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Abstract
A novel detection algorithm based on color, depth, and shape information is proposed for 
detecting spherical or cylindrical fruits on plants in natural environments and thus guiding 
harvesting robots to pick them automatically. A probabilistic image segmentation method 
is first presented to segment a red–green–blue image as a binary mask. Multiplied by this 
mask, a filtered depth image is obtained. Region growing, a region-based image segmenta-
tion method, is then applied to group the depth image into multiple clusters. Each cluster 
represents a fruit, leaf, or branch that is later transformed into a point cloud. Next, a 3D 
shape detection method based on M-estimator sample consensus, a model parameter esti-
mator, is employed to detect potential fruits from each point cloud. Finally, an angle/color/
shape-based global point cloud descriptor (GPCD) is developed to extract a feature vector 
for an entire point cloud, and a support vector machine classifier trained on the GPCD fea-
tures is used to exclude false positives. Pepper, eggplant, and guava datasets were captured 
in the field. For the pepper, eggplant, and guava datasets, the detection precision was 0.864, 
0.886, and 0.888, and the recall was 0.889, 0.762, and 0.812, respectively. Experiments 
revealed that the proposed algorithm was universal and robust and hence applicable to an 
agricultural harvesting robot.
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Introduction

As China’s agricultural labor force continues to decline despite the increasing cultivated 
areas of fruits and vegetables, agricultural harvesting is facing a potential labor shortage 
(Xiang et al. 2014; Zou et al. 2012, 2016). To reduce the labor burden, automatic harvest-
ing is necessary. An important aspect of autonomous harvesting robots is how to detect 
fruits robustly under natural conditions where challenges exist. Such challenges include 
cluttered backgrounds, varying illumination, low contrast between leaves and fruits, and 
fruit scale and rotation changes. This study focuses on exploring a general method to detect 
spherical or cylindrical fruits in the fields, because most fruits are spherical or cylindrical.

In the past few decades, many color-based detection methods have been investigated 
(Bulanon et  al. 2003; Wachs et  al. 2010; Luo et  al. 2016; Qureshi et  al. 2017). Most of 
them are applicable only to certain fruits, with specialized color spaces carefully con-
structed to distinguish fruits from their background. Some fruits have similar colors to the 
leaves (such as peppers, green apples, and immature citrus), and the varying illuminations 
may alter their colors. Thus, these agricultural objects are difficult to detect with only the 
use of color. Because object contours are invariant to illumination changes, contour-based 
methods have attracted some attention. These methods often use a circular Hough trans-
form (CHT) to detect round fruits (Murillo-Bracamontes et al. 2012; Roscher et al. 2014; 
Lu and Sang 2015; Li et  al. 2016). However, these approaches cannot detect cylindrical 
fruits, such as eggplants, cucumbers, and bitter gourds.

Because a depth image is also invariant to lighting conditions and implicitly contains 3D 
information, many depth-based detection methods have been proposed. Cupec et al. (2014) 
established a fruit recognition method by depth image analysis. This approach generates a 
set of triangles from depth images based on Delaunay triangulation, which is a triangula-
tion method that can create a regular triangular mesh for a given point set. Subsequently, a 
region growing method was used to merge adjacent triangles to generate convex surfaces, 
each of which represented a possible fruit. Experiments revealed that a large percentage of 
surfaces were undersegmented (i.e., the detected surface appeared larger than the ground 
truth result). Wahabzada et al. (2015) employed a 2D laser sensor to acquire point clouds 
of wheat, barley, and grapevines and developed a histogram clustering algorithm to seg-
ment the point clouds with high accuracy. Color information was not considered in the 
above approaches.

