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Abstract
Characterizing crop spatial variability is crucial for estimating the opportunities for site-
specific management practices. In the context of tree crops, ranging sensor technology 
has been developed to assess tree canopy geometry and control real-time variable rate 
application of plant protection products and fertilizers. The objective of this study was to 
characterize the variability of canopy geometry attributes in commercial orange groves in 
Brazil and therefore estimate the potential impact of sensor-based site-specific manage-
ment. Using a mobile terrestrial laser scanner, canopy volume and canopy height were 
measured in 0.25 m length transversal sections along the rows across five large scale com-
mercial orange groves in São Paulo, Brazil. The coefficient of variation of canopy volume 
ranged from 30 to 40%. Canopy height was less variable, but closely related to canopy 
volume. Histograms of canopy volume and height were usually negatively skewed indicat-
ing regions of the groves with smaller plants and punctual plant resets. In scenarios where 
input application rates followed canopy volume variability, input savings were around 
40% compared to constant rates based on the maximum canopy volume. Maps of canopy 
geometry derived from mobile terrestrial laser scanning revealed significant canopy spatial 
variability, suggesting that the groves would benefit from strategies based on management 
zones and other forms of site-specific management.
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Introduction

Characterizing the spatial variability of crop performance is the first step for developing 
new site-specific management strategies. A proper understanding of the level of variability 
within cropping fields enables farmers and researchers to estimate the potential benefit and 
opportunities for precision agriculture practices (Pringle et al. 2003; Robertson et al. 2008; 
Tisseyre and McBratney 2008). Amongst available technologies, crop variability can be 
assessed by the use of plant sensors (from either terrestrial, airborne or satellite platforms) 
and/or by yield monitors during harvest (Fisher et  al. 2009). In the context of precision 
horticulture, light detection and ranging (LiDAR) is one of the most promising sensing 
technologies as it can accurately measure structural tree parameters that are closely related 
to crop performance such as canopy volume and leaf density (Rosell-Polo and Sanz 2012).

Mobile terrestrial laser scanning (MTLS) systems based on LiDAR sensors have been 
reported by research groups around the world for different fruit and nut crops (Colaço et al. 
2018). Typically, the sensor faces the side of the tree rows and takes vertical scans whilst 
carried through the grove alleyways. After data processing, the laser impacts on the cano-
pies can be visualized in the form of a 3D point cloud from which parameters related to the 
shape and density of the canopies can be retrieved. Such a method has been described in 
detail by many authors (e.g. Escolà et al. 2017; Rosell-Polo et al. 2009) and demonstrated 
to be a viable option to map tree parameters at high spatial resolution and at the whole-
block scale (Colaço et al. 2017).

Maps derived from MTLS can help identify how variable is the canopy size in commer-
cial groves. It can also help to assess whether such variability occurs within short distances 
(from one tree to the next) or in large zones within the grove. Such characterization is 
crucial for the understanding of which factors might be causing tree canopy variability and 
therefore support a tailored management action—e.g. short distance variability is likely 
to be related to local pest or disease occurrence whereas variation in larger areas is more 
likely related to differences in soil type and landscape.

Besides enabling the characterization of spatial variability, ranging systems based on 
LiDAR or ultrasonic sensors can be mounted on sprayers and fertilizer spreaders to guide 
real time variable rate application of inputs at tree or within-tree scale, i.e. proportional 
rates of inputs are applied according to the tree size variability. Such technology has been 
reported for several tree crops such as apple, pear, olive, citrus, vineyards and pistachio 
(Colaço et al. 2018). LiDAR sensor has also been regarded as an effective tool to meas-
ure woody structures to guide pruning in vineyards (Tagarakis et  al. 2018) and in other 
fruit trees (Méndez et al. 2016). Given that sensor-based variable rate application at tree 
or within-tree scale was demonstrated to be technically feasible, maps derived from MTLS 
can be used to estimate the potential input savings by such technology. Canopy geometry 
maps can also be used to guide non-real time variable rate applications.

