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Abstract
In current best commercial practice, pre-harvest fruit load predictions of mango orchards 
are provided based on a manual count of fruit number on up to 5% of trees within each 
block. However, the variability in fruit number per tree (coefficient of variation, CV, from 
27 to 93% across ten orchards) was demonstrated to be such that the best case commercial 
sampling practice was inadequate for reliable estimation (to an error of 54–82 fruit/tree, 
and percentage error, PE, of 10% at a probability of 0.95). These results highlight the need 
for alternative methods for estimation of orchard fruit load. Pre-harvest fruit load was esti-
mated for a case study orchard of 469 trees using (i) count of a sample of trees, (ii) in-field 
machine vision and (iii) correlation to a tree spectral index estimated using high resolution 
satellite imagery. A count of 5% of trees (23) in the trial orchard resulted in a PE of 31% 
(error of 37 fruit/tree), with a count of 157 trees required to achieve a PE of 10% (error 
of 12 fruit/tree). Sampling effort to achieve a PE of 10% was decreased by only 10% by 
sampling from aspatial k-means tree classifications based on machine vision derived fruit 
counts of all trees. Clustering based on tree attributes of canopy volume and trunk circum-
ference was not helpful in decreasing sampling effort as these attributes were poorly cor-
related to fruit load (R2 = 0.21 and 0.17, respectively). In-field multi-view machine vision-
based estimation of fruit load per tree achieved a R2 = 0.97 and a RMSE = 14.8 fruit/tree 
against harvest fruit count per tree for a set of 18 trees (average = 88; SD = 82 fruit/tree), 
using a faster region convolutional neural network trained the previous season. The rela-
tionship between WorldView-3 (WV3) satellite spectral reflectance characteristics of sam-
pled trees and fruit number was characterised by a R2 = 0.66 and a RMSE = 56.1 fruit/tree. 
For this orchard, for which the actual fruit harvest was 56,720 fruit, the estimate based on 
a manual count of 5% of trees was 47,955 fruit, while estimates based on 20 iterations of 
stratified sampling (of 5% of trees in each cycle) had variation (SD) of 9597. The machine 
vision method resulted in an estimate of 53,520 (SD = 1960) fruit and the remote sensing 
method, 51,944 (SD = 26,300) fruit for the orchard.
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Introduction

Accurate pre-harvest estimations of fruit load per tree can support more informed decisions 
regarding harvesting logistics (e.g. labour, equipment and packing material requirements) 
as well as handling, storage and forward selling. This requirement is particularly strong in 
mango (Mangifera indica L.) production, given the narrow window of time between har-
vest maturity and ripening on tree. Managers of smaller mango farms rely on a qualitative 
assessment of fruit load (e.g. the block appears to have 20% more or less fruit than last 
year). Larger farms utilize a quantitative estimation based on a visual count of a sub-sam-
ple of trees from each tree block, in best practice involving a count of fruit on every 20th 
tree (i.e. 5% of trees; 50 trees for a block of 1000 trees) (pers. comm. M. Matzner, farm 
manager). In some cases, an average of three counts per block is made, changing the initial 
count tree between counts (pers. comm. M. Robertson, farm manager). This procedure will 
be beneficial if there is a high variation between trees, however there is no published infor-
mation on mango yield variability in the context of yield forecasts.

More accurate crop load estimations with lower sampling effort could potentially be 
achieved if an orchard was segregated into clusters of trees with similar crop load. This 
could be undertaken if a correlation existed with an easily measured field attribute and 
fruit load per tree. For example, mango trees produce inflorescences at branch terminals, 
and thus trees with more branch terminals have a greater potential fruit load. Therefore the 
potential fruit load per tree could be proportional to canopy volume, which in turn could be 
proportional to trunk circumference or foliage health as indexed by a spectral index.

An attempt was made to optimise human sampling effort by Taylor et al. (2007) who 
mapped spatial variability in kiwifruit weight and dry matter content over three harvest 
seasons across 11 orchards to determine a minimum sampling grid for a desired confidence 
level. More recently, Peeters et al. (2015) reported a technique for combining spatial and 
aspatial information to classify variation within orchards. The attributes of soil electrical 
conductivity, trunk circumference and yield were used in development of a classified map 
using the aspatial method of k-means clustering to classify trees to separate clusters, while 
the Getis–Ord ( G∗

i
 ) univariate geospatial analysis method (Getis and Ord 1992) was used 

to include spatial information by including reference to neighbouring tree data values. Indi-
vidual tree spatial significance scores from the G∗

i
 analysis were used as input variables for 

the aspatial k-means clustering analysis, resulting in a classification with spatial structure.
There is also potential for yield estimation of tree fruit crops using machine vision or 

remote sensing. If low cost and easily implemented (i.e., standardised and automated), such 
technologies could supplant manual counts of tree fruit load. At a lower level of adoption, 
these technologies could be used for a qualitative classification of trees by level of crop 
load (e.g. high, medium, low), allowing for a reduced manual sampling effort.

