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Abstract
Variations in water absorption across lettuce leaves (Latuca sativa L. var. longifolia) were 
quantified from hyperspectral imagery acquired in the laboratory using selected spectral 
indices, specifically, the Moisture Stress Index (MSI), the Normalised Difference Water 
Index (NDWI) and the intensity of specific water absorptions at 970 nm (IA970), 1170 nm 
(IA1170) and 1775  nm (IA1775). Absorption was separately quantified for the midrib, the 
green parts of the leaves and for whole leaves. Indices were non-linearly related to water 
content expressed per weight of wet plant material (g g−1) but linearly to water content per 
unit area of leaf (g cm−2). Indices were weakly correlated with water content in the stem 
but strongly correlated with water in the green parts of leaves and in whole leaves. Water 
content in whole leaves was significantly underestimated (P < 0.01) when it was predicted 
from a model developed for the green parts of leaves, indicating that water content must be 
derived from the same leaf component used to derive the predictive model. Some indices 
(NDWI, MSI, IA1170) highlighted intricate reticulated patterns of water absorption across 
the leaves but these were poorly defined by other indices (IA970, IA1775). Indices extracted 
from the leaf along transverse and longitudinal transects were qualitatively similar but 
quantitative analysis indicated that they were significantly different (P < 0.05). The princi-
pal contribution of this study is that it highlights the implications of quantifying leaf water 
content from hyperspectral imagery acquired at spatial resolutions great enough to resolve 
individual leaf components.

Keywords  Hyperspectral imagery · Leaf water content · Absorption feature · Spectral 
indices · Precision agriculture

 *	 Richard J. Murphy 
	 richard.murphy@sydney.edu.au

1	 The Australian Centre for Field Robotics, Department of Aerospace, Mechanical & Mechatronic 
Engineering, The University of Sydney, The Rose Street Building J04, Sydney, NSW 2006, 
Australia

2	 Centre for Carbon, Water and Food, School of Life and Environmental Sciences, The University 
of Sydney, Sydney, NSW 2006, Australia

http://orcid.org/0000-0003-3201-4768
http://crossmark.crossref.org/dialog/?doi=10.1007/s11119-018-9610-5&domain=pdf


768	 Precision Agriculture (2019) 20:767–787

1 3

Introduction

In recent years, significant progress has been made on the use of hyperspectral imaging 
sensors in precision agriculture to provide growers with information relevant to the opti-
mal management of their crops (reviewed by Sankaran et al. 2015). Hyperspectral imagery 
of crops acquired from an overhead perspective from aircraft or unmanned aerial vehi-
cles (UAVs) have provided a wealth of information on crop biomass or yield (Wang et al. 
2017; Liu et al. 2004; Yang et al. 2004; Yang and Everitt 2012), physiological functioning 
including indicators of stress (e.g. Ballester et al. 2017; Suárez et al. 2010; Zarco-Tejada 
et al. 2013a; Zarco-Tejada et al. 2012), nutrients in leaves (Cilia et al. 2014; Yu et al. 2014; 
Vigneau et al. 2011) and plant disease (Sankaran et al. 2010 and references therein; Mahl-
ein et  al. 2010). The usefulness of this information is constrained by numerous factors, 
including the spatial resolution of the sensor, the structure of the plant canopy and the pro-
portion of soil and shade that is visible to the sensor, particularly where data are acquired 
at coarse spatial resolution (Zarco-Tejada et  al. 2005; Takala and Mottus 2016; Zarco-
Tejada et  al. 2013b; Sims and Gamon 2003; Ollinger 2011). In the context of precision 
agriculture, hyperspectral data are increasingly being acquired from field-based or robotic 
platforms, resulting in significant increases in the spatial resolution of the data they collect 
(e.g. Underwood et  al. 2017; Wendel and Underwood 2017). This increase in resolution 
opens up opportunities for detecting early signs of stress in plants at the scale of individual 
leaves before they become visible to the naked eye (Behmann et al. 2014).

