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Abstract
An accurate and robust strawberry flower representation and detection scheme is a key step 
to enable the reliable forecasting of fruit yield for use in precision agricultural applications. 
A state-of-the-art deep-level object detection framework which processes images through 
several layers using a region-based convolutional neural network (R-CNN) was developed 
to visually represent the instances of strawberry flowers in outdoor fields and improve the 
detection accuracy. A modified version of the visual geometry group 19 (VGG19) archi-
tecture, which had 47 layers, was used to represent the multiple scales of strawberry flower 
image features. The networks were trained entirely on 400 strawberry flower images and 
tested on another 100 images. Different region-based object detection methods, including 
the R-CNN, Fast R-CNN and Faster R-CNN, were used to represent the strawberry flower 
instances. The Faster R-CNN model achieved a better performance than the R-CNN and 
Fast R-CNN in detecting the instances and had a lower execution time. The detection accu-
racy of the Faster R-CNN model was 86.1%, which was higher than those of the R-CNN 
and Fast R-CNN models (63.4% and 76.7%, respectively). The experimental results 
showed the effectiveness of the deep-level Faster R-CNN framework for representing the 
strawberry flower instances under various camera view-points, different distances to flow-
ers, overlaps, complex background illumination, blur, etc. The system developed for auto-
matic and accurate strawberry flower detection provides an important and significant solu-
tion that enables subsequent applications to estimate the strawberry yield in outdoor fields.
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Introduction

In recent years, object detection has become the most popular problem in the field of com-
puter vision. It is an image segmentation method based on the geometric and statistical 
features of a target (Arel et al. 2010; Girshick et al. 2016; Lin et al. 2012). It combines the 
segmentation and recognition of a target, and accuracy and real-time processing are impor-
tant performance measures of the whole system. A number of object detection techniques 
have been used in the fields of information and industry (Arel et al. 2010; Cireşan et al. 
2013), i.e., facial recognition (Wen et al. 2016; Chaudhry and Chandra 2017), unmanned 
driving (Dairi et al. 2018) and other fields (Zou et al. 2012). In recent years, object detec-
tion technology has been extended to agricultural applications. A grape detection system 
based on a radial symmetry transform was developed for estimating the number of grapes 
(Nuske et al. 2011). A computer vision-based system based on colour and distinctive spec-
ular reflection patterns was explored for automated, rapid and accurate yield estimation in 
apple orchards (Wang et al. 2013). However, the system was operated at night-time with 
controlled artificial lighting to reduce the variance of natural illumination. A multispectral 
system was exploited to segment sweet peppers that used artificial lighting and a series of 
features, such as original multispectral data, normalized difference index, and the entropy-
based texture features. However, it was not accurate enough to establish a reliable obstacle 
map (Bac et al. 2013). Images of outdoor orchards pose new challenges for fruit detection. 
As the images are taken in outdoor scenes, there are various kinds of interference factors, 
such as object orientation, occlusion, light intensity, illumination conditions, fruit distance, 
fruit clustering, and camera view. These factors are due to the appearance changes of fruits 
in the field, including the shape, colour, texture, size and reflectance properties, which lead 
to a distortion of the target and pose new challenges for object detection (Nuske et al. 2014; 
Yamamoto et al. 2014). A computer vision system was developed to estimate the amount 
of fallen citrus fruit in varying illumination conditions and determine the decay stage of the 
fallen fruit in an orchard; the authors noted that the varying outdoor illumination presented 
a large challenge (Choi et  al. 2016). Although many methods have been put forward to 
solve the problems of agricultural object detection in recent years, the establishment of an 
accurate and reliable detection system is still a challenging task.