Fusing color and depth information together brings opportunities and challenges. Monta 
and Namba (2003) established a 3D tomato sensing system comprising a color camera and 
a laser scanner, in which image thresholding, a simple image segmentation method to cre-
ate binary images, and depth filtering were used to detect fruits. Rakun et al. (2011) applied 
thresholding to the hue image to find areas of interest. The areas were then refined via a sup-
port vector machine (SVM) classifier trained on texture-based features. Finally, CHT was 
used to detect spheres from the point cloud of each area. Both methods required selecting 
a suitable color space. Font et al. (2014) developed a low-cost stereovision system to esti-
mate the size and position of pears and apples that worked only in uniform illumination 
conditions. Barnea et al. (2016) first detected highlighted regions from hue–saturation–value 
(HSV) images and then used a fixed-size 3D sliding window along with an SVM classifier 
on these regions to detect sweet peppers in varying illumination conditions. This method 
achieved a precision of only 0.55. Rachmawati et al. (2016) used a k-means clustering algo-
rithm on red–green–blue (RGB) and depth images in which fruits were placed on an indoor 
rotation platform and obtained promising results. To recognize apples on trees, Nguyen 
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et al. (2016) performed depth and color filtering to exclude unnecessary backgrounds, uti-
lized Euclidean clustering to generate clusters, and used a random sample consensus algo-
rithm (RANSAC), a model parameter estimator, to find the true positives. The true positive 
rates for Gala and Fuji apples were 0.88 and 0.81, respectively. Another apple detection 
method was presented by Tao and Zhou (2017), who first used region growing to segment 
a point cloud into a set of clusters and then built an SVM classifier based on the fast point 
feature histogram (Rusu et al. 2009) to recognize true positives. The algorithm realized a 
detection accuracy of 0.923. Stein et al. (2016) utilized a faster region-based convolutional 
neural network, multiple RGB images, and a light detection and ranging device to detect 
and locate mango fruits. An error rate of 1.36% was reported; however, an expensive and 
fully functional unmanned ground vehicle was required. Wang et al. (2017) employed a cas-
cade classifier, the Ostu algorithm, and ellipse fitting to recognize mangoes and utilized an 
RGB-D depth image to estimate the mango size. Most of these methods implicitly adopted a 
two-step strategy that first generated a huge pool of candidates and then used an SVM clas-
sifier to identify true positives. This two-step strategy is used in this work.

The objective of this research is to propose an algorithm that is universal and robust to 
spherical or cylindrical fruit identification under natural environments. The hypotheses are 
as follows: (1) a high-efficiency probabilistic image segmentation method can exclude the 
background, (2) a depth image clustering method can generate a set of clusters for further 
processing, (3) a 3D shape detection method can identify potential fruits in the clusters, and 
(4) a discriminative descriptor can identify the true fruit from the output of the 3D detection.

Materials and methods

Image acquisition

A low-cost RGB-D sensor, Kinect V2 (Microsoft Inc.), was used to capture images. Kinect 
V2 comprises two separate cameras: an RGB and an infrared (IR) camera. The IR camera 
generated depth images by using a time-of-flight technology (Wang et al. 2017). Because 
the RGB resolution was 1080 × 1920 whereas the depth resolution was 424 × 512, each 
pair of RGB and depth images was required to be aligned before application. The intrinsic 
parameters of the RGB and IR cameras and the extrinsic parameters between them were 
used to perform the alignment operation (Ren et al. 2017). In this way, the RGB image was 
adjusted to 424 × 512 pixels.

Three challenging datasets were provided. The first two datasets were captured on 
December 26, 2017, in the Nansha Base at the Guangzhou Academy of Agricultural Sci-
ence, Guangdong, China. One of the datasets comprised 100 pairs of RGB and depth 
images of peppers acquired from the greenhouse, and the other comprised 100 pairs of 
RGB and depth images of eggplants collected in the field. The third dataset included 80 
pairs of RGB and depth images of guavas obtained on July 10, 2018, on a commercial farm 
in Guangdong, China. Table 1 lists the details of each dataset, and Fig. 1 shows the image 
acquisition sites. All images were taken from 10:00 a.m. to 3:00 p.m., and the capture dis-
tances between the Kinect V2 sensor and plants were approximately 550 mm.