One aspect of detecting stress in plants from hyperspectral data that has received consid-
erable attention is the measurement of leaf water content. Several methods have been devel-
oped to measure water content from hyperspectral data acquired at wavelengths in the vis-
ible near-infrared (VNIR; 400–1000 nm) and shortwave-infrared (SWIR; 1000–2500 nm). 
Some methods, commonly based on spectral indices (e.g. Danson et al. 1992; Tian et al. 
2001; Penuelas et al. 1993), have been designed to quantify the intensity of absorption (IA) 
of specific water absorption bands centred on 970 nm (IA970), 1170 nm (IA1170), 1450 nm 
(IA1450), 1775 nm (IA1775) and 1930 nm (IA1930, Fig. 1). These specific absorptions, occur-
ring across localised spectral regions, are superimposed onto a background of exponentially 
increasing water absorption towards longer wavelengths. The Water Index (WI), developed 
by Penuelas et al. (1997), quantifies the intensity of the water absorption at 970 nm and is 
equivalent to IA970. Other methods such as the Moisture Stress Index (MSI; Hunt and Rock 
1989) and the Normalised Difference Water Index (NDWI; Gao 1996) are based on ratios 
of reflectance across broad intervals of wavelengths aimed at quantifying the exponential 
increase in water absorption towards longer wavelengths, whilst minimising the effects of 
the soil background and the intervening atmosphere (Fig.  1). IA970 and NDWI have, in 
particular, been widely used in precision agriculture to quantify leaf water content in differ-
ent crops, but largely at the canopy scale (e.g. Feng et al. 2017; Wang et al. 2015; Steidle 
Neto et al. 2017), and in other communities of vegetation (e.g. Serrano et al. 2000; Ding 
et al. 2017; Asner et al. 2005). Ceccato et al. (2001) found that reflectance in the SWIR 
was influenced not only by water absorption but also the internal leaf structure and dry 
matter content, including lingo-cellulose. These authors recommended that indices used to 
measure leaf water should include a band in the SWIR and a band in the VNIR, which is 
affected only by the internal leaf structure and dry matter, in order to normalise for these 
effects. The NDWI and MSI conform to this requirement but IA970 and other indices that 
quantify the specific water absorption bands do not (they use either VNIR or SWIR wave-
lengths, but not both). This has implications for measuring leaf water content in the context 
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of precision agriculture, because the vast majority of hyperspectral data are acquired using 
VNIR sensors, which are smaller, less expensive and measure wavelengths that are relevant 
for detecting plant stress and absorption by photosynthetic pigments. VNIR sensors are 
able to measure only one water index (IA970); other indices can only be derived from SWIR 
data. It is useful therefore to understand the relationships between IA970 and other indices 
and, in particular, NDWI and MSI that normalise for effects of the internal leaf structure 
and lingo-cellulose by incorporating bands in the VNIR and SWIR.

Water absorption indices have been mainly developed and tested on non-imaging (i.e. 
discrete) spectral measurements of leaves (e.g. Gao 1996; Penuelas et al. 1997) or on spec-
tra derived from radiative transfer models such as PROSPECT (Hunt et  al. 2011; Wang 
et al. 2013). Indices are most often used with data acquired at canopy scales, i.e. where 
image pixels integrate spectral reflectance over surface areas that are substantially greater 
than that of individual leaves (e.g. Serrano et  al. 2000; Yilmaz et  al. 2008; Xiao et  al. 
2014). Accurate measurements of leaf water content at the canopy scale is therefore more 
challenging than for leaf-scale measurements because canopy scale measurements also 
include information from areas of bare soil, green and non-green components of plants, 
and shade. There are only a small number of studies (notably Kim et al. 2015; Pandey et al. 
2017) that have used hyperspectral imagery to quantify absorption by water across the sur-
face of individual leaves. Consequently, there are few data on how water is distributed at 
these scales and how this information may be used in detecting water stress.