Convolutional neural networks are a category of neural networks that have been shown 
to be highly effective  in areas such as  image recognition and classification. The frame-
work of the deep-level region-based convolutional neural network that processes images 
through several layers was developed to improve the accuracy of object detection models 
(Underwood et al. 2016; Bargoti and Underwood 2017). The deep-level region convolution 
network architecture with 47 layers was used to detect strawberry flower images in this 
study. The convolutional neural networks automatically capture the feature representations 
from training images in the different scale spaces for object detection, thus avoiding the 
need to hand-engineer the features by capturing the data distribution discriminately. The 
detection framework mainly consists of two steps. The first step of the framework employs 
a region proposal method which generates a set of candidate boxes that pre-locate the pos-
sible location of the target in the image, such as the selective search (SS) method (Uijlings 
et al. 2013) and the edgebox method (Zitnick and Dollár 2014). After extracting the fea-
tures from the regions of interest (ROIs) of these proposals, the features are then input into 
a deep neural network for further classification. Although it has a high recall performance, 
the framework has a large computational load, which makes it unsuitable for a real time 
robotic application. The region proposal networks (RPNs) (Ren et al. 2015; He et al. 2015) 
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address the problem by combining the object proposal network with a deep convolutional 
network for classification, which enables the system to predict the scope of the objects and 
classify them at the same time. Moreover, the parameters of the two networks are shared, 
resulting in a much faster performance and making it suitable for practical applications.

In this study, a modified version of an object detection framework based on a deep-level 
region-based convolutional neural network (R-CNN) using the 47-layer VGG19 architec-
ture was presented to represent the features of strawberry flower images at multiple scales. 
The original VGG-19 model was trained on a subset of the ImageNet database, which can 
be used to classify images into 1000 object categories (Sendik and Cohen-Or 2017). Differ-
ent region-based object detection methods, including the R-CNN, Fast R-CNN and Faster 
R-CNN, were introduced to represent and detect the instances of strawberry flowers. There 
were various blurred, scale-variant, intra-class variant and inter-class similar objects in the 
experimental image dataset. The photographs of the flowers were acquired in natural out-
door environments with rich and complex backgrounds. Although the background is usu-
ally a distraction for the detection model, sometimes it can supply useful information, so 
the background content was also considered as feature information for the detection target.

The ultimate goal of this research was to build a deep-level artificial convolutional neu-
ral network architecture with a region proposal network and a classification mechanism 
to accurately detect the regions of strawberry flowers in a field. The deep-level region-
based artificial intelligent strawberry flower visual representation and recognition system 
can offer much value to farmers for the prediction of strawberry yield. Yield prediction 
is very important for strawberry production in the U.S., since all strawberries are hand-
harvested, and labour shortages will soon become a major concern. Over a growing season, 
strawberry yields vary significantly from time to time depending on temperature and other 
factors. Therefore, an accurate yield prediction is important to efficiently manage the har-
vesting labour. An accurate strawberry flower detection system is a critical component that 
enables yield estimation and mapping by detecting accurate locations for the individual 
strawberry plants in a field. Precise localization of the strawberry flowers is also an essen-
tial part of an automated robotic harvesting system, which can help to reduce one of the 
most labour-intensive tasks in crop production (Kapach et al. 2012). At present, yield esti-
mation based on manual counting is a very time-consuming and expensive process, and it 
is unrealistic for large fields. Automatic yield estimation based on robotic technology could 
be a viable solution.

Materials and methods

Image collection

Bare root strawberry plants (variety: Sensation) were transplanted in an experimental 
research farm at the University of Florida, Institute of Food and Agricultural Sciences 
(IFAS) in Wimauma, Florida, USA. The strawberry flower images were acquired with 
four high-resolution imagers (HDR-AS300 Action Cam, Sony) mounted on an imaging 
cart, which was custom-built in the Precision Agriculture Laboratory at the University of 
Florida. Inside the cart, two LED lights (Anywhere Light 20 LED, LightIt, Oregon City, 
OR) were used to maintain constant illumination. The imaging cart was pulled by a trac-
tor, which traversed different rows of the fields to collect the strawberry flower image 
data. Figure 1 illustrates some representative instances from a training dataset of distinct 
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morphological images, including the top-view intact, sheltered, overlapped, non-carpel, 
imperfect, shadow, blazed, white bud-shaped, pink bud-shaped and blurred images of 
strawberry flowers. The pictures of the flowers were taken in a natural outdoor environment 