In horticulture industries, citrus is of great importance. In the USA, where the early 
developments of precision agriculture (PA) applied to citrus were reported (research goes 
back to the late 1990s, Whitney et al. 1999), the use of ranging sensors, particularly ultra-
sonic sensors, has been reported for mapping orange grove variability (Mann et al. 2011; 
Schumann et al. 2006; Schumann and Zaman 2005; Zaman and Schumann 2005) and also 
to control variable fertilizer rates (Schumann et  al. 2006b; Zaman et  al. 2005). In Bra-
zil, the world’s largest orange producer (about 17.2 Mt were produced in approximately 
660,000 ha in 2016—FAO 2018), research has demonstrated that individual citrus groves 
can be significantly variable in terms of soil properties and landscape (Oliveira et al. 2009; 
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Leão et  al. 2010; Siqueira et  al. 2010), disease occurrence (Molin et  al. 2012) and fruit 
yield (Farias et al. 2003; Molin and Mascarin 2007). Research on site-specific management 
practices, such as variable rate fertilization, has also been reported in Brazil (Colaço et al. 
2014; Colaço and Molin 2017), however with no use of sensing technologies.

Citrus in both São Paulo, Brazil and in Florida, USA has suffered lately from a severe 
bacterial disease which can increase tree size variability (the Huanglongbing-HLB disease 
is responsible for the cutting off, eradication and replacement of infected trees, worsen-
ing tree scale variability). However, the two growing regions could not be more different 
in terms of agronomic practices, landscape, soil and climate conditions. For example, in 
Brazilian groves, the trees in one grove are entirely replaced every 20 years, approximately, 
whereas, in Florida, the original trees are kept for an indeterminate time and the trees are 
individually replaced as they become diseased or unproductive. Such management strate-
gies may affect the variability of canopy size, which is expected to be higher in Florida. 
Despite the fact that individual groves in both regions are roughly similar in size (the area 
of one grove is usually around 20–30 ha), the tree canopy variability reported by research-
ers in Florida cannot be generalized to Brazilian conditions. Even if such a generalization 
were acceptable, the above ultrasonic mapping carried out in Florida was limited to a few 
orange groves.

Despite research efforts, PA uptake by citrus growers has been apparently small. For 
example, in Brazil, sensors are not being used to aid spraying applications based on canopy 
volume information. PA in Brazilian citrus has been restricted to variable rate fertilization 
based on soil georeferenced sampling, with farmers often using questionable data process-
ing and recommendation methods (e.g. generating interpolated soil fertility maps with a 
small number of sampling points). A possible explanation for the small technology adop-
tion is the fact that research has not yet exhaustively explored spatial variability in com-
mercial groves and thus the potential opportunities for PA practices are still not clear. The 
present study is published in two parts. In this first part the previously developed MTLS 
system described in Colaço et al. (2017) was used to characterize the spatial variability of 
tree canopy in commercial orange groves and then estimate the potential impact of sensor-
based site-specific management. The second part (Colaço et al., in press) focuses on under-
standing the causes for such canopy variability and how that knowledge can be used for 
enhanced site-specific management.

Materials and methods

Orange groves

Five commercial orange groves located in the state of São Paulo, Brazil, were selected for 
this study (Table 1). Grove 1 was the youngest one at the time of scanning. This grove was 
also used for the validation of the MTLS system reported by Colaço et al. (2017). Groves 
2 and 3 were the oldest ones. Trees were fully developed, being mechanically pruned every 
2 years. These groves were also used in other previous research projects (Colaço and Molin 
2017). Finally, groves 4 and 5 were those that had the smallest surface. They were chosen 
due to the high occurrence of citrus trunk gummosis (Phytophthora parasitica), a fungal 
infection that can lead to a severe weakening of the tree. Gaps and variation in canopy size 
can be seen in the overview photo of these groves (Fig. 1).
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Lidar data acquisition and processing

The orange groves were scanned with a MTLS based on a 2D LiDAR sensor (LMS 200, 
Sick, Waldkirch, Germany) and an RTK-GNSS receiver (Real Time Kinematics—Global 
Navigation Satellite System, GR3, Topcon, Tokyo, Japan) (Fig. 2). The development and 
validation of such a system is available in Colaço et al. (2017). During the data acquisition, 
the system was operated along the alleys of the groves at a constant speed of 3.3 m s−1, 
scanning one side of each tree row at a time. The system performed 75 vertical scans per 
second; each scan was formed by 181 distance measurements taken in 1° angular steps 
along the vertical plane. Such a configuration resulted in point clouds of approximately 700 
points per m2.