To train, validate, and test the proposed algorithm, 15% of the images in each dataset 
were randomly selected as the training set, 5% of the images were chosen as the validation 
set, and the remaining 80% composed the test set. The sizes of the training, validation, and 
test sets were determined by experience.
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Algorithm overview

The flowchart of the proposed algorithm is shown in Fig. 2. The algorithm uses color, depth, 
and shape information of target fruits and includes four steps. First, each RGB image is 
segmented as a binary mask by the proposed probabilistic image segmentation method that 
aims at excluding only useless pixels, such as sky and soil. By calculating the entrywise 
product of the mask and depth image, a filtered depth image is obtained. Second, a regional 
growing-based clustering method is introduced to generate a set of clusters from the filtered 
depth image. Each cluster is then converted into a point cloud. Third, a novel M-estimator 
sample consensus (MSAC)-based 3D shape detection algorithm is developed to detect likely 
fruits from each point cloud. Finally, an SVM classifier trained on angle/color/shape-based 
features is used to identify true fruits. Note that the first three steps are used to generate a 
set of potential fruits, and the final step is to identify the true positives. An example of fruit 
detection is shown in Fig. 3. More details are described in the following sections.

Probabilistic image segmentation

The images captured by the Kinect V2 include not only the target fruits but also a large 
amount of backgrounds, such as leaves, branches, soils, and sky. Because the colors of 
some backgrounds are evidently different from those of the fruits, they are easily seg-
mented using color information only, thus reducing the computational burden. Here, a 
probabilistic image segmentation method (Harrell et al. 1989) is modified and applied.

First, an RGB image is transformed into an HSV space because it is relatively insensi-
tive to illumination changes. The posterior probability of the foreground f given the color 
attributes of pixel i is then calculated by using the Bayesian formula

(1)p
(
f |(hi, si, vi)

)
=

p
((
hi, si, vi

)|f )p(f )
p
((
hi, si, vi

)|f )p(f ) + p
((
hi, si, vi

)|b)p(b) ,

Table 1  Number of images and fruits in each dataset

Pepper dataset Eggplant dataset Guava dataset

Number of image pairs 100 100 80
Number of fruits 1083 305 146

Fig. 1  Image acquisition scene, where the calibration board is used for calibrating the Kinect V2 to obtain 
its intrinsic and extrinsic parameters
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where 
(
hi, si, vi

)
 are HSV values of pixel i; f and b refer to the foreground and background, 

respectively; p(f) and p(b) are prior probabilities learned from the foreground and back-
ground training samples, respectively; and p

((
hi, si, vi

)|f ) and p
((
hi, si, vi

)|b) are condi-
tional probability density functions (CPDFs). Based on the naïve Bayes assumption—i.e., 
each element of the HSV values of pixel i is independent—Eq. 1 can be reduced to

(2)p
(
f |(hi, si, vi)

)
=

p
(
hi|f

)
p
(
si|f

)
p
(
vi|f

)
p(f )

p
(
hi|f

)
p
(
si|f

)
p
(
vi|f

)
p(f ) + p

(
hi|b

)
p
(
si|b

)
p
(
vi|b

)
p(b)

