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Abstract
Precision agricultural technologies (PA) such as global positioning system tools have been 
commercially available since the early 1990s and they are widely thought to have envi-
ronmental and economic benefit; however, adoption studies show uneven adoption among 
farmers in the U.S. and Europe. This study aims to tackle a lingering puzzle regarding 
why some farmers adopt precision agriculture as an approach to food production and why 
others do not. The specific objective of this study is to examine the social and biophysical 
determinants of farmers’ adoption of PA. This paper fills a research gap by including meas-
urements of farmer identity—specifically their own conceptions of their role in the food 
system—as well as their perceptions of biophysical risks as these relate to the adoption of 
PA among a large sample of Midwestern U.S. farmers. The study has identified that farmer 
identity and perceptions of environmental risk do indeed influence PA adoption and that 
these considerations ought to be incorporated into further studies of PA adoption in other 
jurisdictions. The findings also appear to highlight the social force of policy and industry 
efforts to frame PA as not only good for productivity and efficiency but also as an ecologi-
cally beneficial technology.

Keywords  Precision agriculture · Adoption · Farmer identity · Biophysical risks · Risk 
perception

Introduction

The adoption of precision agriculture (PA) has been well studied, a research agenda driven 
by a) policy commitments encouraging the widespread adoption of PA for sectoral and 
environmental sustainability (e.g. Khanna et  al. 1999; Lambert et  al. 2014), and b) the 
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impossibility of making good on these commitments given uneven adoption of PA (Aubert 
et  al. 2012; Bramley 2009; Reichardt and Jürgens 2009; Fountas et  al. 2005; Batte and 
Arnholt 2003; Daberkow and McBride 2003; Stafford 2000). Rather than a specific tech-
nology, precision agriculture has been conceptualized as an “approach” to management 
which is driven by insights derived from large or big datasets which then allow for targeted 
agricultural decision-making (McBratney et  al. 2005). Precision agriculture technologies 
include software and hardware for collecting big data—notably tractors with built in sen-
sors—and also intelligent machines or algorithms for generating information from big 
datasets (Rossel and Bouma 2016; Driessen and Heutinck 2015; Bongiovanni and Lowen-
berg-DeBoer 2004; Cox 2002). Some scholars and industry proponents describe PA as a 
“paradigm shift” (Rossel and Bouma 2016) in agricultural decision-making—one that ide-
ally substitutes environmental information and knowledge for physical inputs, especially 
harmful ones like chemicals (Bongiovanni and Lowenberg-DeBoer 2004, see also Akht-
man et al. 2017; Gebbers and Adamchuk 2010). According to Rossel and Bouma (2016), 
PA allows for “innovative approaches that characterize local soil and environmental condi-
tions in space and time, improving the efficiency of production to maximize farm incomes 
and minimize environmental side effects” (Rossel and Bouma 2016). The term farming 
4.0 has recently been used to characterize this new type of data-based agricultural practice 
(Clasen 2016).

Given its potential sustainability and economic gains, there has been considerable inter-
est in farmer adoption of PA especially in relation to farm characteristics like size. Jensen 
et al. (2012) show that the intensity of a farming system influences the cost structure and 
resources available for the purchase of PA equipment. In general, several studies have 
found that large farm size is positively correlated with PA adoption (Lambert et al. 2014; 
Reichardt et  al. 2009; Roberts et  al. 2004; Daberkow and McBride 2003). In particular, 
owning more land has been shown to exert a greater positive influence on PA adoption 
and the literature has established that large commercial farms are more likely to benefit 
economically from the adoption of PA (Lambert et al. 2014; Jensen et al. 2012; Roberts 
et al. 2004). The high cost of many PA technologies is a known barrier to adoption among 
farmers (Reichardt and Jurgens Reichardt and Jürgens 2009), which disproportionately 
affects smaller, less intensive operations more vulnerable to financial risk. Not simply farm 
size, but also land characteristics such as soil quality have been studied in relation to PA 
adoption (Schoengold and Sunding 2014) where the benefits of PA have been witnessed as 
higher for soils with heterogeneity and permeability. Farm-level surveys have established 
a link between crops produced and PA adoption where cereals and specialty crops have 
shown to be positively associated with adoption (Walton et al. 2008).

As Paustian and Theuvsen (2017) put it in their study of PA adoption among a sam-
ple of German farmers, most research assumes the farmer as the main decision-maker 
in the adoption process or cycle (c.f. Mackrell et  al. 2009); studies tend to focus on 
discrete socio-demographic variables such as age, tenure, and education in relation to 
adoption (Tey and Brindal 2012; Kutter et al. 2011; Robertson et al. 2011; Walton et al. 
2010; Reichardt and Jürgens 2009; Daberkow and McBride 2003). Paustian and Theu-
vsen (2017) surveyed German farmers regarding their levels of PA adoption and found 
that farmers under 25 or over 55 were less likely to adopt. The link between farm tenure 
and adoption is “not unanimous and the subject has been widely debated” (Daberkow 
and McBride 2003). Although land ownership is likely to influence adoption espe-
cially when large capital investments related to PA are to be planned and implemented 
(Pierpaoli et al. 2013), land-renters or tenants may be interested to financially invest in 
PA technologies to gain better short-term returns to their investments (Daberkow and 
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McBride 2003). Roberts et al. (2004) found that PA adoption among US Southeastern 
cotton farmers depended on the level of a farmer’s knowledge about the costs and ben-
efits of PA, and other studies have confirmed a link between knowledge of and comfort 
with digital tools and PA adoption (Daberkow and McBride 2003). Some studies have 
considered the role of farmer relationships with influential actors in the wider PA inno-
vation ecosystem (e.g. dealership experts) as they may impact adoption (see Busse et al. 
2014), showing that the more cohesive these social networks the higher the rates of 
adoption.