Prior to further data processing, a visual assessment of the point cloud, using the Cloud-
Compare 2.6.1 software (CloudCompare [GPL software] v2.6.1 2018), was carried out 
in order to recognize undesired scanned targets (e.g. power poles, individual native trees 
inside the grove, etc.) and spots where the point cloud was not generated correctly due to 
rough and abrupt irregularities of the terrain. The canopy volume and height were then 
computed for every 0.25  m length transversal sections along the rows. The convex-hull 

Table 1   General characteristics of the orange groves used in this study

Grove Location latitude/longitude 
(WGS84)

Variety canopy/rootstock Area (ha) Spacing 
tree/row 
(m)

Age (years)

1 − 22°49′51.90″/− 49°07′34.15″ Valencia/Swingle 25.4 2.6/6.8 6
2 − 22°56′52.20″/− 48°39′40.41″ Rubi/Swingle 25.7 4.0/6.8 12
3 − 22°56′41.82″/− 48°38′51.94″ Rubi/Swingle 25.7 3.5/7.5 11
4 − 22°48′40.90″/− 49°02′53.05″ Pera Rio/Sunki 10.8 2.3/6.5 8
5 − 22°50′57.06″/− 49°05′16.31″ Pera Rio/Caipira 12.1 2.6/6.8 9

Fig. 1   Overview of the orange groves 1–5 used in the study
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model was used to create the shape of the trees and retrieve canopy volume and height 
for each section. More details on the data processing steps, from the raw LiDAR data to 
canopy volume and height information, are available in Colaço et al. (2017).

Variability of canopy geometry

Histograms and descriptive statistical analysis were used to assess the distribution of canopy 
volume and height for the row section data. A regression between canopy volume and height 
was also carried out with data at the per tree scale (see below). In order to estimate the poten-
tial benefit of sensor-based variable rate applications, different scenarios of input application 
(e.g. fertilizer or plant protection products) were designed based on the canopy volume data. A 
variable rate application scenario was defined as if the application of plant protection products 
or fertilizers would employ proportional rates directly related to the canopy volume (i.e. larger 
plants receive higher amount of inputs and vice versa). Operational application errors were 
not considered. For the fixed rate scenarios, it was considered that farmers could calculate the 
application rate based on different methods: by using the maximum, the average, the median 

Fig. 2   Graphical summary of Materials and methods: (1) mobile terrestrial laser scanner and data acquisi-
tion; (2) point cloud from a portion of an orange grove; (3) 3D modelling of transversal sections of the row 
based on surface reconstruction; (4) 2D representation of canopy volume for each transversal section of the 
rows; (5) histogram and descriptive statistics of canopy volume for each section; (6) grouping of subsequent 
sections to prepare data for interpolation; (7) interpolated map of canopy volume and geostatistical analysis
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or the mode value of canopy volume from a set of sampled canopies in the grove. Adopt-
ing the maximum canopy volume as a guide for constant rate applications is usually recom-
mended as a low-risk strategy because it ensures that all plants will receive enough product 
even though some or many of them will be over-dosed. In the Brazilian groves, the average 
canopy volume is sometimes adopted but often very few trees are sampled. The mode value 
of canopy volume reflects a strategy where the farmers adopt as reference, a tree size that 
appeared more representative of the grove, i.e. one that was frequently observed during the 
grove inspection. The median canopy volume was evaluated because canopy size data distri-
butions could be asymmetrical, and in those cases would lead to different results from those of 
the average scenario. In order to exclude the random error of the sampling from the analysis, 
the average, median and mode canopy volume values were computed from the entire data set, 
not from sampling. The maximum value of canopy volume was given as two standard devia-
tions above the average. The variable rate scenario, and conventional fixed rate scenarios were 
compared in terms of input consumption and input dose accuracy.