Machine vision systems have been previously examined for their ability to accurately 
estimate mango fruit load on a tree. Payne et al. (2013) reported the use of a night imaging, 
dual-view approach (two images of each tree, from the two inter-rows), with a coefficient 
of determination (R2) of 0.74 and bias corrected root mean square error (RMSE) of 13.3 
fruit/tree (RMSE recalculated from presented data) for the regression of observed fruit 
for the estimation of fruit number per tree compared to actual count. The dual-view count 
underestimated actual fruit number due to canopy occlusion, with only 59 and 84% of total 
fruit visible in dual-view images in two separate populations. Stein et  al. (2016) used a 
faster regional convolutional neural network (R-CNN) detector with both a dual-view and 
a multi-view per tree approach that employed trajectory data, tracking individual fruits 
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between frames to avoid repetitive counts. A LiDAR image mask was used to identify indi-
vidual canopies to associate detected fruits with individual trees. The multi-view count 
versus a harvest count for 16 validation trees was both precise (R2 = 0.90) and accurate 
(slope = 1.01, with double counts balanced by hidden fruit) while the dual-view approach 
was more precise (R2 = 0.94) but less accurate (slope = 0.54). Denser canopies could pre-
vent a view of all fruit on the canopy, such that a correction factor for hidden fruit would 
be required for the machine vision count. Thus implementation of a machine vision-based 
fruit load estimator may still require manual sampling effort.

In the only reported use of satellite imagery in the context of mango production, Yadav 
et al. (2002) reported on the use of the Indian Remote Sensing (IRS) satellite for estima-
tion of the production area of mango. The authors also attempted to develop a multiple 
linear regression model for yield prediction based on field collected canopy attributes 
(tree height, scion trunk diameter, canopy width) on 20 treatments of 10 trees each over 
9 seasons (n = 1800). Weak correlations were reported between individual tree attributes 
and yield (R2 < 0.36), and between all attributes and yield (multiple linear regression, 
R2 = 0.53).

The use of 18 vegetation indices (VI) estimated from WV3 satellite multispectral 
imagery as predictors of yield of avocado and macadamia blocks was reported by Rob-
son et al. (2017). Reasonable linear correlations between a canopy VI and fruit yield (kg/
tree) were achieved for two macadamia and three avocado blocks (R2 = 0.86, 0.69, 0.81, 
0.68, 0.72; respectively; data of 18 trees per block). Inconsistencies in the correlation were 
explained (e.g. macadamia nut losses due to a hail event). As well as providing information 
on variability between trees within an orchard, the remote sensing approach allows for a 
yield forecast for entire growing districts. However, the specific VI employed and the rela-
tionship slope between a given VI and fruit load varied between blocks. This variation may 
be attributed to seasonal, locational and management differences (resulting in variation in 
flowering extent and fruit set per unit of canopy volume). Thus, to apply this methodol-
ogy, field-based measurements will be required to calibrate the relationship between VI 
and fruit load.

In the current study, the reliability of manual crop load estimation was assessed, with 
an attempt to use the approach of Peeters et al. (2015) to reduce sampling effort based on 
use of attributes to classify trees to groups with reduced variation in fruit load. Further, the 
accuracy of crop load estimates using manual count, machine vision and remote sensing 
methods were compared.

Materials and methods

Field material and harvest

Field work was undertaken in ten orchards in the 2016/17 season. The main study site 
(Orchard 1) was a commercial mango (cultivar ‘Calypso™’) block near Bundaberg, Aus-
tralia (around 24.8670°S, 152.3510°E). This site was also utilised in the study of Stein 
et al. (2016) in a previous year. The trees were planted on a 4 × 9 m grid, and were 12 years 
old. Of the 491 trees originally planted in the orchard, 22 were cut back to major branches 
and top-worked with grafts in the previous season, while another ten trees bore no fruit.

In Orchard 1, fruit (> 225  g) was harvested and counted from 18 ‘calibration’ trees 
selected on the basis of canopy VI (six each of high, medium and low values; assessed 
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using WV3 satellite imagery, see description in next section), with harvest on the day 
before commercial harvest. The entire block was commercially harvested on the 16th of 
January 2017, with fruit sorted using a Compac (Auckland, NZ) fruit grader, with total 
orchard yield (# of fruit > 225 g) recorded. Fruit < 225 g was typically very small (approxi-
mately 50 g), being fruit without seed, derived from non-fertilised flowers.