This paper acknowledges the relative neglect—by previous studies—of the perspective 
of social actors themselves as it potentially impacts PA adoption (c.f. Mackrell et al. 2009). 
Beyond socio-demographic characteristics of the farmer, studies measuring a farmer’s self-
conceptions of how they fit into a social group—their social identity—as it relates to the 
use of PA are missing from the literature. This study therefore centralizes farmer identity 
as it relates to PA. The concept of identity is based on the symbolic interactionist theory 
developed by Stryker (1980) and refined by Burke (1991), where it can be understood as 
providing an answer to the question “who am I?” (Stenholm and Hytti 2014). That PA 
adoption studies have not focused on farmer identity is surprising given the literature on 
technology adoption at large which has established the central role of social processes such 
as identity in adoption and diffusion of farming practices and techniques (Burton and Wil-
son 2006). Previous studies have examined the role of farmer identity in relation to farm-
ers’ use of soil and water quality enhancement practices (McGuire et al. 2013; Blackstock 
et al. 2010; Burton and Wilson 2006), adoption of organic agricultural techniques (Suther-
land et al. 2011), and development of new farm business enterprises (Stenholm and Hytti 
2014). Studies have found that farmers are more likely to use certain technologies if these 
are located within their broader farming culture. In other words, farmers adopt practices or 
tools if they feel their use can provide them with a sense of meaning in relation to how they 
see themselves and their place among others with whom they identify.

Among existing studies of identity as it influences agricultural technology adoption, 
a key study revealed that “Conservationist” and “Civic-minded” identities can be more 
consequential than “Productivist” identity for conventional Midwestern U.S. farmers 
in their ability to meet societal and community-level expectations of eliminating the 
negative impacts of agriculture on water resources through changes in farming prac-
tices (McGuire et  al. 2015). Still other work has highlighted similar self-conceptions 
are socially embedded processes and has demonstrated that farmers can hold compet-
ing identities until one becomes dominant or “activated” depending on a local situation 
(McGuire et al. 2013, 2015; Roesch-McNally et al. 2018). For example, a farmer who 
may want to use a practice such as cover crops in their farm management system but 
does not because a parent owns the land and forbids use of such practice. In this case, 
the individual’s identity as a son is more salient that his farmer identity (McGuire et al. 
2015). Del Mármol et  al. (2018) describe the feedback between technology and iden-
tity formation, where a farmer’s adoption of novel technologies can actually trigger a 
“cascade effect” with the possibility to “transform the entire social fabric,” including 
the social identities of farmers. The effects of PA on farmer identity has received some 
attention in the literature. For example, Higgins et al. (2017) show that mechanization 
in dairy farming has led to changes in the temporality of business cycles and a subse-
quent redefinition of milk production as “commodified economic activity” with corol-
lary shifts in farmer self-conceptions regarding what constitutes a “good farmer” (Hig-
gins et al. 2017; see also Carolan 2017). Notably, not only can a farmers’ social identity 
be shaped by technology adoption but it can also contribute to social, institutional, and, 
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significantly, technological change (Roesch-McNally et al. 2018). While previous stud-
ies have attended to the role of PA in identity (re)formation, this study is unique in 
examining the role of farmer self-conception in PA adoption.

This paper also attends to the role of environmental risk perception in PA adoption. 
Researchers have shown that a farmer’s decision to adopt a new technology or prac-
tice can depend upon their perceptions about their perception of the risk of biophysical 
changes to their farm operation (Gardezi and Arbuckle 2017, 2018). Risk perceptions 
are “a person’s subjective judgment or assessment of risk. It is how risk and uncertainty 
are socially constructed and perceived” (Gardezi and Arbuckle 2018). Inclusion of such 
measures of risk perception is motivated by a social-ecological systems (SES) theoreti-
cal frame in which farming is seen as bringing together a dynamic feedback between 
nature, actors, technologies and organizations (Roesch-McNally et  al. 2018; Freuden-
burg et al. 1995). Thus, changes in natural systems can modulate farmers’ risk prefer-
ences and subsequently their decisions about adoption of new practices and technol-
ogy. For example, farmers who observe erosion in their fields (Romig et al. 1995) and 
changes in seasonal precipitation (Morton et al. 2015) are more likely to use no-till and 
cover crop to reduce soil erosion on their farm. Few studies have examined the relation-
ship between farmer’s perceptions of biophysical risks and use of PA (c.f. Higgins et al. 
2017), still it can be inferred that PA technologies may help farmers to actively man-
age environmental risks by allowing greater control of farming operations. This study 
attempts to understand the perceived attributes of risks and how they may affect adop-
tion of PA among the sample group of U.S. Midwestern farmers.

The objective of this paper is to examine the social and biophysical determinants 
of farmers’ use of PA technologies. Several hypotheses are examined (Fig.  1): Farm 
operators with higher levels of farm size (H1), farm sales (H2), education (H3), diversi-
fied cropping systems (H4), and concern about environmental risks, including risks of 
drought (H5), flood (H6), soil erosion (H7) and climate change (H8) will demonstrate 
higher propensity to adopt PA. Farmer’s social identities (H9) and land tenure (H10) 
will be significantly related to adoption of PA, but direction of this relationship cannot 
be ascertained, at the outset. Watershed-level biophysical factors, including daily (H11) 
and seasonal precipitation (H12), drought (H13) and marginal soil (H14) will be posi-
tively associated with adoption of PA.