,

Fig. 2  Flowchart for the pro-
posed algorithm

Fig. 3  Example illustration of the proposed detection algorithm where ⊙ means the entrywise product
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where p(h|f), p(s|f), and p(v|f) are CPDFs of the H, S, and V components learned from the 
foreground training samples, respectively, and p(h|b), p(s|b), and p(v|b) are CPDFs learned 
from the background training samples, respectively. The Gaussian distribution has been 
widely used to model the bell-shaped CPDF (Harrell et  al. 1989; Song et  al. 2014). In 
experiments, the image histograms of the color components of the foreground or back-
ground training samples were not found to be strictly bell-shaped that means the Gaussian 
distribution cannot be used to approximate the CPDF. In this work, the image histograms 
of the foreground or background training samples are normalized so that the sum over all 
items in each normalized histogram equals 1, and the resulting normalized image histo-
gram is used to represent the CPDF. To smooth the normalized image histograms, a Parzen 
density estimator with a Gaussian kernel is used (Duda et al. 2001). Figure 4 shows the 
pepper CPDFs learned from the foreground and background training samples that were 
extracted manually from the training set. This method has two advantages: (1) the normal-
ized image histograms are calculated by dividing the image histograms by the total number 
of pixels in the image, which is more efficient computationally than learning the param-
eters of a Gaussian distribution that are usually estimated via maximum likelihood esti-
mation, and (2) the normalized image histogram can approximate the complex probability 
distribution.

By applying Eq.  2 to each pixel of an RGB image, a probability image is generated. 
In this type of image, pixels with larger values have higher likelihood of belonging to the 
target fruit. Therefore, threshold segmentation is performed, thus obtaining a binary image 
as a mask. To avoid oversegmentation, a low threshold (set to 0.1 in the experiments) is 
recommended. By computing the entrywise product of the depth image Id and this mask, a 
filtered depth image is obtained, characterized as I′

d
.

Region growing

The filtered depth image contains not only target fruits but also some leaves and branches. 
These objects occupy various 3D spaces, so it is possible to group them as clusters in 3D 
space, with each cluster representing a possible fruit. Euclidean clustering (Rusu 2009) 
was employed by Nguyen et al. (2016) to obtain clusters from point clouds. Its time com-
plexity is O(N log N), which is quite time-consuming, where N is the size of the point 
cloud; thus, Euclidean clustering is abandoned at this point. Because depth images implic-
itly contain 3D information on objects, it is used to analyze individual clusters. Here, 

Fig. 4  CPDFs learned from pepper training samples. a CPDFs of the foreground; b CPDFs of the back-
ground
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region growing (Tremeau and Borel 1997) is applied to the depth image. This approach 
repeatedly checks neighboring pixels of seed pixels (i.e., the initial cluster) and deter-
mines whether the neighboring pixels should be added to the cluster until every pixel in 
the image has been processed. Specifically, the first nonzero pixel in I′

d
 is selected as the 

first cluster, denoted by O{1}. The eight-neighboring pixels of every pixel in O{1} that 
are similar to the current pixel are then added to O{1} to increase the size of the cluster. 
The similarity metric used is that the absolute difference between the depth values of two 
pixels is below a user-defined threshold (which is recommended to be a relatively large 
value to avoid oversegmentation and set to 5 mm by experience). When O{1} stops grow-
ing, another nonzero, unprocessed pixel is selected as the second cluster O{2}, and O{2} 
is augmented in the same way. This growing process is continued until all nonzero pixels 
have been processed. Finally, a certain number of clusters will be obtained. Any cluster 
that is less than 150 pixels is removed, because it most likely belongs to the background. 
The time complexity of region growing is O(N) that is more efficient computationally 
than Euclidean clustering.

As observed in the experiments, each cluster represented a fruit, leaf, branch, or a com-
bination thereof. Therefore, detecting true positives from each cluster is vital. Because 
most fruits can be approximated by parameterized shape models, such as a sphere model 
for a pepper and a cylinder model for an eggplant, a robust 3D shape detection method is 
investigated in the next subsection. Additionally, because clusters obtained by the region 
growing method represent certain regions in the depth image that contain only 2D infor-
mation, they should be transformed into 3D point clouds before shape detection. For each 
cluster O{k}, k = 1,…,|O| ( |O| is the number of clusters), the corresponding point cloud 
with color information is defined as P{k} =

{[
pk,i, ck,i

]}i=|O{k}|
i=1

 , where pk,i and ck,i are the 
3D coordinates and RGB values of pixel i located at image coordinates 

[
uk,i, vk,i

]T
∈ O{k} , 

respectively. pk,i is calculated by

where zk,i = I�
d
(uk,i, vk,i) , and K refers to the intrinsic matrix of the IR camera.