In the other nine orchards (2–10), 18 trees were selected and fruit load was counted at 
harvest, as described above. These orchards were located in the Northern Territory (around 
12.5753°S, 131.1022°E) and Queensland (around 25.2370°S, 152.2685°E), Australia, and 
were of Calypso™, Honey Gold™, Kensington Pride and R2E2 cultivars.

Measurements

A visual count of fruit on a tree requires the operator to work systematically around the 
tree, making counts by zones (generally branches). Manual visual counts of fruit on tree 
were made of 191 trees in Orchard 1, including the 18 calibration trees. A repeat visual 
fruit count of fruit on 18 trees was made by two trained operators to estimate measurement 
error. Trunk circumference (0.1 m above the graft union) of all Orchard 1 trees was meas-
ured using a measuring tape.

WV3 satellite imagery with 1.2 m spatial resolution of Orchard 1 was obtained on Sep-
tember 23rd, 2016, and the method of Robson et al. (2016, 2017) employed. Briefly, pix-
els specific to tree canopies were segmented using a 2D scatter plot (Red versus NIR1) 
in ENVI version 5.4 (Exelis Visual Information Solutions, Boulder, Colorado, USA). The 
Normalised Difference Vegetation Index (NDVI = (NIR1 − R)/(NIR1 + R), where NIR1 is 
near infrared band 1, 772–890 nm, and R is red band, 632–692 nm) was calculated and 
used in an unsupervised classification, using Iso Cluster and Maximum Likelihood Clas-
sification tools (ArcGIS 10.2), to high, medium and low NDVI categories. Six trees were 
randomly selected from each class for calibration activities. Pixels associated with each of 
the ‘calibration’ trees were segmented by applying a 1.5 m radius buffer area around each 
central point of the tree using ArcGIS 10.2 (Environmental Systems Research Institute, 
Redlands, CA, USA). Eighteen structural and pigment based VIs specific to crop biomass 
and yield parameters were derived for each tree from the eight band spectral reflectance 
data of WV3 imagery (Robson et al. 2017). Tree fruit load was regressed against the 18 
VIs for the ‘calibration’ trees. The VI returning the highest regression coefficient of deter-
mination for the orchard was adopted, with the regression equation applied to the average 
VI of canopy associated pixels of the whole orchard. The estimated average yield per tree 
for the orchard was multiplied by tree number to provide an estimate of orchard fruit yield.

The techniques involved in RGB-LiDAR-based estimates of canopy volume and multi-
view machine vision estimates of fruit load per tree were described by Stein et al. (2016) 
based on field work in Orchard 1 in the previous season. RGB and LiDAR imagery were 
collected of all trees in the orchard within December, 2016. Briefly, imagery was obtained 
from a ground-based platform of all trees in the orchard. A faster region convolutional neu-
ral network (R-CNN) algorithm was trained on > 1500 images of individual fruit, and the 
method was validated using the manual (harvested) counts of fruit from the 18 trees men-
tioned earlier. The technique was then run on full-sized images for all trees in the orchard, 
both for a single image per side of the tree (‘dual-view’) and for tracked fruit in 25 images 
per side of each tree (‘multi-view’). Fruit detections within each image were associated 
with a specific tree by projecting segmented LiDAR data of each tree to the corresponding 
image frames. For the current study, the Stein et al. (2016) method was updated to clip the 
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LiDAR masks at a vertical plane, intersecting the centroid of the canopy in the direction of 
the row, to avoid double counting fruit that were seen from both sides of the tree. The faster 
R-CNN was used without further training from the previous season. The method was vali-
dated using the manual (harvested) counts of fruit from the 18 trees mentioned earlier, and 
using the manual on-tree fruit counts of 191 trees. The slope of the relationship between 
machine vision estimates and actual count of the 18 calibration trees was used to adjust 
estimates. The slope for the multi-view relationship was effectively unity, at 1.0043. The 
summation of machine vision tree fruit load estimates provided an orchard yield estimate. 
Individual tree load multi-view estimates were used in consideration of the reliability of 
sub-sampling estimates.