The increased spatial resolution of hyperspectral data acquired from field based 
platforms brings with it new opportunities but also new challenges for data analysis. 
Acquisition of data at fine (< 2 mm) resolutions could provide important new informa-
tion about how water is distributed within individual leaves, and how it may change in 
response to water stress. Such information has the potential to open up possibilities for 
the development of better precision indicators of water stress in plants, beyond those 
provided by gross measurements made at canopy scales. Moreover, because increasing 
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Fig. 1   Spectrum of a lettuce leaf (solid black line) showing the location of the water absorption features 
quantified in the study (IA970, IA1170, IA1775; upward black arrows). Wavelengths used to calculate the 
NDWI and MSI are indicated (downward grey arrows). Coefficients of water absorption (k): original values 
(k; solid grey line); values scaled to show water absorptions towards shorter wavelengths (k × 10−2; dashed 
grey line)
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spatial resolution would allow individual leaf components to be detected, questions 
arise as to which plant tissues or areas on the leaf would yield the best estimates of 
water content. Given that different leaf tissues (e.g. midrib, green parts of leaves) are 
compositionally and/or structurally different, they would exhibit very different spectral 
characteristics, potentially leading to different estimates depending on which parts of 
the leaf were measured (Ollinger 2011). Furthermore, for some leaves on the plant, only 
their green parts may be visible to the imaging sensor, whilst for others, whole leaves 
may be visible (i.e. the midrib + the green parts of the leaves). Where hyperspectral 
data are spatially averaged to estimate water content at the leaf scale, this could mean 
that estimates are determined from hyperspectral observations comprising a mix of leaf 
components e.g. some proportion of the observations would be from the green part of 
leaves and others from whole leaves. In the worst case scenario, this could lead to a 
model describing the relationship between a hyperspectral index and leaf water content 
developed from one leaf component (e.g. the green parts of leaves) to be used, albeit 
inappropriately, for estimating water content across whole leaves. This raises important 
questions, not only about which leaf component should be sampled, but also about the 
consistency with which this must be done in order to minimise errors. Because all water 
indices are designed to detect water absorption, they should, theoretically, show similar 
spatial patterns of absorption across individual leaves. This, however, remains largely 
untested and would likely depend on how different indices are impacted by effects 
related to internal leaf structures and the lingo-cellulose content of the leaves (Ceccato 
et al. 2001; Dawson et al. 1998).

These questions are addressed here, using hyperspectral imagery of leaves of 
Romaine or Cos lettuce (Latuca sativa L. var. longifolia). Lettuce leaves are used in this 
study because they have large variations in structural water, distributed among different 
leaf components (e.g. the midrib and green parts of the leaves). Hyperspectral imagery 
acquired in the laboratory under artificial light is used in this study because it enables 
the performance of different indices to be evaluated without the effects of the interven-
ing atmosphere; results therefore represent the ‘best-case’ scenario for estimating leaf 
water content from hyperspectral imagery.

This study has three objectives:

Objective 1	� Determine the relationships between water indices and water content for 
different leaf components. Specifically, which water indices and which leaf 
component (i.e. the midrib, green parts of the leaves or whole leaves) pro-
vide the best measures of water content. Hypothesis 1: because all indices 
measure water content, they will have similarly strong relationships between 
measured water content among the different leaf components

Objective 2	� Determine if a model derived from one leaf component can be used to esti-
mate water content from data from a different leaf component. Hypothesis 
2: leaf water content can be accurately estimated from indices from one leaf 
component (whole leaves) using a model developed for a different leaf com-
ponent (the green parts of leaves)

Objective 3	� Determine the relationships between indices. Hypotheses 3: because all indi-
ces have been designed to measure water content and therefore will contain 
similar information, indices will (a) show similar spatial patterns across 
leaves and (b) will have strong, positive and linear relationships with each 
other
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The principal contributions of this study are to demonstrate that leaf-scale varia-
tions in water absorption can be quantified from VNIR and SWIR hyperspectral imagery 
using spectral indices and to highlight the implications for quantifying leaf water content 
acquired at spatial resolutions great enough to resolve individual leaf components.