A spatial variability analysis was conducted in order to assess whether possible variations 
of canopy geometry were random in space or spatially dependent, i.e. whether canopy geom-
etry variations are spatially structured within each grove. Such analysis was carried out in two 
steps: (a) analysis of canopy volume and height variograms for each grove; (b) generation of 
maps of canopy volume and height to assess spatial patterns of variability in each grove. Prior 
to geostatistical analysis and interpolation, adjacent data points representing 0.25 m row sec-
tions were merged together to form groups equivalent to individual trees (Fig. 2); for mapping 
purposes and whole-of-grove spatial variability analysis, this is a more meaningful representa-
tion of canopy volume than the one based on small row section. The number of merged sec-
tions varied between groves, depending on the tree spacing. For example, if the tree spacing 
was 4 m, as in grove 2, the number of merged points was 16 (equivalent to one tree); if the tree 
spacing was not a multiple of 0.25 m, the number of merged sections was rounded up. The 
values of volume and height assigned to the central point of each group were the sum of the 
volume and the highest height of the merged sections. The objective of this step was to mask 
the within-plant variability of volume and height, even though the merged points did not nec-
essarily match the centre of each tree individually. This step enabled better interpretation over 
the geostatistical analysis and the spatial variability. With the new set of points (of merged 
sections), canopy volume and height variograms were generated using Vesper 1.6 software 
(Minasny et al. 2005). Fitting models were chosen based on the Akaike Information Crite-
ria (Akaike 1974). Finally, canopy volume and height maps were created using block kriging 
interpolation. Both the grid pixel size and the interpolation block size were set to 5 m. Block 
kriging was chosen over punctual kriging because it allowed a slight smoothing of the data 
along the tree rows, which was desirable given the fact that the centre of merged sections did 
not match exactly the centre of individual trees. Interpolation of canopy geometry data was 
conducted using the Vesper software and generation and final editing of the maps was done 
using the QGIS 2.10 (QGIS Development Team 2018) software.
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Results and discussion

Variability of canopy geometry and potential benefit of sensor‑based variable rate 
applications

Canopy volume and height measured for 0.25 m sections along the rows were markedly 
variable within each grove. The coefficient of variation (CV) of canopy volume varied 
between 31 and 41% (Table 2). The smallest variation was found in grove 1, which was the 
youngest grove. Highest variation occurred in grove 5, which was one of the groves with 
high disease infection. The variability of canopy height was lower than that of canopy vol-
ume in all groves. This is evidenced by the greater CV and smaller kurtosis in the canopy 
volume histograms.

The presence of relatively smaller trees caused by either tree replacements or regions in 
the grove with some sort of impediment to tree growth was evident through observation of 
the histograms in Fig. 3. The histograms of canopy volume and height were asymmetric, 
especially for canopy height, with negative skewness. The distribution of canopy volume 
and height got closer to a normal distribution in grove 1. Through the histograms of canopy 
height, a thin tale on the left side of the distribution was observable, indicating the pres-
ence of very small trees in the grove. This is also noticed in the canopy volume histograms 
of groves 4 and 5. This is probably due to tree replacements. As expected, those small trees 
are in a relatively higher frequency in groves 4 and 5, due to higher disease occurrence. In 
the canopy volume and height histograms in grove 4, a second smaller peak on the left side 
was observed. This suggests that these small trees were replaced at the same time, whereas 
in the other groves, trees were replaced continuously at a steadier rate, except for grove 1 
where no replacements have been made so far. Although the canopy volume histograms 
were also negatively skewed, this thin left tale is not present as in the canopy height his-
tograms, i.e. tree replacements are not very evident in canopy volume maps as they are in 
canopy height maps. The negative skewness of the canopy volume histograms in groves 
2 and 3, and the relatively high frequency of volumes smaller but close to the average, 

Table 2   Descriptive statistics of orange groves canopy volume and height computed for 0.25  m sections 
along the crop rows

Median (Med.); Minimum (Min.); Maximum (Max.); Standard Deviation (Std. Dev.); Coefficient of Varia-
tion (C.V.); Kurtosis (Kurt.); Skewness (Skew.)