Fig. 1   Hypotheses for this paper’s study of PA adoption (authors’ own)
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Methods

Study region

The study region comprises 22 hydrological watersheds (HUC6) in the Upper Midwest-
ern United States (Fig. 2). This region is considered one of the most productive agricul-
tural regions in the world for two crops: corn and soybean. In addition to providing eco-
nomic benefits to the U.S. national economy, a third of the global corn supply comes from 
this region. The region has marked spatial and temporal variations in precipitation and 
temperature.

Data collection

Data collection was collected in two ways: (1) farmer surveys and (2) secondary data on 
farm-level and watershed-level sociodemographic and biophysical factors.

Farmer survey

Primary data for the study comes from a 2012 survey of corn and soybean farmers in 
the Midwestern U.S. The survey was designed and implemented by a large interdiscipli-
nary team of social and natural scientists and included questions about farmers’ use of 
various farming practices, techniques, and technologies, including precision agriculture. 
The sampling approach of this survey allows survey results to be generalized to large-
scale farmers who produced the highest proportion of corn and soybean in this region. 
Hence, farmers whose revenue exceeded $100,000 per year and farm size was larger 

Fig. 2   Map of 22 hydrological watersheds associated with the study region
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than 80 acres were included in the sampling frame. The survey was administered using 
a three-wave mailing process. It was mailed to 18,707 farmers that were stratified in 22 
Hydrological Unit Code 6 (HUC6) watersheds (Fig. 2). This was followed by a reminder 
postcard, and a final survey sent to non-responders. Almost 5 000 farmers responded to 
the survey (26% response rate).

The HUC6 watersheds were selected as the higher-order unit for sampling for various 
reasons. First, farming systems are guided by environmental conditions, such as pre-
cipitation trends that can be homogenous within each watershed. Farmers’ use of new 
farming practices, techniques, and technologies can be affected by changes in biophysi-
cal conditions. These environmental conditions can vary substantially across these 22 
watersheds spanning a large geographical area. The HUC6 approach to sampling is use-
ful for analysis in this paper, which aims to examine how biophysical conditions can 
influence farmers’ use of precision agriculture technologies.

Secondary data

Secondary data used in the study allows for an examination of the potential influence of 
biophysical (e.g. drought, extreme precipitation) and economic (e.g. farm size, number 
of agricultural enterprises) characteristics to understand farmers’ use of precision agri-
culture. Data are from four sources. Data on precipitation and temperature are from the 
National Weather Service (NWS) Cooperator Observer (COOP) archive. NWS-COOP is 
the most robust source of temperature and precipitation records that are observed daily 
over 11 000 locations across the U.S. Soil conditions for the watershed are from the Soil 
Survey Geographic (SSURGO) database. The SSURGO database provides comprehen-
sive recent and distant past information about soil conditions at multiple spatial scales 
across the U.S. Drought data is from the U.S. Drought Monitor, which produces weekly 
maps showing areas that are in drought conditions (construction of the weather and soil 
variables are discussed in “Environmental variables” section). Lastly, farm/farmer soci-
oeconomic details, such as farm size, number of farm enterprises (see “Control vari-
ables” section for details on measuring this variable) and farm sales are from the U.S. 
Agricultural Census, implemented every 5 years by United States Department of Agri-
culture’s (USDA) National Agricultural Statistics Service to collect uniform producer-
level data.

Measures

Outcome variable

Use of precision agriculture (precision) is measured through a single survey question 
that asked respondents whether they use ‘Precision agriculture technology such as GPS, 
GIS, and variable-rate technology.’ The respondents were asked to consider the farm-
land that they owned or rented and then choose from the following responses: ‘practice 
used’, ‘familiar with, not used’, and ‘not familiar with’. The last two categories were 
combined and transformed as ‘not used’. The outcome variable precision is binary 
(0 or 1) and 2680 (56%) respondents stated that they were currently using precision 
agriculture.
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Predictor and control variables

Farmer identities  Farmer identity is measured through 22 survey questions about what 
makes a ‘good farmer’. These questions were designed from literature (Burton and Wil-
son 2006) related to farmer identity and examined possible perceived qualities of a ‘good 
farmer’ (see Table 1). Respondents answered these questions on a 5-point scale ranging 
from 1 (strongly disagree) to 5 (strongly agree).

An exploratory factor analysis (EFA) was used to statistically condense information 
from these twenty-two identity questions into socially meaningful identity groups or 
types. Several cursory checks were used to ensure that the data was factorable. First, 
correlations between all twenty-two variables were moderately low. Second, the Kai-
ser–Meyer–Olkin measure of sampling adequacy was .91 (overall) and individual values 
were higher than .8. These two criteria suggest that the 22 variables were factorable. A 
scree plot was used to extract the appropriate number of factors. A scree plot is a line 
plot that shows the proportion of total variance explained by each factor component. 
According to the scree plot, beyond four factors, each successive factor accounted for 
even smaller proportions of the total variance. Thus, four factors were extracted. The 
oblique rotation method for EFA was used because the inter-factor correlation matrix 
depicted low correlation between four extracted factors (highest correlation was .29).