MSAC‑based shape detection

A 3D shape detection method based on MSAC (Torr and Murray 1997) is presented here. 
MSAC is a robust, iterative parameter estimator. Specifically, in each round, it randomly 
selects an adequate number of points from the cluster to estimate the parameters of a specified 
model, and then it computes a cost function defined by

where ei is the fitting error of the ith element of the cluster to the estimated model, and �(.) 
is

where T is a constant set to 25 mm in the experiments. After a certain number of iterations, 
if the cost of the lowest cost model is lower than a given threshold d (set to 2 mm in the 
experiments), this model is chosen as the optimal model.

(3)pk,i = K−1
⋅ zk,i ⋅

[
uk,i vk,i 1

]T
,

(4)E =
∑
i

�(ei)∕
∑
i

1,

(5)𝜌(e) =

{
e e < T

T e ≥ T
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Each cluster obtained via the region growing method may contain at least one fruit, 
and the original MSAC cannot detect multiple models simultaneously from a cluster. Thus, 
MSAC is revised by repeatedly performing MSAC, and removing inliers from the clus-
ter once an optimal model is detected, until this cluster is empty or no optimal model is 
detected. Each optimal model corresponds to a potential fruit and contains a set of inliers. 
The pseudocode of the modified MSAC is outlined in Algorithm 1.

In step 2.2 of Algorithm 1, the model parameters must be estimated using only n points. 
Because most fruits look like spheres or cylinders, sphere and cylinder models are consid-
ered here. The spherical model can be parameterized via

where a, b, c, and d are parameters that can be solved by algebraic elimination using four 
points. For the cylinder model, the Schnabel et al. (2010) method is employed. It uses two 

(6)x2 + y2 + z2 − 2ax − 2by − 2cz + d = 0,
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points, p1 and p2, and their normals n1 and n2. First, the direction of the cylinder axis is 
computed as a = n1 × n2 . Two lines p1 + tn1 and p2 + tn2 are then projected onto the plane 
aTp = 0 . The intersection of the lines is computed as the cylinder center o. Finally, the cyl-
inder radius is set to the distance between p1 and o in the plane aTp = 0.

Several problems were found in the experiments: (1) the leaves with spherical surfaces are 
prone to be detected as false positives when running sphere detection (Fig. 5a), and (2) the 
branches or leaves with cylindrical surfaces also tend to be false positives when employing 
cylinder detection (Fig. 5b). Therefore, a false-positive removal method is investigated in the 
next subsection.

Feature extraction and classification

The aims of this section are to extract a feature vector for each point cloud detected by MSAC 
and use an SVM classifier to distinguish fruits and nonfruit objects. Each point cloud is gener-
ated from only one viewpoint. Thus, part of the surface of the object is missing, and a discrim-
inative descriptor is required. Barnea et al. (2016) and Kusumam et al. (2017) have investi-
gated a shape and an angular descriptor for partial point clouds, respectively. Both descriptors 
showed reasonable classification results. Because color is inherent to an object, the proposed 
global point cloud descriptor (GPCD) integrates the shape, angular, and color features of the 
object of interest. Each component of the proposed GPCD is described as follows.

Angular feature

The point feature histogram (PFH) (Rusu et al. 2009) is a robust local point cloud descriptor 
that represents angular properties at a point. Here, PFH is extended to be a global descrip-
tor. Specifically, given a fruit candidate �{k} , the surface normal of each point in �{k} is 
first estimated by principal component analysis (Hoppe et al. 1992). For each pair of points 
pk,i ∈ �{k} and pk,j ∈ �{k} (i ≠ j) , along with their normals nk,i and nk,j , their angular prop-
erties are then computed as follows

where u = nk,i , v = (pk,j − pk,i) × u , and w = u × v (uvw represents a local coordinate sys-
tem). Each triplet 

(
f1, f2, f3

)
 casts a vote in a 27-bin histogram. The index idx of the bin in 

which 
(
f1, f2, f3

)
 votes is defined as

where floor () is a round-down operation. This histogram is normalized to be invariant to 
the size of �{k}.