Statistical analysis

For convenience, the terms used in the equations of this study are listed here:
n is the number of sample trees; N is the total number of trees in the orchard, nadj is 

adjusted sampling requirement (Eq. 1); t is the t statistic, CV is coefficient of variation, e 
is measurement error, PE is percentage error (Eq. 2); c is the machine vision count of fruit 
per tree, ĉ is the corrected machine vision count of fruit per tree, m is the slope of the actual 
(harvest) count, c̄ , to machine vision count, with associated uncertainty of �m (Eqs. 3, 4); 
VI is satellite image derived spectra vegetation index, z is the slope of c̄ to VI and z is the 
intercept of this relationship (Eq. 5); Xi is a range normalised tree variable, xi is the value 
for the ith tree for a given value (Eq. 6); Xj is the variable value of tree j, wb,j is the spatial 
weight between attributes b and j (Eq. 7); k is the number of clusters used, si represent a 
single cluster within k, XN is the variable per N, and �i is the mean of XN within si (Eq. 8)

The minimum number of samples (tree counts) required (n) for a reliable estimate of 
population mean (of fruit per tree) was calculated from the standard deviation (SD), in the 
context of the desired probability level (using a t value; Students t table: for P of 0.95 and 
n > 30, t = 1.96) and the acceptable measurement error (e) (Eq. 1). Alternatively, CV (SD/
mean * 100%) and PE (e/mean *100%) can be used (Eq. 1).

For finite populations with high SD, required sampling n estimated from Eq.  1 can 
(unreasonably) exceed population size. An adjusted sampling requirement, nadj (Thrusfield 
1995) can be calculated given the total population (N, trees per orchard) as:

The impact of varying the ‘start’ tree in the commercial yield estimation practice of 
assessing every 20th tree was assessed using the multi-view machine vision-based tree 
fruit load data. Yield estimates were made based on the start tree varying from tree 1 to 20 
(where tree 1 was the edge tree of the orchard north-west corner).

The machine vision fruit count estimates were corrected based on a Bayesian linear regres-
sion of machine vision estimates (c) against harvested fruit counts ( ̄c ) for the calibration trees. 
Observation and model prior noise ( �o and �m ) were optimised to maximise the marginal like-
lihood (Rasmussen and Williams 2006), to estimate a line through the origin with a Gaussian 
uncertainty distribution on the gradient. Observation noise �o is equivalent to the RMSE of 
the calibration data. The prior distribution on the slope (m) is a Gaussian centred at 0 with 

(1)n =
(t × SD)2

e2
=

(t × CV)2

PE2
.

(2)nadj =
n × N

N + n
.
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standard deviation �m . Machine vision counts per tree c were converted to count estimates ĉ 
per tree (Eq. 3):

where the uncertainty in calibration gradient m is described by the Gaussian Ɲ 
(
m, �2

m

)
 ) 

with mean gradient m and standard deviation �m . Block total estimates for N trees were 
calculated by:

In this expression, the error term has two components: the first ( 
√
N�o ) represents repeated 

samples of the observation noise for every tree, while the second 
�� ∑

c

m+�m
−

∑
c

m−�m)

��
2
�
 is 

derived from the upper and lower estimates of the calibration slope (plus and minus one stand-
ard deviation).

For WV-3 data, a linear regression of VI to harvested fruit number per tree ( ̄c ) was rear-
ranged (Eq. 5, where z is the intercept and m1 is the slope of the regression line) for use in 
conversion of the average VI of orchard canopy pixels to an estimate of the average tree fruit 
number for the orchard. RMSE of the predicted fruit count/tree to actual count for the calibra-
tion set was used in estimation of error on the estimate of orchard fruit count as RMSE/(c) 
multiplied by the number of trees in the orchard (n = 469).

Spatial clustering

The spatial clustering procedures followed protocol of ArcGIS (Esri 2018). Each tree level 
attribute was pre-processed by standardization (0–1) (Eq. 6) prior to further analysis.

where x = (xi,…,xN) and Xi is the standardized value.
Clustering techniques were used independently for each tree attributes (i.e., machine vision 

derived fruit numbers, canopy volume and trunk circumference) and in a multivariate assess-
ment involving all three attributes. To include spatial information, the methodology of Peeters 
et al. (2015) was followed, in which z-scores from the univariate spatial Getis–Ord were used 
as inputs for the multivariate aspatial k-means clustering. This procedure allows spatial data 
(z-scores) to be used in an aspatial clustering method.

The standardized G∗
i
 (Eq. 7), developed by Ord and Getis (1995), determines if a data point 

is statistically different to neighbouring objects (plotted at P < 0.01, 0.05, 0.10 assuming a nor-
mal distribution). In this expression, wb,j is the spatial weight between features b and j within 
a binary (0–1) symmetric spatial weight matrix, with a value of 1 assigned to neighbouring 
points (adjacent trees) and a value of 0 assigned to all other points and including the point b. N 
is the total number of data points (i.e. trees) and Xj is the value for the data point j.