Materials and methods

Leaf samples and acquisition of hyperspectral imagery

Hyperspectral images were acquired by separate hyperspectral imaging sensors (Specim 
Finland) to measure the VNIR (400–1000  nm) and the SWIR (1000–2500  nm) parts of 
the spectrum. The sensors were mounted on a scanning frame, pointing downwards onto a 
linear scanning table onto which the samples were placed. The sensors are line scanners, 
each containing a sensor array that measures one spatial dimension (the vertical or across 
track dimension) and all of the wavelengths recorded by the sensor. The second spatial 
dimension (the horizontal or along track dimension) is built up by moving the samples on 
the scanning table. Prior to imagery being acquired from the leaf samples, data (~ 1000 
frames) were recorded from a reflectance standard (~ 99% Spectralon). The mean distance 
between the sensor objective and the samples was 550 mm, resulting in each square image 
pixel being ~ 0.72 mm. Two arrays of seven halogen lights each illuminated the samples 
from opposite directions on the scanning table. An appropriate integration time for each 
sensor was determined so that no pixels were saturated, i.e. they did not attain the maxi-
mal value represented by the bit-depth encoded by the respective sensor (12 and 14 bits, 
respectively for the VNIR and SWIR sensors). All sensor parameters used to acquire the 
hyperspectral images were kept constant across all scans.

Twenty, fresh ‘Cos’ lettuce plants were obtained directly from the farm with their 
root balls attached. The plants were kept under ambient light conditions with the root 
balls kept fully moist. Two plants were randomly selected for sampling for each of 
six hyperspectral scans (Table 1). Seven or eight leaves of similar size were detached 
from the plants and placed, using forceps, adjacently on a matt-black background for 

Table 1   Details of the 
hyperspectral scans of the 
detached samples of leaves, their 
condition, time after detachment, 
number of leaves and whether 
water content was measured

a Scan before leaves dehydrated
b Scan after leaves dehydrated

Image scan Leaf condition Time after 
detachment 
(h)

Number 
leaves

Water 
content 
measured

1 Fresh 0 7 Yes
2 Fresh 0 7 Yes
3(1)a Fresh 0 7
3(2)b Dehydrated 6 (D6) 7 Yes
4 Fresh 0 7 Yes
5(1)a Fresh 0 8
5(2)b Dehydrated 12 (D12) 8 Yes
6(1)a Fresh 0 7
6(2)b Dehydrated 24 (D24) 7 Yes
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scanning. Great care was taken not to exert any pressure on the leaves. Hyperspectral 
imagery was then immediately acquired from these samples (see below). Immediately 
after completion of some scans (scans 1, 2 and 4), leaves were immediately placed into 
individual plastic bags for independent determination of water content in the labora-
tory. After scans 3(1), 5(1) and 6(1) were completed, leaves were left in the same posi-
tion on the scanning table to dehydrate for a period of 6, 12 and 24  h, respectively. 
Henceforth these data are termed D6, D12 and D24. A second scan was then acquired 
from the same leaves (scans 3(2), 5(2) and 6(2); Table  1). After completion of this 
second scan leaves were placed into individual plastic bags for determination of water 
content in the laboratory.

Hyperspectral images were corrected for dark current and calibrated to reflectance 
on a line-by-line basis. To do this, data from each across-track line were divided by 
data from the corresponding line from the calibration panel. This approach enabled 
small variations in incident illumination across the samples to be removed. Absolute 
reflectance was derived by multiplying the resulting quotient by the calibration panel 
reflectance factor for each spectral band.