The exploratory factor analysis revealed four statistically robust and theoretically 
cogent factors. These factors (or identity types) were labelled Productivist, Conserva-
tionist, Expert and Listener (Table 1). Some survey questions about what constitutes a 
‘good farmer’ that loaded highly on the Productivist identity were ‘highest yields per 
acre’ and ‘highest profit per acre’ (see Table 1). Some survey items relevant to the Con-
servationist identity were: ‘minimize nutrient runoff into waterways’ and ‘minimize 
pesticide use’. The Expert category included questions that depict farmers’ perceived 
importance in their social network. These questions are: ‘Other farmers tend to look 
at me for advice’ and ‘I consider myself to be a role model for other farmers’. The Lis-
tener identity illustrates farmers’ perceived appreciation of being an active learner and 
experimenter in their community. Survey questions that loaded highly on this identity 
included: ‘It is important for me to visit other farms to look at their practices’, among 
other questions shown in Table 1. While previous research has empirically developed 
two most commonly used identities: Productivist and Conservationist identities (Burton 
2004; Burton and Wilson 2006), ‘Expert’ and ‘Listener’ do not appear in prior litera-
ture and these labels emerged from analyzing respondent’s perception of a good farmer. 
Finally, the factor scores associated with each farmer identity were normalized to create 
a range of relative scores from 0 to 1 (Table 2) see Gardezi and Arbuckle 2017).

Risk perceptions variables  Four variables were included to measure risk perceptions or 
magnitude of concern that farmers have regarding longer periods of drought (Drought 
concern), increased flooding (Flood concern), soil erosion (Erosion concern), and cli-
mate change and variability (Climate concern). Concern about droughts, flooding, and 
erosion were measured on a four-point concern scale from not concerned (1) to very con-
cerned (4). Concern for climate change was measured through a single item that asked 
respondents to rate their agreement with the statement, ‘My farm operation will likely be 
harmed by climate change’. This question measured respondents’ perception of the risk 
associated with climatic change and variability.



556	 Precision Agriculture (2020) 21:549–568

1 3

Environmental variables  Five variables were included to measure environmental variables 
at the level of the watershed. These included: extreme daily precipitation (Daily), seasonal 
precipitation (Seasonal), drought (Drought) and marginal soil (Marginal). Daily extreme 
precipitation (Daily) was measured by station-level precipitation data (1971–2011) that was 
obtained from the National Weather Service (NWS) Cooperative Observer (COOP) sta-
tions archive (Loy et  al. 2013). Daily percentiles are month-specific; for example, daily 

Table 1   Summary of farmer identity types, factor loadings, and communalities from exploratory factor 
analysis

h2 communality, α Cronbach alpha

Item Factor loading h2 α

Productivist .77
 Most up-to-date equipment .77 .61
 Crops planted first .71 .51
 Highest yields per acre .70 .53
 Maximize government payments .64 .43
 Highest profit per acre .64 .45
 Latest seed chemical technology .58 .47

Conservationist .90
 Think beyond their own farm to socio-ecological health .80 .62
 Managed for profitability and environment .79 .62
 Minimize nutrient runoff into waterways .78 .61
 Minimize soil erosion .77 .60
 Increase soil organic matter .76 .59
 Health of streams .74 .56
 Puts long-term conservation before short-term profits .73 .54
 Scouts before spraying .71 .51
 Minimize pesticide use .62 .41
 Manages for reducing income volatility .58 .40

Expert .81
 Other farmers tend to look to me for advice .86 .74
 I consider myself to be a role model for other farmers .86 .76
 Crop advisors involved in agriculture tend to look at me for advice .82 .67

Listener .55
 It is important for me to visit other farms to look at their practices .79 .63
 Willing to try new practices and approaches .78 .61
 It is important for me to talk to other farmers about new practices .49 .47

Kaiser–Meyer–Olkin measure of sampling adequacy .91
 Bartlett’s test of sphericity p < .01
  Eigenvalue
   Productivist 5.59
   Conservationist 3.02
   Expert 2.21
   Listener 1.52
   % of variance (cumulative) 56%
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Table 2   Multilevel logistic regression of farmers’ use of precision agriculture (PA) odds ratios (OR) with 
standard errors—Random intercepts

Level 1: farmers

Constant .74***
(1.04)

Farmer identities
 Productivist 1.09*

(1.04)
  × Owned 1.00

(1.11)
  × Rented .99

(1.17)
 Conservationist 1.18***

(1.05)
  × Owned .93

(1.11)
  × Rented .68**

(1.17)
 Expert 1.36***

(1.05)
  × Owned .73***

(1.12)
  × Rented 1.18

(1.18)
 Listener 1.11**

(1.05)
  × owned .90

(1.11)
  × Rented 1.05

(1.17)
Risk perceptions:
 Drought concern 1.01

(1.04)
 Flood concern 1.13***

(1.04)
 Erosion concern .92**

(1.04)
 Climate change concern 1.06

(1.04)
Demographic
 Tenure
  Land owned .65***

(1.12)
  Land rented 1.66***

(1.21)
 Education 1.23***

(1.03)
 Number of farm enterprises .75***

(1.04)
  × Owned .97

(1.11)
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precipitation for May was constructed by aggregating all daily precipitation for May across 
all 41 years (1971–2011). Values at the 99th percentile (extreme values) from this distribu-
tion of daily precipitation were used to construct Daily extreme precipitation (Daily). Sea-
sonal precipitation (Seasonal) was measured as the median rank of the total precipitation for 
April 1 through September 30 between 1971 and 2011, dates that coincide with the Upper 
Midwestern growing season. The rank was calculated as a relative measure (percentile) of 
each year’s seasonal precipitation in comparison to the cumulative distribution of 41 years 
(Loy et al. 2013).