Grove Canopy variable Mean Med. Mode Min. Max. Std. dev. C.V. Kurt. Skew. Count
m3 (volume) or m (height)

1 Volume 1.22 1.23 1.30 0.00 3.33 0.38 0.31 0.80 0.06 124,594
Height 2.53 2.56 2.70 0.45 3.80 0.38 0.15 2.32 − 0.79 124,594

2 Volume 2.54 2.64 3.20 0.01 5.36 0.87 0.34 − 0.50 − 0.31 96,647
Height 3.86 3.94 4.11 0.45 5.48 0.61 0.16 2.74 − 1.25 96,447

3 Volume 2.60 2.69 3.20 0.00 5.42 0.93 0.36 − 0.34 − 0.32 97,880
Height 3.89 3.98 4.17 0.46 5.48 0.72 0.19 2.94 − 1.30 97,880

4 Volume 1.47 1.54 1.65 0.02 3.43 0.50 0.34 0.72 − 0.80 57,589
Height 2.75 2.87 2.96 0.46 4.01 0.59 0.21 3.56 − 1.78 57,589

5 Volume 1.42 1.50 1.70 0.00 3.62 0.59 0.41 − 0.37 − 0.42 59,202
Height 2.98 3.16 3.33 0.46 4.57 0.71 0.24 1.59 − 1.40 59,202



795Precision Agriculture (2019) 20:788–804	

1 3

Fig. 3   Canopy volume (left) and height (right) histograms for 0.25 m sections along the crop rows
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indicates the presence of regions in the field with smaller canopy volumes. A generaliza-
tion of these results suggests that very small trees from replacements are easily recognized 
in the canopy height histograms, whereas the variation of canopy size due to different con-
ditions in the field (e.g. regions with different soil types) are more evident in the canopy 
volume histograms.

A strong relationship between canopy volume and canopy height was observed, which 
suggests that canopy height information may be useful in predicting canopy volume, 
which is a much more complex feature to measure in the field than canopy height. The 
relationship between height and volume (using data of merged sections, i.e. at the tree-
basis) ranged between 0.44 and 0.77 of R2, with a power regression fit (Fig. 4). A strong 
relationship was found when data from all groves were combined, resulting in an R2 of 
0.86. The mean square error of the regression was 5.4 m3. These results have a significant 
impact on the current method of canopy volume estimation and spraying practices in citrus 
groves. In Brazil, the most common form of estimating orange tree canopy volume is by 
calculating the volume of a hypothetical cube containing the tree. This method is based on 

Fig. 4   Regression analysis between canopy volume and height using data on a per tree basis (merged sec-
tions)
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adapting the tree-row-volume concept (Byers 1987; Byers et al. 1984; Sutton and Unrath 
1984, 1988) to individual trees. As demonstrated by Colaço et al. (2017), this approach is 
extremely simplistic and inaccurate. Besides, it is time consuming resulting in few plants 
being measured. The high correlation found between canopy volume and height indicates 
that a simple measurement of height can be used to predict the tree canopy volume more 
accurately even if the purpose of this measurement is for a constant rate application.

Since a significant variation in canopy volume and height was found in the groves eval-
uated, it is reasonable to expect that sensor-based variable rate applications might provide 
a more rational use of inputs. Indeed, from the simulations carried out in this study, it can 
be suggested that significant input savings and higher application accuracy would result 
from sensor-based variable rate applications. A variable rate application scenario was 
defined as if input rates were applied in accordance with tree canopy volume variation. 
The input savings obtained by this approach varied according to the method used to cal-
culate the constant dose rate. When the constant rate was based on the average canopy 
volume, the total amount of input consumption was equal to the amount applied with vari-
able rate technology. However, when the constant rate was determined based on the maxi-
mum canopy volume, significant input reduction resulted from variable rate applications. 
The over-application caused by constant rates were generally close to 40%, reaching up to 
45% in grove 5 (Fig. 5), which is close to the results reported for trials to validate variable 
rate prototypes (Giles et al. 1987, 1989; Solanelles et al. 2006; Zaman et al. 2005). If the 
approach adopted by the conventional treatment was based on the canopy volume of higher 
frequency (the mode value), the input consumption would be lower, as well as the input 
savings by the variable rate application. These over-applications ranged from 6 up to 20%. 
Fixed rates based on the median canopy volume, which is not common in conventional 
practice, would result in 1–5% over-application. It is important to keep in mind that given 
the risk aversion of farmers, the usual approach is to adopt the maximum observed canopy 
volume to calculate input rates (e.g. spraying volumes). This approach is also often the 
official recommendation of rural extension services, because this will ensure that plants are 
well treated, reducing the risk of disease infection, for example. Of course, and as demon-
strated in this study, the possible over-application resulting from the canopy size variation 
across the grove is being markedly overlooked by such strategy. It should be also reminded 
that, in this simulation, constant rates were estimated based on MTLS-derived volumes. 
In conventional practice, those rates are based on manual estimations of canopy volume, 
which are significantly less accurate than the ones based on MTLS. In addition, manual 
techniques are based on measuring a different type of volume (Colaço et  al. 2017), for 