Fig. 1  Illustration of the repre-
sentative instances in the training 
dataset of distinct morphological 
images of strawberry flowers. 
The rows demonstrate a top-view 
intact, b sheltered, c overlapped, 
d non-carpel, e imperfect, f 
shadow, g blazed, h white bud-
shaped, i pink bud-shaped and j 
blurred images of the strawberry 
flowers
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with a complex and rich background. Although the background is usually a distraction to 
the detection model, it can sometimes provide useful information, so the background con-
tent was also considered as feature information for the detection targets. The networks were 
trained entirely on 400 strawberry flower images and tested on another 100 images.

Image labelling

To identify the objects in an image using a deep R-CNN, the location and class of the 
objects need to be determined first. Generally, these instances are basically hand-annotated. 
Rectangular and circular bounding boxes are often used to label the objects. Circular anno-
tations are needed initially and then converted to rectangular bounding boxes that enclose 
a target of equal width and height; this is more suitable for round objects, such as cit-
rus fruits and apples. The R-CNN operates on rectangular bounding box prediction, which 
outputs the corresponding coordinates of the bounding boxes for the object; therefore, 
the ground truth annotations for the strawberry flowers were collected using rectangular 
bounding boxes. The graphical image annotation tool, named labelImg and provided by 
the Computer Science and Artificial Intelligence Laboratory at MIT, was used to label the 
object bounding boxes in the images. The manually labelled flower objects in the bounding 
boxes were mainly composed of yellow pollen, white petals and green sepals.

Hardware

The hardware for the R-CNNs used on the strawberry flower training image dataset con-
sisted of an Alienware 17 R3 laptop (DELL, USA) with an NVIDIA GeForce GTX 980 M 
integrated RAMDAC, 8 GB graphics card and Intel Core(TM) i7-6820HK CPU. The algo-
rithms were programmed in MATLAB R2017a (The Math Works, Natick, USA) under 
the Windows 10 (Microsoft, USA) operating system. The Caffe model (Chan et al. 2015), 
which was originally developed by the Berkeley Vision and Learning Center, was used as 
the deep learning framework. In this experiment, an NVIDIA GTX 980 graphics card with 
4 GB memory and 1024 kernels was used for validation.

Region‑based CNNs for object detection

A new region-based CNN (R-CNN) framework was introduced for object detection. First, 
approximately 2000 bottom-up region proposals were generated according to a selective 
search of the input images. Then, the features of each proposal were extracted by a large 
convolutional neural network. Finally, the feature vectors were then sent to the linear sup-
port vector machines (SVMs) to classify each region and then to a regressor to adjust the 
detection position. However, each object proposal needs a forward pass through the con-
volution net, which leads to a heavy computational load. To solve this problem, a spa-
tial pyramid pooling (SPP) network (He et al. 2014) was used. The spatial pyramid build 
pyramid in image space and quantize feature space. The SPP network enables the input of 
images with varying sizes or scales during training and generates a full-image representa-
tion that may increase the scale invariance and reduce the risk of over-fitting. The proposed 
Fast R-CNN ran through the CNN exactly once for the input of the image to relieve some 
of the computational load and speed up the R-CNN (Girshick 2015). Then, a fixed-length 
feature vector was extracted for each object proposal from the feature map. Each feature 
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vector was sent to the fully connected layers, which output the bounding-box for each 
object. The process of Fast R-CNN was 213 times faster than that of the R-CNN. However, 
both the R-CNN and the Fast R-CNN relied on general input object proposals, which usu-
ally come from a handmade model, such as a selective search, MultiBox (Szegedy et al. 
2014; Erhan et al. 2014) or an EdgeBox model (Dollár and Zitnick 2015). The calculations 
for generating the proposal regions accounted for most of the computational time of the 
whole process. Although some of the deeply trained models appeared to generate proposal 
regions, e.g., the DeepBox model (Kuo et al. 2015), the processing time was still not neg-
ligible. Although the running time of the detection networks was reduced by the improved 
network, the computation time to generate the region proposals was still the bottleneck. 
Therefore, Ren et  al. (Ren et  al. 2015) proposed a modified network, called the Faster 
R-CNN. In this work, a regional proposal network (RPN) was introduced to share the full-
image convolutional features with the detection network, which made generating the region 
proposals very quickly. The RPN and Fast R-CNN were trained to share the convolutional 
features and optimize the convolution characteristics. The Faster R-CNN can be considered 
as a system that is composed of regional proposal networks and fast regions with convolu-
tional neural networks (Fast R-CNNs). The RPN substituted the selective search algorithm 
of the Fast R-CNN. The key to a Faster R-CNN is to share the same convolutional layers 
of the RPN and Fast R-CNN detector with its own fully connected layers. Then, an entire 
image was passed through the CNN only once to generate and refine the object proposals. 
More importantly, because of the shared convolutional layers, a very deep network (Simon-
yan and Zisserman 2014) could be used to generate high-quality object proposals.