Water indices

It was not desirable to consider exhaustively all spectral indices developed to measure 
water absorption. Five different water indices were selected for comparison (Table 2). 
NDWI and MSI were selected because they are commonly used and have been shown 
to be effective in quantifying vegetation water content at the canopy scale. Both these 
indices use wavelengths in the VNIR and the SWIR to quantify increasing absorp-
tion by water towards longer wavelengths whilst minimising effects related to inter-
nal leaf structure and lingo-cellulose (Ceccato et  al. 2001; Dawson et  al. 1998). The 
intensity of discrete water absorptions within atmospheric windows in the spectrum 
were also selected, specifically, IA970, IA1170 and IA1775 (Fig.  1, Table  2). IA970 was 
selected because it is commonly used and lies within the visible near-infrared (VNIR; 
400–1000 nm) range that is detected by most hyperspectral sensors used for precision 
agriculture. Although, IA1170 and IA1775 may be impacted by the internal structure of 
the leaf and dry matter (Ceccato et al. 2001), they are included here because they have 
been shown by some studies to be strongly correlated with water content (e.g. Tian 
et al. 2001; Sims and Gamon 2003). The intense water absorptions, IA1450 and IA1930, 
were not considered in this study because they are not located in atmospheric windows 
and cannot normally be quantified from hyperspectral data acquired under natural illu-
mination (but see Murphy 2015).

The intensity of IA970 nm was quantified by subtracting the reflectance at 970 nm 
from the reflectance at 900  nm and normalising this difference by the reflectance at 
900  nm to make it comparable with measurements made from other features (Rollin 
and Milton 1998; Clark and Roush 1984). The intensities of IA1170 and IA1775 were 
quantified in the conventional way by first fitting a continuum across highpoints in the 
spectrum either side of each absorption. Wavelength intervals used in the process are 
given in Table 2. Normalised reflectance for each absorption was calculated by divid-
ing the spectrum by the continuum. Intensity of absorption was then calculated as 1 
minus the normalised reflectance at the absorption maximum, i.e. reflectance mini-
mum (Clark and Roush 1984).
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Measurements of water in leaves

Gravimetric measurements of leaf water content were used for this experiment rather than 
measurements of stomatal conductance or leaf water potential because they provided a 
direct measurement of the water content of leaves. The ‘Cos’ lettuce used in this study 
comprised a large fleshy midrib from which several fine lateral veins extended outwards 
towards the leaf boundary. Finely reticulated veins were present between the lateral veins. 
In the laboratory, each leaf was removed in turn from its plastic bag and the large midrib 
removed from the leaf with a scalpel. The midrib and green, photosynthetic parts of the 
leaf were weighed separately and placed into individual paper bags for drying. Excised 
midribs and leaves were dried for a period of 18 h in an oven at 60° C and then reweighed. 
The area of each leaf was determined directly from the hyperspectral imagery.

Amounts of water in the midribs and leaves was determined and expressed in grams per 
unit weight of wet plant material (g g−1) and in grams per unit leaf area (g cm−2):

Analyses of data

To determine which hyperspectral water indices and which leaf component provide the 
best measures of water content (Objective 1), regression analysis was used to describe rela-
tionships between water content and each water index. Where water content needed to be 
estimated from the indices, the regression equation was inverted. Non-linear and ordinary 
least squares regression were used, respectively, to describe relationships for water content 
expressed per unit weight of plant material (g g−1) and per unit area of leaf (g cm−2). Note 
that in all graphs where index values for different leaf components are plotted as a function 
of measured water content, data are matched for that component e.g. index values for the 
midrib are plotted against water content from the midrib.

To determine if a model derived from one leaf component can be used to estimate water 
content from data from a different leaf component (Objective 2), water content (g cm−2) 
was estimated from index data from whole leaves using a model developed for (i) green 
leaves (WL-P-GL; i.e. the model was for a different leaf component) and, separately, from 
a model developed for whole leaves (WL-P-WL; i.e. the model was from the same leaf 
component). Separate analyses of variance (ANOVA) were used to test for significant dif-
ferences between estimates provided by WL-P-GL and WL-P-WL for each index. ANOVA 
was used to test for significant differences in estimates provided by WL-P-GL and WL-P-
WL among all indices; Student–Newman–Keuls (SNK) tests were used to test for pairwise 
differences between indices.

