants and BS and TS infected 
plants was the PRI in field condition. The PRI is sensitive to variations in carotenoid 
colors (e.g. xanthophyll pigments) in live vegetation. Carotenoid colors concentration is 
indicative of photosynthetic light use efficiency, or the rate of carbon dioxide uptake by 
foliage per unit energy absorbed of chlorophyll content. Therefore, any change in chlo-
rophyll concentration will cause a difference in the value of PRI  (Filella et  al. 2018). 
Due to this sensitivity of the PRI, it could be used to distinguish a diseased plant from a 
healthy plant and identify clear differences between them. Furthermore, the PRI repre-
sents changes in the xanthophyll cycle and can detect changes in yellow or brown carot-
enoid plant pigments that cause the chlorosis of leaf color (Sukhova and Sukhov 2018).

Table 3  The most significant VIs to classify the two diseases in indoor and outdoor conditions

Parameters category Significant VIs

Lab-based
 H versus asymptomatic BS NDVI850, mCARI, ARI, PSSRa, GNDVI
 H versus early stage BS NDVI850, NDVI, GNDVI
 H versus late stage BS NDVI850, Chl green
 H versus asymptomatic stage TS TVI, WI
 H versus early stage TS NDVI850, SR, AR, RARSb
 H versus late stage TS Chl green, NDVI850, CVI, WI

Field-based (UAV)
 H versus BS PRI, Chl green, WI
 H versus TS PRI, TVI, Chl green, GNDVI, ARI
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Conclusion

The objective of this study was to detect and distinguish between TS and BS infected 
tomato plants at different disease development stages in both laboratory conditions, by 
using a benchtop hyperspectral system, and in the field, by using a UAV-based hyper-
spectral imaging technique. The spectral signatures of both diseases under three differ-
ent disease development stages showed significant differences (in spectral reflectance 
values). TS and BS diseases have very similar symptoms and it is very difficult to distin-
guish between the two diseases visually in initial stages of disease development. Satis-
factory results were obtained in the laboratory and field (UAV-based technique) condi-
tions to detect both diseases in asymptomatic, early and late stages. The MLP method 
had a higher classification value than the STDA method; the MLP classification accura-
cies were very high (97–99%) for all stages. The disease detection accuracy utilizing 
VIs was varied, based on disease severity. The best VIs for detecting BS were the PRI, 
NDVI, WI and Chl green for both indoor and outdoor conditions. The most significant 
VIs for detecting TS were the PRI, TVI, NDVI850, WI and Chl green for both indoor 
and outdoor conditions.
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