Fig. 5   Over application of inputs 
based on a constant rate prescrip-
tion
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exemple, the volume of a cube that encloses the tree canopy, which means that, if MTLS-
derived volumes are adopted, new calibrations to transform canopy volume information 
into input dose rates would be required.

Besides the inputs savings, it was observed that sensor-based variable rate applications 
would minimize over- and under-dose deviations resulting from fixed rate input applica-
tions. The graphs in Fig. 6 show the percentage of row sections in the grove (y axis) for 
increasing levels of dose deviation (x axis) in each application method, i.e. a ‘y’ amount of 
rows are receiving at least a ‘x’ level of under- or over-dosage. Steep slopes in the curves 
means that the amount of sections with dose deviation quickly decreases as the magnitude 
of the error increases. It is observed that when the constant rate is defined based on the 
maximum canopy volume, nearly 100% of the trees receive more input than necessary. If 
the application rate is based on the mode canopy volume, the over-dosage is significantly 
reduced, however, under-dosage errors start to occur in the groves. For both approaches, 
the over-dosage would affect more trees than the under-dosage, which is not true for the 
constant rate based on the average canopy volume. The orange lines representing this 
approach start from the y axis with a larger percentage of canopies with under-dosage, 
which is a reflection of the distribution frequency of the canopy volume of these groves 

Fig. 6   Amount of 0.25 m row sections with increasing dose deviation (over or under supply of inputs) by 
different methods of constant input rate calculation
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(Fig. 3). Due to a large number of small plants in the grove, the average value of canopy 
volume is pulled down, getting further from the median value (which divides the distribu-
tion into two equal size number of sections). For that reason, under-dosage is more fre-
quent than over-dosage when the constant rate is based on the average canopy volume. The 
mode and (obviously) the adopted maximum values were greater than the median value 
of canopy volume. For that reason, over-dosage was more frequent than under-dosage. As 
the analysis is carried out in more intensive dose deviations (increasing the value on the x 
axis) the over-dosage prevailed over the under-dosage in all scenarios of constant rate. This 
is because in the extremities of the canopy volume distribution, smaller plants were more 
frequent in all groves.

Spatial variability of canopy geometry

Geostatistical analysis (using merged section data) showed that canopy geometry variation 
was spatially dependent, i.e. it was not entirely random across the grove area. However, 
a significant portion of that variability was not spatially related. This is evidenced by the 
fact that, although spatial structure was observed in all variograms, the nugget variance 
(C0) occupied a significant portion of the sill variance (C0 + C1) (Fig. 7), which character-
izes the weak spatial dependence of canopy geometry in these groves. Mann et al. (2011) 
found a moderate spatial dependence on the canopy volume variogram in an orange grove 
in Florida (about 50% nugget/sill ratio). In this study, the weak spatial dependence, found 
especially for grove 1 and for canopy height data in all groves, suggests that these geo-
metrical attributes varied significantly within short distances. This high nugget variance 
could be also derived from errors during canopy geometry measurement. However, this is 
unlikely given that such errors were minimized by supervised and unsupervised filtering 
steps carried out previously during data processing (Colaço et al. 2017). However, besides 
the spatially random error observed, a spatial structure is noticeable in all variograms. The 
range of canopy volume and height went from approx. 50–120 m, indicating that, besides 
short distance variability, there were also large regions in the groves with distinct canopy 
sizes.