(3)ĉ =
c

(m ± 𝜎m)
,

(4)total =

∑
c

m
±

�√
N�o +

� ∑
c

m + �m
−

∑
c

m − �m)

��

2

�

.

(5)c̄ =
(VI − z)

m1
.

(6)Xi =
xi −min(x)

max(x) −min(x)
,
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where:

X̄ =

∑N

j=1
Xj

N
 ; and S =

�
∑N

j=1
X2
j

N
− (X̄)2.

The k-means algorithm involves random placement of centroids (s) for a given number 
of clusters (k) (Eq. 8).

where argmin is the minimum Euclidean distance between tree attribute 
(
XN

)
 and the mean 

value 
(
�i

)
 of all points within the given centroid (si). After trees are assigned to clusters, the 

mean of all point values within a given cluster changes, thus the procedure was repeated 
until there were no changes in tree assignments to clusters.

The optimal number of clusters was determined using RStudio (Boston, USA), based on 
the intersection in a plot of the within-cluster sums of squares (WCSS) and the between-
clusters sums of squares (BCSS) for a range in the number of clusters. For each tree varia-
ble, G∗

i
 analysis was performed in ArcGIS to derive spatial significance values (z-score) for 

each data point. The z-scores for each variable were then used as the input values for the 
k-means clustering (‘Grouping Analysis’). ArcGIS was used to plot raw, k-means clustered 
and Getis–Ord G∗

i
 spatially clustered values.

(7)
G∗

i
=

∑N

j=1
wb,jXj − X̄

∑N

j=1
wb,j

S

��

N
∑N

j=1
w2
b,j
−

�∑N

j=1
wb,j

�2
�

N−1

,

(8)K = argmin
∑k

i=1

∑

XN∈si

‖‖XN − �i
‖‖
2
,

Table 1   Average fruit number and standard deviation for 2016/17 harvests of 18 trees in each of 10 mango 
orchards (1–10) and for the multi-view machine vision estimate of all trees in Orchard 1 (1*)

A PE of 10% and P of 0.95 was used to determine a minimum number of samples (n) required for estima-
tion of the mean for each orchard (for P = 0.95)

Orchard Tree N (#/
orchard)

Average 
(fruit/tree)

SD (fruit/tree) CV (%) Sampling n 
(trees)

Adjusted 
n (trees)

(1*) 469 117 92 78 235 157
1 469 88 82 93 334 195
2 486 259 102 39 60 53
3 1017 240 160 67 171 146
4 1100 80 34 43 69 65
5 224 59 36 61 143 87
6 1205 97 65 67 173 151
7 1091 201 55 27 29 28
8 1818 106 51 48 89 85
9 1176 77 61 79 241 200
10 1117 85 40 47 85 79



830	 Precision Agriculture (2019) 20:823–839

1 3

Results and discussion

Minimum sample number for estimate of orchard yield

The variation in fruit number per tree was high in all sampled orchards, with SD rang-
ing from 34 to 160 fruit/tree (CV of 27 to 93%) (Table  1). These results are consistent 
with those of Payne et al. (2013) who reported SD of 37 and 50 fruit/tree for two orchards 
(CV = 44 and 56%; average = 84 and 93 fruit/tree; respectively) and generally higher 
than that reported for a grapefruit orchard (CV = 42%) (Peeters et al. 2015). The adjusted 
number of samples required for an estimate of the mean tree fruit load (using Eq. 2; for 
P = 0.95, PE = 10%) ranged from 28 to 200 trees across the 10 orchards.

For the main study orchard (Orchard 1; average = 117 fruit/tree; SD = 91.6 fruit/tree 
on multi-view count), the number (adjusted n) of sample trees to achieve an estimate of 
the mean tree crop load for the block (for P = 0.95) varied from 314 for a 5% measure-
ment error to 23 trees if a 31% error was accepted (5% of total tree number of this block, 
n = 469) (Fig. 1). To achieve a ‘reasonable’ PE of 10%, a count of 157 (235 non-adjusted) 
trees was required (Table 1). Random selection (n = 20) of (dual view estimated) values of 
157 trees resulted in estimates of between 106 and 129 fruit/tree, with average = 107 and 
SD = 6.1 fruit/tree (i.e. CV of 5.6%).