Drought (Drought) was measured using the U.S. Drought Monitor, which quantifies sever-
ity of drought in the U.S. over many locations each week. The drought monitor categories 
range from D0 (abnormally dry) to D4 (exceptional drought). To quantify long-term drought 
exposure, Loy et al. (2013) constructed a variable d(i,t), where d = x, if location i in week t was 
in drought condition x (where x could take values from D0 to D4). Watershed-level summaries 

Reference category for the variable ‘Tenure’ is ‘owned and rented’
*p < .1; **p < .05; ***p < .01

Table 2   (continued)

Level 1: farmers

  × Rented 1.38**
(1.18)

 Farm sales (log) 1.42***
(1.09)

  × Owned .71***
(1.13)

  × Rented .87
(1.40)

 Farm size (log) 1.58***
(1.08)

  × Owned .77*
(1.16)

  × Rented 1.27
(1.36)

Level 2: watershed

Environmental factors
 Daily precipitation 1.10**

(1.04)
 Seasonal precipitation 1.23***

(1.05)
 Drought 1.16***

(1.04)
 Marginal soil .82***

(1.05)
Model characteristics
 Observations 3 574
 Log Likelihood − 2 085.48
 Akaike Inf. Crit. 4 238.97
 Pseudo-R2 (Tjur’s D) .18
 Interclass correlation (ICC) .05
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were obtained through the median of these drought values over 5 years before the survey was 
conducted (2007–2011) (Loy et al. 2013).

The classification of marginal versus non-marginal land (Marginal) was characterized by 
the USDA Natural Resource Conservation Service’s (NRCS) land capability classification 
system (Loy et al. 2013). The capability system categorizes land according to the severity of 
land degradation, ranging from practicing caution when growing crops (class 4) to a restric-
tion on commercial crop production (class 8). The percentage of marginal land in each water-
shed are county-specific and calculated from the Soil Survey Geographic (SSURGO) data-
base. The percentage of marginal land was computed by summing the capability acreages for 
classes 4–8 for each county and creating a proportion of all acres in the county. These propor-
tions were aggregated for each watershed in the study region.

Control variables  Five variables were included in the model to measure farm and farmer spe-
cific background factors. They included land tenure or whether the respondent owned, rented, 
or owned and rented their farm land (Tenure). Other control variables were the highest level of 
education (Education); value of farm sales (Farm sales), size of farming operation (Farm size), 
and the number of agricultural enterprises (Enterprises). For the construction of the Enterprise 
variable, 2012 Agricultural Census data was used to calculate respondent’s cropland area for 
nine enterprises, including corn, soybeans, wheat, oats, barley, rye, vegetables, fruits/nuts, and 
livestock (hogs and cows). Each enterprise was assigned ‘1’, if at least 1% of cropland area was 
being utilized for the enterprise. The total number of enterprises for each respondent was added.

Analytical approach

Farm characteristics and farmers’ responses to survey questions are nested within shared 
hydrological conditions prevailing at the watershed level. Thus, a generalized linear mixed-
model (GLMM) was used to simultaneously analyze two levels of data: farm and farmer-level 
data (level 1) and biophysical conditions for each watershed (level 2). GLMM is a suitable 
choice of analytical approach because it facilitates examination of random effects when the 
dependent variable is binary and belongs to the exponential family of distributions (Bolker 
et al. 2009). This study constructed a single model to examine the relationship between farm-
ers’ use of precision agriculture and farmer identities, risk perception, environmental factors 
and farm/farmer demographics. GLMM presents an opportunity to test both random intercept 
and slope for each watershed. A random intercept only model would suggest that each water-
shed will have the same slope (or relationships between predictors and outcome) as the overall 
regression line. A random slope model allows the predictors to have a different effect on the 
outcome variable for each watershed. It was examined whether a random slopes model would 
be suitable for modeling survey and secondary data. Since little variance was explained by the 
watershed (see “Results” section for detailed explanation), it was decided to include random 
intercepts (for each watershed) but not random slopes in the final model.

The observed proportion of farmer i using precision agriculture in a watershed j is given by 
Pij . A logit function (logit(x) = ln[x/(1 − x)] as the link function is expressed in the model as 
(Gardezi and Arbuckle 2019):

Equation (1) shows that the intercept is assumed to vary across watersheds and the coef-
ficient for the slope is fixed. This variation in intercept is modeled by the watershed-level 
variable Wj as follows:

(1)log it
(

Pij

)

= B0j + B1Xij
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Equations (2) and (3) is substituted into 1 and rewritten as:

A mixed-effects model (GLMM) assumes that both farm (level 1) and watershed-
level (level 2) factors can explain farmers’ use of precision agriculture. Before fitting the 
GLMM, all level 1 variables were centered-within-context (CWC) and standardized. CWC 
includes rescaling variables by subtracting the group (watershed) mean and reintroducing 
group means at level 2. The distributions seem normal and symmetric, except for farm 
sales and farm size, which had skewed distributions. These variables were logarithmically 
transformed.