Canopy volume maps showed that tree volume was markedly variable within each grove 
(Fig. 8). An even greater variability was reported by Schumann et al. (2006a) in a 17 ha 
grove in Florida. In their study, the variability in tree canopy volume ranged from less than 
5 up to around 160 m3 per tree. The grove was over 40 years old at the time of their study. 
Certainly, individual tree replacements during that period might have contributed to such 
a variability. In this study, the canopy volume and height maps were similar through visual 
assessment (Figs. 8, 9). As pointed out before, the canopy height is a good estimator of 
tree canopy volume. The canopy height maps showed very similar variability patterns to 
the canopy volume maps. This fact indicates that the canopy height map might be used 
for spatial variability investigation when the measurement of canopy volume is not pos-
sible. Some disagreements between these maps were more evident in grove 1. It should be 
reminded that this was the youngest grove and the one that had the smallest trees amongst 
the five groves. The canopy volume and height data were closer to a normal distribution 
and the weakest spatial dependence was also found for this grove. As evidenced by the 
shape of the regression models between canopy volume and height (Fig. 4), the relation-
ship between the canopy volume and height is weaker (the regression curve is less steep) 
for smaller trees.
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Fig. 7   Semi-variograms, nugget (C0) and structural (C1) semi-variances and range (A) of per tree canopy 
volume and canopy height (merged sections) in five commercial orange groves
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Regarding the shape and size of the variability zones in the canopy volume and height 
maps (Figs. 8, 9), as previously inferred from the geostatistical results, variation in short 
distances as well as large regions with different canopy sizes was observed. The appear-
ance of these regions indicates that each grove can be divided into different zones for site-
specific management. Zaman and Schumann (2006) and Mann et  al. (2011) considered 
such a strategy, suggesting that tree growth indicators such as canopy volume or NDVI 
(normalized difference vegetation index) were good options to divide the grove into distinct 

Fig. 8   Maps of per tree canopy volume (merged sections) derived from mobile terrestrial laser scanning in 
five commercial orange groves (Color figure online)

Fig. 9   Maps of per tree canopy height (merged sections) derived from mobile terrestrial laser scanning in 
five commercial orange groves (Color figure online)
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management zones. In this study, it was observed that each grove could be divided into at 
least two management zones, one with larger trees and another with smaller trees. Zone 
transitions were usually smooth, indicating that they are probably related to natural vari-
ability of soil properties. The exception was grove 4 where a clear-cut transition between 
zones was observed, suggesting that past land transformation or changes in management 
practices could be the driver for canopy geometry variability—the study by Uribeetxebar-
ria et  al. (2018) demonstrated the importance of land transformation influencing spatial 
variability in fruit orchards. The delineation of management zones would enable different 
fertilization strategies for each zone. However, the establishment of different fertilizer rec-
ommendations and how the differences in canopy size should be interpreted depend on a 
deeper understanding of the soil spatial variability in each grove, which is the focus of Part 
2 (Colaço et al., in press).

Conclusions

Five commercial oranges groves in Brazil were scanned using a mobile terrestrial laser 
scanner. Canopy geometry (canopy volume and height) was markedly variable within 
each grove. As a consequence, if input rates (e.g. plant protection products or fertilizers) 
were applied proportionally to the canopy volume variation, about 40% of product could 
be saved. In addition, over- and under-dose deviations could also be minimized by such 
an approach. There was a strong relationship between canopy volume and canopy height 
information, which means that in the absence of sensor-based systems to measure tree 
canopy volume, simple measurements of canopy height could be used to estimate canopy 
volume.

Geostatistical analysis showed that canopy geometry variation was spatially dependent, 
i.e. variability was not entirely random across the grove area, even though a significant por-
tion of that variability was not spatially related. Overall, it is concluded that variability may 
occur at both short distances (from one tree to the next), which could be caused by local 
disease infection, and also across long distances within the grove, which could be related to 
variations in soil properties, or even to land use transformations or changes in management 
practices in the past.

Maps of canopy geometry showed that the groves could be divided into at least two 
zones of distinct tree sizes. However, treating such zones independently would require a 
deeper understanding of the drivers for such variability as well as new input recommenda-
tion formulae that incorporate sensor-based canopy volume information. Overall, this study 
demonstrated that there is a great potential for precision agriculture practices in orange 
groves based on canopy geometry information from laser scanners.
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