Color feature

The point cloud color is transformed into the HSV space. The mean and covariance of 
HSV values are calculated such that the mean is a 3D vector and the covariance is a 

(7)

⎧
⎪⎨⎪⎩

f1 = (1 + vTnt)∕2

f2 =
�
1 + uT

�
pk,j − pk,i

�
∕pk,j − pk,i

�
∕2

f3 =
�
�∕2 + atan(wTnt, u

Tnt)
�
∕�

(8)idx = floor
(
3 ⋅ f1

)
⋅ 30 + floor

(
3 ⋅ f2

)
⋅ 31 + floor

(
3 ⋅ f3

)
⋅ 32,
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3 × 3 symmetric matrix with six different values. By combining the mean and covari-
ance, a nine-dimensional feature is obtained.

Shape feature

A D2 shape function (Osada et al. 2001) is used here. It computes distances between 
every pair of points from �{k} and forms a 30-bin histogram of these distances.

The GPCD feature is a 66-dimensional vector. Figure 6 shows the GPCD features 
of various objects. The results show that objects of different geometrical surfaces have 
distinct signatures in the GPCD space. Because GPCD is discriminative, an SVM clas-
sifier trained on GPCD features is utilized to identify true positives from the outputs of 
MSAC (Fig. 7).

Results and discussion

To test the universality and robustness of the proposed algorithm in natural environ-
ments, several quantitative experiments were performed. All codes were implemented 
in MATLAB (2015a) on a computer with 4 GB of RAM and an Intel Core i3-4150 CPU 
running at 3.5 GHz.

Performance of the GPCD descriptor

The performance of the GPCD was evaluated by analyzing the classification precision, 
recall, and accuracy (defined by Eq. 9) of the SVM classifier trained on GPCD features. 
Two widely used descriptors, histograms of oriented gradients (HOG) (Dalal and Triggs 
2005) and local binary pattern (LBP) (Ahonen et al. 2009), were employed as compari-
son algorithms. The metrics used are defined as follows

(9)

⎧⎪⎨⎪⎩

precision =
Number of true positves

Number of (true positives+false positives)

recall =
Number of true positves

Number of (true positives+false negatives)

accuracy =
Number of (true positves+true negatives)

Number of (true positives+true negatives+false negatives+false positives)

Fig. 5  Example illustrating shapes detected by MSAC. a Spheres detected by MSAC; b cylinders detected 
by MSAC
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where true positive refers to a fruit correctly classified, false positive refers to a nonfruit 
object incorrectly classified as a fruit, true negative is a nonfruit object correctly classified, 
and false negative is a fruit that is incorrectly classified as a nonfruit object.

The SVM classifier was trained using the positive and negative samples (note that 
each sample was a point cloud) generated from each training set by performing the pro-
posed algorithm without the SVM classification step (see Table  2). Each sample was 
projected onto the RGB image plane, and then the minimum enclosing rectangle of the 
projection was computed as a region of interest where the HOG and LBP features were 
extracted. A grid search method and tenfold cross-validation were utilized to optimize 
the SVM parameters during training.

After training, the SVM classifier was validated using the positive and negative sam-
ples created from each validation set by following the proposed algorithm without the 
SVM classification step (see Table 2). The classification precision, recall, and accuracy 
were then calculated, as listed in Table 3. The GPCD descriptor obtained the two best 
precisions, two best recalls, and three best accuracies. In this context, the classification 
performance of GPCD was better than that of HOG or LBP.