Stratified sampling is the method of sampling every nth tree, typically resulting in diag-
onal sampling ‘lines’ across a rectangular orchard with rows of equally spaced trees. To 
demonstrate the limitation of a 5% of total sampling method, the start tree for an ‘every 
20th tree’ stratified sample was varied. As expected, the SD of these estimates (20.5 fruit/
tree) was decreased relative to the SD (92 fruit/tree) of individual tree fruit counts across 
the orchard. However, the variation in average tree yield and thus orchard yield based on 
the stratified sampling estimates was unacceptable in terms of using a 5% sampling strat-
egy for a commercially useful estimate, with tree yield estimates varying from 79 to 145 
fruit/tree (CV = 18%, Table 2).
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Fig. 1   Number of samples (n) required to estimate population mean at P = 0.95 in context of accepted PE 
(%) for a population, given a CV of 78.7%. Results shown for raw n and adjusted n
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Tree crop load estimates

For Orchard 1, repeat manual estimates of fruit load on the calibration trees (i.e. pre har-
vest) achieved an R2 = 0.998, RMSE of 2.61 fruit/tree and a slope = 1.01. This RMSE value 
represents an estimate of the measurement uncertainty of a (trained) human visual estimate 
working under ideal conditions. The canopies of the trees in Orchard 1 were sufficiently 
open that manual count could be accurate and repeatable. The accuracy of a human count 
is expected to decrease with count of large tree numbers (operator attention span limita-
tion), time pressure (commercial reality), higher fruit loads per tree and larger canopies 
(data not shown).

Of the 18 spectral indices calculated from the satellite imagery, the best relationship was 
obtained with the N2RENDVI index ((NIR2 − R)/(NIR2 + R)). A R2 of 0.66 was obtained 
for the linear correlation of VI to fruit load estimated by harvest for 15 ‘calibration’ trees 
of Orchard 1 (the three trees in the calibration set that had no fruit were not utilised in the 
regression; Fig. 2). An RMSE of 56.1 fruit/tree was calculated for the fruit count estimated 
using this regression relative to harvest count.

For machine vision estimates of fruit load per tree, Stein et al. (2016) reported that for 
the ‘calibration’ trees in the previous season (n = 16, average = 114, SD = 79 fruit/tree), the 
linear regression of manual, dual and multi-view machine vision counts on harvest counts 

Table 2   Average fruit counts per 
tree and estimated orchard yield 
based on data of every 20th tree, 
with variation in start tree used 
in the count

Initial tree Average fruit/tree Estimated 
orchard 
fruit #

1 122.8 57608
2 127.8 59953
3 112.2 52645
4 145.3 68161
5 118.2 55478
6 98.3 46118
7 123.1 57765
8 92.6 43441
9 130.8 61360
10 129.9 60908
11 144.9 67943
12 79.0 37071
13 117.3 55036
14 90.2 42291
15 104.3 48898
16 108.7 50978
17 82.5 38702
18 82.8 38845
19 119.3 55953
20 136.4 63987
Mean 113.3 53158
SD 20.5 9597
CV (%) 18.1 18.1
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was described by a R2 of 0.99, 0.94 and 0.90, and associated slopes of 1.03, 0.54, and 1.01, 
respectively. The machine vision algorithms developed by Stein et al. (2016) in the previ-
ous season were used in the current study, with addition of a ‘half-mask’ clip such that 
only fruits in the half of the canopy facing the imaging platform were counted. The linear 
regression of LiDAR masked dual and multi-view machine counts, respectively, on harvest 
counts of the calibration trees (n = 18, average = 88; SD = 82 fruit/tree) was described by a 
R2 of 0.90 and 0.97, RMSE of 25 and 15 fruit/tree and slope of 0.50 and 1.0043. In com-
parison, the result for dual-view without use of a mask (i.e. whole image assessed) was 
described by a R2 of 0.81, RMSE of 30 fruit/tree and slope of 0.74. The reduction in R2 is 
due to misallocation of fruit seen in neighbouring trees, which affects calibration but not 
total block estimates. The high precision and accuracy of the multi-view counts of Orchard 
1 is consistent with the observation that most fruit could be seen from some angle from 
outside the canopy given the relatively open tree canopies. The multi-view counts were 
therefore used in consideration of required sampling effort and potential clustering proce-
dures to reduce manual sampling effort.

Human visual assessment of fruit number on tree was taken within days of orchard 
imaging for machine vision assessment, while harvest occurred a month later. In this 
season, there was effectively no fruit drop in this period. The linear regression of multi-
view machine vision counts on human visual assessment of tree load for 191 trees (aver-
age = 95.9; SD = 61.8 fruits/tree) was described by a R2 = 0.85, RMSE = 35.8 fruit/tree and 
slope = 1.2. The poorer values from human estimates of the 191 tree set than for the harvest 
data of the 18 ‘calibration’ trees is attributed to error in the human in-field count, repre-
senting operator fatigue for assessment of larger sample sizes.