The anti‑oscillatory stochastic gradient descent method

The gradient descent algorithm was used to optimize the network parameters in order to 
minimize the back-propagation error for the training dataset. The gradient descent algo-
rithm updated the parameter vector to minimize the loss function by taking small steps in 
the direction of the negative gradient of the loss function:

where λ is the learning rate, χ is the parameter vector, ψ(χ) is the loss function and i denotes 
the iteration number. The standard gradient descent algorithm sometimes oscillates along 
the steepest decreasing route to search for the optimum solution. To reduce the oscillation, 
a momentum coefficient was included in the above gradient descent function:

where τ ∈ [0,1] is the momentum coefficient. The normal gradient descent algorithm esti-
mates the gradient of the loss function, ψ(χ), using the entire dataset simultaneously. The 
anti-oscillatory stochastic gradient descent algorithm estimates the gradient of the loss 
function, ψ(χ), and renews the parameters using a stochastic subset of the dataset (Girshick 
et al. 2016). In this paper, the number of stochastic subsets used to train the CNN model 
was set to 10.

Evaluation criteria

The output of the detected images were the bounding boxes of the strawberry flower 
objects in the images. The correctness of a detected strawberry flower object was evaluated 

(1)�i+1 = �i − �∇�(�i)

(2)�i+1 = �i − �∇�(�i) + �(�i − �i−1)
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by the intersection-over-union (IoU) overlap with the corresponding ground truth bounding 
box (Girshick et al. 2016). The IoU overlap was defined as follows:

A detected strawberry flower object was accepted as a true positive (TP) if its IoU over-
lap with the ground truth bounding box was greater than a certain threshold. If a detected 
strawberry flower object did not match the ground truth bounding box, it was considered 
a false positive (FP). A false negative (FN) was determined if the detected strawberry 
flower object had no matches with the ground truth bounding box. The effectiveness of the 
R-CNN was evaluated by the precision and recall scores, which were defined as follows:

Results and discussion

Network architecture

The R-CNN-based strawberry flower detection models were trained based on the complex 
deep-level architecture of a VGG19 convolutional neural network that was pre-trained on 
more than one million images (Liu et al. 2016; Sendik and Cohen-Or 2017). As a result, 
the model learned rich feature representations for a wide range of images. The network 
had 47 layers. There were 19 layers with learnable weights: 16 convolutional layers and 
3 fully connected layers. To have a pre-trained network perform the new task of detecting 
the strawberry flower instances, transfer learning (Bengio 2012; Shin et al. 2016; Lin et al. 
2018) was used to quickly transfer the learned features to the detection application using 
a smaller number of training images. Fine-tuning a network with transfer learning is usu-
ally much faster and easier than training a network with randomly initialized weights from 
scratch. One image per batch was randomly sampled for training. The anti-oscillatory sto-
chastic gradient descent method was utilized to solve 50,000 iterations with a basic learn-
ing rate of 0.001.