Detection performance of the proposed algorithm

The detection performance of the proposed algorithm was validated and compared 
with a similar algorithm (Nguyen et al. 2016). Nguyen et al. (2016) used a color filter, 

Fig. 6  GPCD features for a pep-
per, eggplant, and pepper leaf 
point cloud

Fig. 7  Example illustrating true positives detected by SVM on GPCD features. a Detected peppers from 
Fig. 5a; b detected eggplants from Fig. 5b
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Euclidean clustering and an RANSAC-based shape detector to detect apples. Because 
the color filter developed by Nguyen et al. leveraged the redness property of the apples 
to exclude the backgrounds, it was not applicable in this case and thus was replaced by 
the proposed probabilistic image segmentation algorithm. Moreover, an GPCD-based 
SVM classifier was used to remove false positives. The modified version of their algo-
rithm was termed “MNguyen.” In addition, fruits far from the harvesting robot could 
not be picked, so any depth values larger than 1500 mm in the depth image were set to 
zero for the two algorithms.

The precision–recall curve visualizes each pair of precision and recall at differ-
ent thresholds that cut off the SVM outputs. The overall detection performance of the 
algorithm can be evaluated via the mean average precision (mAP) that measures the 
area below the curve. Larger mAP values correspond to better detection performance. 
Figure 8 shows the precision–recall curves of the two algorithms on different test sets. 
Table 4 lists the mAP values. The mAP values of the proposed algorithm for the pep-
per, eggplant, and guava test sets were 0.863, 0.741, and 0.807, respectively—all greater 
than the MNguyen result. Thus, the result showed that the proposed algorithm has supe-
rior overall performance to MNguyen.

Table 5 lists the detection precision and recall, at a threshold of 0.5, of the proposed 
algorithm and MNguyen on three test sets. For the pepper, eggplant, and guava test sets, 
the precision of the proposed algorithm was 0.864, 0.886, and 0.888, respectively; the 
recall was 0.889, 0.762, and 0.812, respectively—all larger than the MNguyen result. 
These performance values confirmed that the proposed algorithm was robust to detecting 
different types of fruits.

Several detection results are shown in Fig. 9. These examples validated that the pro-
posed algorithm was effective. Some advantages were also revealed: (1) the proposed 
algorithm was rotation and scale invariant (see Fig. 9d–f), an important property that was 
helpful for recognizing fruits of different poses and sizes, and (2) the 3D shape detection 
method could detect fruits that were not perfect spheres or cylinders, hence avoiding 
missing true positives. In addition, some drawbacks were uncovered: (1) when the color 
and 3D shape of a leaf resembled the fruit, the GPCD-based SVM classifier could not 
distinguish them (see Fig. 9a), and (2) owing to occlusion caused by leaves, branches, 
or adjacent fruits, a single fruit may be split into several parts (see Fig.  9d). Possible 
solutions include fusing texture features into the developed GPCD descriptor to further 
improve its discriminability and pruning plants to reduce leaves and branches (Bac et al. 
2015).

Table 2  Number of positive and 
negative samples generated from 
the training and validation sets

Training set Validation set

Positive samples Negative 
samples

Positive 
samples

Negative 
samples

Pepper 190 903 64 302
Eggplant 45 379 16 126
Guava 16 149 13 57
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Evaluation of time efficiency

Because a picking cycle for automatic harvesting robots includes detection, trajectory 
planning, and cutting phases, the detection step was not required to be operated in real 
time (Nguyen et al. 2016). However, it should not be so time consuming as to slow the 
whole system. Table 6 lists the average computational time used by the proposed algo-
rithm and MNguyen.

The average computation times of the proposed algorithm for the pepper, eggplant, 
and guava test sets were 12.93 s, 9.37 s, and 6.96 s, respectively, with an average num-
ber of 9.2 peppers, 2.3 eggplants, and 1.48 guavas detected per image; i.e., the detection 
times per pepper, eggplant, and guava were approximately 1.41  s, 4.07  s, and 4.70  s, 
respectively. The detection times of MNguyen per pepper, eggplant, and guava were 
approximately 10.41  s, 44.91  s, and 52.62  s, respectively. These results showed that 
the proposed algorithm was quite time consuming for robotic harvesting, though it was 
more efficient than MNguyen. Therefore, future work will focus on improving the over-
all real-time performance of the proposed algorithm.