The intra-class correlation coefficient (ICC) or ρ measures the proportion of variance 
explained by the higher-order unit, in this case the 22 watersheds. The ICC can be meas-
ured by various methods (Snijders and Bosker 1999). This study used a conventional 
formula:

�11 is the amount of variance attributed to watershed differences or variance between 
groups. The σ2 is attributed to the farmer-level variation. It explains the within watershed 
variation.

Results and discussion

Table  2 presents results of the generalized linear mixed-effects model (GLMM). Fixed 
effects are displayed as odds ratios (OR). The random effects are presented as the water-
shed-level variation �11 and ICC. The log likelihood and Akaike Information Criteria (AIC) 
was compared with the null model (with no predictors) and shows considerable improve-
ments in model quality. List-wise deletion of cases led to a reduction in the final sample 
from 4 778 to 3 574 observations. Listwise deletion removes any respondent in the survey 
data from the analysis if they did not respond to any survey question. The study could 
select one of several coefficients of determinants or R2 to present the explained variation in 
the model. It was decided to use Tjur’s D (Tjur 2009) which is a Pseudo R-squared meas-
ure suitable for use with a mixed-effects model with a binary outcome. Table 2 shows that 
the GLMM explains 18% of the variation in the data by including both farmer and water-
shed level predictors.

The fixed effects are grouped into farmer-level and watershed-level variables. At the 
farmer-level (level 1), the fixed effects are categorized by predictors such as: (1) farmer 
identities; (2) risk perceptions, and (2) demographic or control variables. With regard to 
farmer identities, the ‘Productivist’ identity was positively and significantly related to 
farmers’ use of precision agriculture. A single standard deviation increase in the ‘Produc-
tivist’ identity is associated with 9% increase in the odds of using precision agriculture 
(OR = 1.09, SE = 1.04, p = .06). At the same time, a single standard deviation increase 
in ‘Conservationist’ identity improves the odds of using precision agriculture by almost 
20% (OR = 1.18, SE = 1.05, p = .00). This means both Productivist and Conservationist 

(2)B0j = �00 + �01Wj + u0j

(3)B1j = �10 + u1j

(4)log it
(

Pij

)

= �00 + �10Xij + �01Wj + u0j + u1j + �10Xij

(5)� =
�11

�11 + �2
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identities are statistically significant and positively correlated with use of precision agri-
culture. In addition to these longstanding identities well described in the literature, the 
relationship between the relatively novel ‘Expert’ and ‘Listener’ farmer identities were 
examined. The study found that a single standard deviation increase in the Expert identity 
improves the odds of using precision agriculture by 36% (OR = 1.36, SE = 1.05, p = .00). 
An increase in one standard deviation in the Listener identity improves use of precision 
agriculture by 11% (OR = 1.11, SE = 1.05, p = .03). Consistent with hypothesis H9, the four 
farmer identity groups are all actively increasing the odds of adopting precision agriculture 
technologies, with the Conservationist and Expert categories having the strongest impact 
on adoption decision.

Two significant interactions between farmer identity and land tenure were observed. 
Results show that farmers were less likely to use precision agriculture if they were ‘Con-
servationist’ and rented more land than they owned (OR = .68, SE = 1.17, p = .02), and if 
they were ‘Expert’ and owned more land than they rented (OR = .73, SE = 1.12, p = .00). 
Thus, farmers’ likelihood of using precision agriculture could be diminished even if they 
perceived themselves as ‘Conservationist’ or ‘Expert’.

While studies have shown concerns about general environmental conditions to shape 
farmers’ intention to use PA (e.g. Watcharaanantapong et  al. 2014), this study examines 
those environmental risk perceptions which directly affect farm productivity and profitabil-
ity (such as drought and flood). Arguably, these environmental concerns can affect profit-
ability and matter when farmers are making investment decisions for PA. Two out of the 
four risk perceptions variables were significantly associated with farmers’ use of precision 
agriculture. These were concerns regarding flooding (Flood Concern) and erosion (Ero-
sion Concern). This study did not find evidence to support hypotheses H5 (concern about 
drought) and H8 (concern about climate change). Farmers were more likely to use preci-
sion agriculture when they were more concerned about flooding (13% more) (OR = 1.13, 
SE = 1.04, p = .00) (supporting evidence for hypothesis H6) and less likely to use preci-
sion agriculture (8% less) when their concerns for erosions were increased by one standard 
deviation (OR = .92, SE = 1.04, p = .02) (inconsistent with hypothesis H7). Thus, concerns 
about biophysical conditions matter when farmers choose to use precision agriculture. 
Contrary to previous research that shows variability in availability of water for crops to 
cause farmers to delay adoption of PA (Higgins et al. 2017), this paper found that concerns 
about flooding can in fact increase farmers’ propensity to adopt PA. In relation to farmers’ 
perceived concerns with soil erosion, which this study found to be negatively correlated 
with farmers’ use of PA, these findings are supported by Isik and Khanna’s (2003) paper, 
who also found that uncertainty about soil conditions and risk preferences could explain 
for the low propensity of PA adoption among farmers. It should be noted that Isik and 
Khanna’s (2003) study is almost 16 years old and recent improvements in PA technologies 
may have transformed them for aiding farmers to better manage uncertainties surrounding 
soil conditions. Still, among farmers in this study’s sample, concerns about soil erosion 
were less likely to drive farmers’ adoption of PA than concerns about flooding. Farmers 
likelihood to adopt PA still continues to vary by the kind of biophysical factor they deem to 
be most hazardous to their farm operation.