Faster R‑CNN

The Faster R-CNN object detection system (Ren et  al. 2017) consisted of two modules: 
first, a regional proposal network (RPN) was employed to detect the region of interest 
(RoI) in the image, and second, a classification module was used to classify the individual 
regions and regress a bounding box around the object. During the training process, the 
inputs to the network were the RGB (red green blue) images of arbitrary sizes and the 
annotated bounding boxes around each flower. According to the selection of the CNN net-
work, the image data were propagated through a number of convolutional layers. In this 
study, the deep VGG19 network was used, which contained 16 convolutional layers and 3 
fully connected layers. The output of the convolution layers was a high-dimensional feature 

(3)IoUoverlap =
Area(GroundTruth ∩ Detected)

Area(GroundTruth ∪ Detected)

(4)Precision =
TP

TP + FP

(5)Recall =
TP

TP + FN
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map because there were 16 strides in the pooling layers. A stride is the step size for mov-
ing along the images vertically and horizontally. The local regions in the feature map were 
propagated forward to two fully connected layers: one was the box-classification layer, 
which classified the object into the correct category, and the other was the box-regression 
layer, which refined the location of the bounding box. The individual proposals were prop-
agated through the subsequent fully connected layers and finally through two layers with a 
finer region classification output and an associated object bounding box. The anti-oscilla-
tory stochastic gradient descent method was used for end-to-end training, which allowed 
the convolutional layers to be shared between the RPN and the R-CNN components.

During the testing process, the network returned 400 bounding boxes for each image 
with the class probabilities. The probability threshold method was used with a non-max-
imum suppression operation to detect the strawberry flower objects (Rothe et  al. 2014). 
Figure 2 shows the intermediate outputs of the Faster R-CNN network for the detection 
of strawberry flowers. First, an RGB image was propagated through a set of convolutional 
layers. Each ROI box was propagated through the fully connected layers, finally returned 
the class probability and regressed a finer bounding box for each object. As shown in the 
last image of Fig. 2, the ground truth from the input image was used in the RPN and the 
R-CNN layers during training. During testing, a class-specific detection threshold was 
applied to the output, which was followed by non-maximum suppression to remove the 
overlapping results.

Determination of the momentum parameter

Figure 3 shows four curves of the estimated loss function, ψ(χ), during the iterative optimi-
zation process to train the Faster R-CNN object detector to extract regional proposals from 
the training images using momentum factors of τ = 0.3, 0.5, 0.7 and 0.9. The momentum 
coefficient was the contribution of the previous gradient change. The contribution of the 
gradient changes from the previous iteration to the current iteration greatly affected the 
convergence of the loss function. As the momentum coefficient values increased from τ = 
0.3 to 0.9, the convergence performance gradually improved. Although the convergence 
speed of the curve with τ = 0.3 was better than that with τ = 0.5 and 0.7 at the begin-
ning stage, the convergence performance of the curve with τ= 0.3 was obviously shocked 

Fig. 2  Schematic diagram of the deep-level Faster R-CNN network architecture for the visual representation 
of the detection of strawberry flowers
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severely in the iterations from 20 to 80. The oscillation degrees of the curves with momen-
tum coefficient values of τ= 0.3 and 0.5 were greater than that with a coefficient value of 
τ= 0.7 after 10 iterations. When the number of iterations was greater than 90, the conver-
gence of each curve tended to be consistent for all momentum factor values. A continuous 
increase in the momentum coefficient would improve the convergence performance; how-
ever, it would also increase the training time, so it was not recommended. As the momen-
tum coefficient values increased from τ = 0.7 to 0.9, the convergence performance became 
worse. This indicated that the momentum coefficient was able to suppress the oscillation 
when the algorithm searched for the optimum solution along the convex route. Therefore, 
the momentum parameter value of τ = 0.7 was chosen for the anti-oscillatory stochastic 
gradient descent function for training the Faster R-CNN model.