Orchard level variation

In Orchard 1, trees in the north-western corner of the block tended to have higher values 
of fruit load, trunk diameter and canopy volume (Fig. 3), while trees in the mid-east of the 
block had lower values. However, trunk circumference was weakly linearly correlated with 
canopy volume (R2 = 0.57), presumably due to variation in pruning operations between 
trees. Further, fruit load per tree was poorly linearly correlated to either (LiDAR estimated) 

y = 0.0004x + 0.1532
R² = 0.6646
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Fig. 2   Plot of fruit number and NIRENDVI for calibration trees of Orchard 1
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canopy volume or (manually estimated) trunk circumference (R2 = 0.21 and 0.17, respec-
tively). While canopy volume could relate to the number of terminals (branches) per tree 
and thus to the potential fruit load per tree, the poor relationship between volume and yield 
must reflect variation in the percentage of terminals that flower or in % fruit drop within 
this orchard and season.

Peeters et  al. (2015) recommended the variables of trunk circumference (as a sur-
rogate for canopy volume) and tree fruit load for orchard classification into management 
units, but they did not report on the correlation between trunk circumference and yield. 
Given the poor correlation between canopy volume or trunk circumference and yield in 
the current exercise, orchard classification based on these variables should have little rel-
evance to yield, but may have value for other management purposes (e.g., pruning effort or 
fertilisation).

Fig. 3   Orchard map with trees (n = 469) colour coded for canopy volume (a; m3), trunk circumference (b; 
cm) and number of fruits per tree (c). Each circle represents a tree (Color figure online)



834	 Precision Agriculture (2019) 20:823–839

1 3

Orchard classification

Orchard classification based on prior knowledge of tree fruit load was undertaken, to assess 
the decreased sampling effort possible through measurement within zones of lower varia-
tion in fruit load. Classification of trees by the indices of canopy volume and trunk circum-
ference was also undertaken, to replicate the work of Peeters et al. (2015).

For all variables, the k-means optimization plot of within cluster and between cluster 
sums of squares intersected between two and three clusters (e.g., Fig.  4). Three clusters 
represent a practical number of groups in terms of interpretation (high, medium, low), and 
this number was adopted for all classifications.

The k-means classification was consistent with visual assessment of the distribution of 
fruit/load across the orchard, i.e. higher fruit loads in the north-western corner of the block 
(Fig. 5). This distribution was also evident in the G∗

i
 hot-spot analysis (Fig. 5).

A multivariate classification was attempted using the three variables (trunk diameter, 
canopy volume and crop load), using both k-means and G∗

i
 -k means (Fig. 6). As expected, 

use of the G∗
i
 -k means of the three blocks accentuated groupings but lost individual tree 

data.
Obviously, the classification based on fruit numbers created clusters of different fruit 

load, each with lower SD than that of the parent population (Table 3). However, the clas-
sification zones based on trunk circumference or canopy size or all three variables were not 
significantly different in fruit load per tree.

Given a total orchard variability of CV = 78%, the number of samples required for reli-
able estimation of mean tree fruit load (P = 0.95, PE = 10%) was 235 trees (Eq. 1) or 157 
trees when adjusted for the finite sample size (Eq. 2) (Table 1). For this level of reliability, 
14, 17 and 111 trees are required (Eq. 1) for sampling of the three classifications based on 
fruit load, or a total of 142. This represents only a 10% decrease on sample number based 
on entire orchard variability.

Fig. 4   Plot of within class sum of squares (triangles) and between class sum of squares (circles) against 
number of clusters for a k-means classification of 469 trees on canopy volume, trunk circumference and 
fruit number per tree
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Fig. 5   Orchard map with trees classified to three clusters by k-means clustering (top row) and G∗
i
 spatial 

analysis (middle row) for variables of canopy volume (a; cm3), trunk circumference (b; cm) and number 
of fruits per tree (c). The Z-score derived from G∗

i
 analysis on # of fruits per tree was used as the input for 

k-means clustering (bottom row). In the middle row, colouring of the data points is based on significance 
level of the cluster classification (Color figure online)
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K-means classification on canopy volume could be useful for targeted pruning regimes 
or for estimation for amounts of plant protection chemical to apply. The use of G∗

i
 analysis 

was not useful, masking spatial variation.

Method comparisons for orchard yield estimates

The high variance observed in mango tree crop yield renders the practice of manual 
in-field counts impractical in terms of the sample number required, and the commercial 
best practice count of 5% of trees was demonstrated to deliver an unreliable estimate 
for all ten orchards considered. Until breeding or agronomic practices deliver decreased 
tree yield variance, methods are required that allow estimation of orchard yield based on 
high numbers of trees.