Several variables related to farm and farmer-related socio-demographic qualities were 
examined. These include: land tenure, education, diversity in farm enterprise, sales and 
farm size. Contrary to expectations based on previous research that has shown farmers to 
use PA when they are concerned about long-term productivity of owned rather than rented 
land (Watcharaanantapong et  al. 2014), this study found that farmers were less likely to 
use precision agriculture if they only owned land (did not own and rent land) (OR = .65, 
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SE = 1.12, p = .00), thus providing evidence to support hypothesis H10. These results con-
tribute to the line of thinking that highlights the need to understand heterogeneity among 
farmers’ land tenure and decisions regarding adopting PA. This paper also found that farm-
ers were more likely to use precision agriculture when they only rented land (compared to 
owning and renting land) (OR = 1.66, SE = 1.21, p = .00). Thus, farmers are more inclined 
to implement PA technologies even when they do not own the land. One reason could be 
that PA allows renters to rapidly extract information about land and its characteristics, help-
ing to partially substitute for knowledge commonly held by landowners. Still, most studies 
(e.g. Prokopy et al. 2008) have found landowners to be strongly motivated to adopt long-
term farm strategies that required financial and technical commitments from the farmer. 
Nevertheless, results here suggest that farmers who only rent land (rather than rent and 
own land) may be more likely to use PA.

Similar to Tey and Brindal’s (2012) work on adoption of PATs, and consistent with 
hypothesis H3, this study found that educated farmers are more likely to adopt these tech-
nologies (OR = 1.23, SE = 1.03, p = .00). A possible explanation for this finding is that 
higher level of education offers possibilities to farmers to more effectively implement PATs 
that are informationally intensive and analytically rigorous (Tey and Brindal 2012). Indeed, 
Pavón-Pulido et al. (2017) show that many big agricultural data collection and storage sys-
tems require “specialists to be recruited with the aim of controlling and managing such 
servers”. This study also found that farmers who had more than two farm enterprises were 
more likely to use PA (OR = .75, SE = 1.04, p = .00), thus providing evidence for hypoth-
esis H4. Higher farm diversity in the form of greater crop diversity (planting of more than 
two crops in a year) and integration of livestock into cropping system was positively corre-
lated with farmers use of precision agriculture. An explanation for this result could be that 
the most agronomically advanced farmers who have decided to introduce a greater number 
of crops in order to be more efficient environmental and economical (robust) are also more 
“open” to the use of PA. Besides, having more enterprises suggest that farmers have less 
time to dedicate to their farm so they must optimize all the actions per crop and PA can 
assist them with achieving this objective.

Other farm characteristics, such as higher levels of farm size (OR = 1.42, SE = 1.09, 
p = .00) and sales (OR = 1.58, SE = 1.08, p = .00) also increased farmers’ propensity to use 
precision agriculture, thus providing support for hypotheses H1 and H2. The results are 
supported by previous research that found precision agriculture to be more likely to be 
adopted by farmers managing relatively large farms (Paustian and Theuvsen 2017; Reich-
ardt et al. 2009; Daberkow and McBride 2003; Khanna et al. 1999; Kutter et al. 2011), and 
who are more likely to use precision agriculture because of their ability to invest in higher 
fixed costs of such equipment (Khanna et al. 1999) and pay for a specialist or consultant 
(Kutter et al. 2011).

The study’s sampling design was developed to also examine hydrological varia-
tions between watersheds and how these asymmetries could be included in understand-
ing farmers’ use of various farming practices and techniques, including precision agricul-
ture. Based on the results of the regression, this paper found that watersheds with higher 
levels of extreme daily and seasonal precipitation events as well as drought may increase 
farmers’ use of precision agriculture by 10 (OR = 1.10, SE = 1.04, p = .01), 23 (OR = 1.23, 
SE = 1.05, p = .00), and 16 (OR = 1.16, SE = 1.04, p = .00) percent, respectively, thus vali-
dating hypotheses H11, H12, and H13. On the contrary, watersheds that had on average, 
higher percentage of acres categorized as marginal soil could reduce farmers’ use of preci-
sion agriculture by almost 18% (OR = .82, SE = 1.05, p = .00), thus no evidence to support 
hypothesis H14 was found. Adopting PA has been established as beneficial for “soils with 
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high slope, heterogeneity, or permeability” (Paustian and Theuvsen 2017). Yet, farmers in 
the study’s sample who were in watersheds with higher percentage of marginal soil were 
less likely to use PA. Thus, farmers do not only evaluate the efficacy of PA technology 
based on its ability to perform well in poor soil conditions (including slope), but their deci-
sion likely includes a myriad of other factors, such as social norms, need for large capi-
tal investments, and availability of technical support and training, when deciding to adopt 
PA. For example, social norms concerning which practices and technologies are consid-
ered “appropriate” may explain some of the reasoning behind why farmers are more likely 
to adopt PA in some watersheds. Additionally, it is possible that watersheds with more 
variation in seasonal weather conditions have retailers or advisors who are more inclined 
to recommend PA technologies which may contribute to growth of PA users in certain 
watersheds.