RPN performance

High-quality region proposals had an important contribution to improving the object detec-
tion performance. In this paper, the influence of the number of regional proposals on the 
detection accuracy was also investigated. Figure 4 shows that the performance of the net-
work was almost saturated after generating 300 proposals. Although there was a slight 
improvement at 400 proposals, the calculations took a longer time. The maximum detec-
tion rate was 86.1% by using 400 proposals.

Comparison of the region‑based CNN methods

In this section, the strawberry flower detection performances of the R-CNN, the Fast 
R-CNN, and the Faster R-CNN on the strawberry flower dataset were compared. The top 
2000 proposals generated by the selective search method were used for the R-CNN and the 

Fig. 3  Four curves of the estimated loss function, ψ(χ), for the iterative optimization process to train the 
Faster R-CNN model to extract region proposals from the training images with momentum coefficient val-
ues of τ = 0.3, 0.5, 0.7 and 0.9
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Fast R-CNN. The R-CNN model was trained end-to-end for both classification and regres-
sion (Yang et al. 2015). The precision-recall metric (Tang et al. 2016) was used to estimate 
the quality of strawberry flower detection. The precision-recall curve showed the trade-off 
between precision and recall for different thresholds. The high precision was related to a 
low false positive rate, and the high recall was related to a low false negative rate. The high 
scores indicated that the classification model obtained accurate results and the majority of 
the positive results. As shown in Fig. 5, as the threshold of the recall rates increased, the 
corresponding precision rates of the Faster R-CNN became much higher than those of the 
other two algorithms (the R-CNN and Fast R-CNN). The overall performances of the algo-
rithms were measured with the mean average precision (mAP) score (Davis and Goadrich 
2006), which is the average precision at the ranks where the recall changed. The geomet-
ric interpretation of the mAP score is the area below the curve. A large area below the 
precision-recall curve indicated the overall superior performance of the algorithm with the 
higher mAP score. In other words, a curve that is above another curve had a better perfor-
mance level. The Faster R-CNN-based model achieved the highest mAP score of 0.861 on 
the test strawberry flower image dataset, as shown in Table 1. The Faster R-CNN fused the 
RPN and Fast R-CNN into a single network by sharing their convolutional features with an 
attention mechanism to guide the unified network as to where to exactly orient and sharply 
cut down on the number of invalid bounding boxes, which finally improved the accuracy 
of the objection detection algorithm (Chu et al. 2018). The compared results illustrated that 
the improvement of the Faster R-CNN model for strawberry flower detection was substan-
tial. More detailed features were abstracted effectively from the original images by using 
the Faster R-CNN compared with the other two algorithms.

The RPN technology adopted by the Faster R-CNN, which shared the full-image con-
volutional features with the detection network to detect the RoI in the image, reduced 
the running time of the detection networks and reached the target for real-time object 
detection (Chu et  al. 2018). The Faster R-CNN routines, which could perform at an 

Fig. 4  The influence of the number of regional proposals used in training the detection accuracy of the 
Faster R-CNN model
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8.475 frames per second (FPS) detection rate, ran much faster than the R-CNN and 
Fast R-CNN routines, which performed at detection rates of 0.138 FPS and 0.369 FPS, 
respectively, as summarized in Table 1. It was clear that the performance of the Faster 
R-CNN model exceeded those of the R-CNN and Fast R-CNN models.