Fig. 6   Orchard map with trees classified to three clusters by the multi-variates of canopy volume, trunk 
circumference and fruit number per tree. K-means clustering analysis plots with standardized tree attribute 
values as input (left) and with input of z-scores from individual G∗

i
 analysis of attribute levels (right) (Color 

figure online)
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Table 3   Blocks classified by k-means clustering for the three individual variables and for the combined set 
of variables, displaying average, standard deviation, # of trees (n) within each class, sample trees required 
per classification and the adjusted n of sample trees required

The total orchard had n = 469 trees, with average = 110 and SD = 89 fruit/tree (multi-view estimated)

Average (fruit/
tree)

SD (fruit/tree) n (trees/class) Sample required 
(trees)

Adjusted 
n (trees)

Fruit #
 Class 3 264 56 65 18 14
 Class 1 139 31 185 19 17
 Class 2 37 28 218 225 111
 Total n 262 142

Trunk circumference
 Class 3 69 56 88 257 66
 Class 1 159 93 138 131 67
 Class 2 94 77 242 253 124
 Total n 641 257

Canopy volume
 Class 3 166 102 98 143 58
 Class 1 106 78 239 209 111
 Class 2 71 58 131 261 87
 Total n 613 256

Combined k-means
 Class 3 215 73 115 44 32
 Class 1 81 55 202 177 94
 Class 2 64 53 152 263 96
 Total n 484 222

Table 4   Harvest count of fruit and estimation from several methods involving count of a sample of trees or 
satellite imagery VI and multi-view/dual-view machine vision of the entire orchard (469 trees)

Actual harvest is from packhouse record of a strip harvest. Values presented as mean and associated SD 
when available

Fruit count % of 
actual 
harvest

CV (%)

Actual harvest 56,720 100
Estimate based on 5% stratified sample (manual count of 23 trees) 47,955 85
Estimate based on 5% stratified sample (multi-view data) (n = 20, 

23 trees))
53,158 ± 9597 94 18

Estimate based on random selection of 157 trees (multi-view data) 
(n = 20)

53,186 ± 3005 94 6

WV3 VI 51,944 ± 26,300 92 45
Dual-view 51,548 ± 2914 91 14
Multi-view 53,520 ± 1960 94 4
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The multi-view and dual-view machine vision method and remote sensing method 
achieved an estimate of orchard yield that was between 91 and 94% of the actual har-
vest (56,720 fruit), with the multi-view method delivering the most reliable estimate 
(CV = 4%, Table 4). The high level of uncertainty (CV = 45%) of the satellite VI esti-
mate was due to the high calibration RMSE.

For this orchard, the multi-view method achieved a slope of 1.0043 between machine 
vision and harvest counts, indicating that effectively all fruit on the canopy were visible 
from the inter-row. This may not be true for other canopy structures, with fruit hidden 
from view by the canopy and other fruit. In such cases, accurate crop load estimation 
would require a ‘calibration’ of the machine vision count to the actual tree count. Simi-
larly satellite remote sensing estimates are anticipated to require calibration with actual 
fruit load in each season. However, these remote sensing estimates could be used in 
classification of trees by fruit number, potentially informing tree selection for such a 
calibration.

Conclusion

The variation in tree fruit load between trees in an orchard was high for the ten orchards 
considered (SD from 34 to 160; CV from 27 to 93%), such that the number of trees 
required to be counted for a reliable and useful estimate (95% confidence, to 10% error) 
was prohibitive for manual counts. Attempts to reduce sampling effort by classification of 
an orchard on the basis of potential fruit load (using surrogates for number of terminals 
such as trunk circumference or canopy volume) using either k-means or G∗

i
 -k means clus-

tering were unsuccessful, indicative of differences in percentage of terminals that flowered 
or in fruit retention across the orchard.

For orchards in which canopy architecture allows all fruit to be seen from the inter-row, 
machine vision technology can allow for estimation of orchard fruit yield without recourse 
to manual counts. Note that the whole orchard need not be assessed, but rather a sample 
size consistent with the required precision. For orchards in which fruit are hidden from 
view, a calibration against manual count would be required. The satellite imagery VI based 
correlations on fruit yield allow for estimations across large areas, however measurement 
uncertainty was large, and calibration of the VI—fruit count relationship may be required 
per orchard or season.

Individual tree yield data should prove useful in precision management programs, and 
in selection of trees with high harvest indices and low bienniality in bearing.
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