Morton et  al. (2015) found that farmers’ decisions to use farming practices and tech-
nologies are motivated by spatial and temporal changes in environmental and institutional 
conditions. This study recognized that such conditions could also be important guides for 
farmers to use precision agriculture. Therefore, random effects were examined by includ-
ing a random intercept for each watershed in the generalized linear mixed model (GLMM). 
Figure 3 shows the random effects by drawing an interval for each watershed. The interval 
includes a mode at its center and conditional variances to show the confidence around the 
estimate (mode). Since all the study predictors were centered within context (CWC), the 
value of the intercept mode can be interpreted as the likelihood of using precision agricul-
ture in each watershed when all predictors are held at their average or mean value. Results 
show that when all farm and watershed-level predictors are held at their mean value; Mid-
dle Platte watershed had the highest and Upper Mississippi Black Root had the lowest 
intercept. In other words, by holding all predictors at their mean value, respondents who 
farmed in the Middle Platte watershed were more likely to use precision agriculture than 
respondents in the Upper Mississippi Black Root watershed. Several reasons can explain 
the variation in adoption rates between watersheds as witnessed in this analysis. When 
studying adoption of variable rate technologies, Khanna (2001) argued that closer proxim-
ity to technology sellers and larger share of acreage under corn and soybeans (these crops 
require intensive use of chemical fertilizers) were some of the important reasons for higher 
adoption of PA in the state of Illinois than in Wisconsin. Thus, institutional factors such as 
availability of sellers, markets, and policies, can be as important as changes in the environ-
ment for affecting farmers’ use of PA. Further research is needed to evaluate the impact of 
farmers’ social norms and perceived usefulness and acceptance of PA among their social 
networks, the nature of relationship between farmers and their crop advisors and technol-
ogy dealers to more comprehensively understand the dynamic changes in adoption of PA 
across the study region.

Conclusion

Agriculture faces challenges related to climate change and environmental degradation and 
a precision agriculture approach is widely believed to be solution which, if widely adopted, 
could support food system resilience. Given its potential benefits, there is incentive for 
researchers to shed light on why some farmers are more readily adopting PA. There has 
been substantial literature focusing on this question most of it focusing on the farmer’s 
demographic characteristics as they relate to adoption. This study’s unique focus is on the 
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role of Midwestern U.S. farmer identity, their perceptions of environmental, climatic and 
weather risks, as well as socio-demographic factors as they relate to PA adoption. It was 
found that all four farmer identity categories used in the analysis—Conservationist, Pro-
ductivist, Expert and Listener—were active in increasing the odds of adopting PA, with 
the Conservationist and Expert categories having the strongest positive relationship with 
adoption. That self-understood environmentalist and conventional farmers were both likely 
to adopt is an interesting and unexpected finding of this study. This may indicate the effi-
cacy of the dominant framing of PA in corporate promotion and public discourse as a set 
of tools capable of helping farmers meet environmental as well as economic challenges. 
A clear message about twined economic and environmental gain has been coming from 
powerful food system actors such as the United Nations Food and Agriculture Organization 
(2018) as well as developed country national governments. The European Commission has 
funded the Internet of Food and Farming 2020 with the goal to foster uptake of precision 
agriculture (n.p./online) as one “vital step towards a more sustainable food value chain. 
With the help of IoT technologies higher yields and better-quality produce are within reach. 
Pesticide and fertilizer use will drop and overall efficiency is optimized” (n.p./online). The 
findings may also suggest that PA is being perceived by farmers as a process of reconcil-
ing their short-term productivist goals with long-term conservation goals. Interestingly, the 
study’s results suggest that conventional agriculture may be witnessing the emergence of 
social identities that are shaped by the adoption of PA itself. These identities are fluid and 

Fig. 3   Random effects displaying the mode and the conditional variances for each watershed
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based not only on traditional values (e.g. land ethic) but also based on farmer’s knowledge 
and expertise of these novel technologies.

Several limitations of the study require carefulness in drawing conclusions. First, the 
measure of PA adoption used here have limitations. The single-item survey measure used 
to study PA adoption lumps very distinct PA technologies, including GPS, GIS, and varia-
ble-rate technology into one question. Instead, using a single question for each PA technol-
ogy may provide a more robust understanding of which technology is more widely adopted 
among farmers, how these technologies are used within the farm, and whether using cer-
tain PA technologies influence decisions pertaining to other farm (agronomic and financial) 
management aspects. It is recommended that future research could examine the potential 
cascading effect of PA adoption, specifically how use of one PA technology can influence 
farm operators to change other farming decisions too. Furthermore, there are some limita-
tions with using HUC6 watershed as the study’s secondary level of analysis. While there 
is considerable homogeneity in biophysical conditions at this level, there may be further 
unexplained variation within these watersheds. For instance, soil conditions at the farm 
level vary widely not only within a watershed, but also can change drastically at the field-
level. Future research could address this sub-spatial concern by adding a third level to the 
analysis—by incorporating soil and weather conditions at the farm level.

Limitations aside, the study findings suggest the need for other studies which integrate 
identity and environmental risk-perception variables into the study of PA adoption. Despite 
the large sample size which spans several watersheds across the Midwestern U.S. (see 
Fig. 2), the statistical model of this study ought to be replicated in other jurisdictions—for 
instance among farmers more likely growing horticultural (versus agronomic) crops and in 
other geographic locale. Additional survey work could examine the role of different under-
standings of PA as they influence not just adoption of digital technologies but also farmers’ 
use of best management practices at large, including those that may be climate resilient 
and/or improve water quality. Such research would be of value to academic communities 
as disparate as agricultural economy and media studies but also to industry and governance 
actors making crucial decisions on which technologies to support for sustainable food sys-
tems as well as how to promote the adoption of such tools.
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