As shown in Fig. 6, more instances are illustrated for comparing detection perfor-
mance using the three different models of the R-CNN, Fast R-CNN and Faster R-CNN. 
Each column, from left to right, in Fig.  6 shows the detection results of the three 
models. Figure 6a shows that there were four strawberry flowers in the image, but the 
R-CNN detected only two of them. The other two small strawberry flowers at the posi-
tions of ‘a’ and ‘b’ were undetected. The Fast R-CNN had a similar result. As shown 
in Fig. 6d, the two small strawberry flower instances were also undetected by the Fast 
R-CNN model. However, as shown in Fig. 6g, the Faster R-CNN successfully detected 
all four flower instances, including the two small ones previously undetected by the 
other two models. Figure  6b shows that there was only one flower in the image, but 
the R-CNN incorrectly detected the bright sunlight spot as a flower. However, Fig. 6e, 
h both show that the Fast R-CNN and Faster R-CNN detectors produced correct 

Fig. 5  Precision recall curves of the detection results for the R-CNN, Fast R-CNN, and Faster R-CNN mod-
els

Table 1  Detection results of three different R-CNN models with a selective search (SS) or a regional pro-
posal network (RPN) in terms of mean average precision (mAP), execution time and frame per second 
(FPS)

Method Proposals MAP Time (s) FPS

R-CNN SS 2000 0.634 7.226 0.138 
Fast R-CNN SS 2000 0.767 2.709 0.369
Faster R-CNN RPN 400 0.861 0.118 8.475
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detection results. Figure 6c shows that the R-CNN model had difficulty identifying the 
connected two flower objects; however, Fig. 6f, i shows that all three flowers were cor-
rectly detected by the Fast R-CNN detector and Faster R-CNN detector, respectively.

The qualitative strawberry flower detection results are illustrated in Fig. 7. It can be 
observed that the Faster R-CNN model could address challenging issues, such as dif-
ferent illumination and overlap in Fig. 7a, e, a shelter in Fig. 7b, complex backgrounds 
in Fig.  7c and different flower orientations in Fig.  7d. In Fig.  7c at the ‘a’ position, 
the strawberry flower was covered by the opposite side of the leaves, and there were 
not enough data for the opposite leaf side when training the model; however, it was 
finally identified by the Faster-RCNN model, which demonstrated the robustness of the 
algorithm. In Fig. 7, some failure cases of the Faster R-CNN model on the strawberry 
flower testing dataset are shown. In Fig. 7d at position ‘b’, one tiny strawberry flower 
was not identified by the algorithm because it was too small compared to the other 
instances in the dataset and its orientation. In the future work, the integration of more 
cues and instances for training the network will be needed to detect the missing flowers 
to increase the detection accuracy.

Fig. 6  Comparison of the detection results of three different models: R-CNN (a–c), Fast R-CNN (d–f) and 
Faster R-CNN (g–i)
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Conclusions

In this paper, a state-of-the-art deep-level region-based visual representation architecture 
was proposed for the detection of strawberry flowers in an outdoor field. The proposed 

Fig. 7  Examples of strawberry flower detection results in various instances using the faster R-CNN model



400 Precision Agriculture (2020) 21:387–402

1 3

algorithm was able to efficiently complete the detection task even if the strawberry flowers 
were under a shadow, obscured by foliage and stems, or overlapped by other strawberry 
flowers. The transfer learning technology was used to quickly transfer the learned features 
to the detection application by using fewer training images. It was much faster and easier to 
train the network by fine-tuning it through transfer learning than to train the network with 
random initialization. The experimental results showed that the Faster R-CNN effect came 
from the RPN module. Due to sharing between the convolution layer RPN and the Fast 
R-CNN detector module, the Faster R-CNN model could use the RPN within the multiple 
convolution layers without an additional computational burden. The proposed algorithm 
achieved a superior detection accuracy (mean average precision) of 86.1%. The developed 
deep-level region-based artificial intelligent strawberry flower visual representation and 
recognition system in such a setting has the potential to offer much value to farmers. With 
accurate knowledge of the individual strawberry flower locations in the field, strawberry 
yield estimation and prediction would be possible, which is important and beneficial for 
growers to efficiently utilize their labour resources and increase yield and profit.
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