Conclusions

Owing to the cluttered backgrounds, occlusion, illumination changes, and low contrast 
between leaves and fruits, robust fruit detection is highly challenging. In addition, most 
existing work focuses on the detection of only one type of fruit, thus limiting their appli-
cation. To resolve these issues, this work investigated a common framework for detecting 
different types of fruits by using a low-cost RGB-D sensor. Quantitative experiments were 
carried out to verify the performance of the proposed algorithm, and the following conclu-
sions were obtained:

(1) The probabilistic image segmentation algorithm can remove backgrounds and is effi-
cient computationally.

(2) The depth image clustering algorithm can generate a set of clusters from depth images 
and has a lower time complexity than Euclidean clustering.

(3) The 3D shape detection algorithm can detect multiple spheres or cylinders in the clus-
ters.

(4) The GPCD descriptor is discriminative, and the SVM classifier trained on GPCD 
features can remove false positives.

Table 3  Precision, recall, and accuracy for GPCD, HOG, and LBP descriptors on the three different valida-
tion sets

Bold values indicate the best values

Descriptor Pepper Eggplant Guava

Precision Recall Accuracy Precision Recall Accuracy Precision Recall Accuracy

GPCD 0.846 0.815 0.951 1 0.867 0.986 1 0.846 0.971
HOG 0.921 0.507 0.898 0.950 0.904 0.978 0.889 0.615 0.918
LBP 0.809 0.523 0.892 0.909 0.769 0.971 1 0.727 0.959
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Fig. 8  Precision–recall curves of the proposed algorithm and MNguyen on a pepper test set, b eggplant test 
set, and c guava test set

Table 4  mAP values of the 
proposed algorithm and 
MNguyen on pepper, eggplant, 
and guava test sets

mAP

Proposed algorithm MNguyen

Pepper 0.863 0.666
Eggplant 0.741 0.719
Guava 0.807 0.774

Table 5  Precision and recall at threshold 0.5 that binarizes the SVM outputs on pepper, eggplant, and guava 
test sets

Method Test set Total fruits True positives False posi-
tives

False nega-
tives

Precision Recall

Proposed 
algorithm

Pepper 829 737 116 92 0.864 0.889
Eggplant 244 186 24 58 0.886 0.762
Guava 117 95 12 22 0.888 0.812

MNguyen Pepper 829 567 71 262 0.888 0.684
Eggplant 244 184 64 60 0.742 0.754
Guava 117 91 11 26 0.892 0.779
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(5) For the pepper, eggplant, and guava test sets, the detection precision is 0.864, 0.886, 
and 0.888, respectively; the detection recall is 0.889, 0.762, and 0.812, respectively; 
and the average detection time per fruit is 1.41 s, 4.07 s, and 4.70 s, respectively. These 
performance values confirm that the proposed algorithm is capable of detecting differ-
ent types of fruits in the fields, though it is somewhat time consuming.

Although the proposed algorithm is effective, it has some shortcomings to be resolved 
in future works:

(1) In extreme cases, the color and shape of the leaf or branch may resemble those of the 
fruit. This issue makes the proposed GPCD descriptor that represents the color and 
shape properties of the object unable to distinguish between the leaf/branch and the 
fruit. Future work will focus on integrating other features, such as texture in GPCD.

Fig. 9  Example illustrating fruits detected by the proposed algorithm. a–c are detected peppers; d–f are 
detected eggplants; and g–i are detected guavas. Note that pixels with depth values greater than 1500 mm 
were set to black
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(2) Owing to occlusion by leaves or branches, a single fruit may be split into several parts 
by the region growing method. Consequently, multiple partial fruits will be detected 
as false positives. This is a challenging problem to be overcome and will be considered 
in future work.
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