Orthogonal regression was used to determine the nature and strength of relationships 
between pairs of water indices (Objective 3). Orthogonal regression was used in prefer-
ence to ordinary least squares regression because all indices were measured with error. 
Similarity in spatial patterns of index values across leaves were evaluated for the seven 
fresh leaves in image scan 1. For each leaf, index values along two transverse and two 
longitudinal transects were extracted from the image (resulting in 14 transverse and 14 lon-
gitudinal transects in total). The transverse transects extended from one side of each leaf 

(1)
Water content per unit weight

(

g g−1
)

= (wet weight − dry weight) ∕wet weight

(2)Water content per unit area
(

g cm−2
)

= (wet weight − dry weight) ∕ leaf area
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to the other, across the midrib; the longitudinal transects were positioned approximately 
halfway between the midrib and the edge of the leaves, running from their base (the point 
of attachment to the plant) to the apex. After rescaling all index values to between 0 and 
1, the similarity between all possible pairs of indices were compared within each transect, 
by measuring the angle (in radians) between their vectors, using the spectral angle mapper 
(Kruse et al. 1993). Smaller angles (0 indicating a perfect match) indicate that the patterns 
of changing index values along each transect were similar or vice versa. Thus, for each pair 
of indices there were 14 replicate angular measurements for each transect. Average values 
were then assembled into a confusion matrix showing the similarity between all pairs of 
indices. ANOVA was used to test for significant differences among indices and SNK tests 
were used for pairwise comparisons.

Results

Spectral characteristics of fresh leaf components

Averages of all pixels within each leaf component were used to compare reflectance spec-
tra across all stages of dehydration (Fig. 2). In fresh leaves and at all stages of dehydration 
(D6, D12 and D24), reflectance spectra of the midrib were markedly different from the green 
parts of the leaves and from whole leaves. Reflectance in the visible range was greater, 
and the rise in reflectance between the red and NIR was much smaller compared with the 
green and whole leaf components. Reflectance at wavelengths > 1200 nm was also smaller. 
Spectra of the green and whole leaf components were very similar. With increasing time 
of dehydration, reflectance of green and whole leaf components increased across wave-
lengths > ~ 1200 nm, but decreased in the midrib (see values at 1700 nm, given above each 
spectrum in Fig. 2). Variability in reflectance among individual leaves for the green and 
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Fig. 2   Individual (grey lines) and average (black line) reflectance spectra (400–2500 nm) for individual leaf 
components for fresh leaves, and leaves dehydrated for 6 (D6), 12 (D12) and 24 (D24) hours: a midrib; b 
green parts of the leaves and c whole leaves (midrib + green parts of the leaves)
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whole leaf components increased at time D24, compared with fresh leaves and leaves dehy-
drated for shorter periods of time (D6 and D12; see grey lines in Fig. 2).

Relationships between water indices and water content for different leaf 
components (Objective 1)

For the midrib, weak, non-linear relationships were found between all index values and 
water content per unit weight (g g−1; Fig. 3a, Table 3). Relatively large changes in index 
value occurred across a relatively small range of values of measured water content. Strong 
non-linear relationships were found between index value and water content (g g−1) in the 
green and whole leaf components (Fig.  3b, Table  3). Similar to the midrib component, 
large changes in index value occurred across a small range of values representing water 
content, especially where these values were large. At smaller values of water content, the 
opposite was found with large changes occurring across a relatively small range of index 
values. Relationships between index values and water content (g g−1) for all leaf compo-
nents were best described by an exponential growth model with three parameters:

where y0 is the point where the asymptote crosses the y-axis, a is the intercept minus y0 
and b is the rate of change.

Weak to moderately strong linear relationships were found between water content 
per unit area of leaf (g cm−2) and NDWI, MSI, IA970 and IA1170 measured in the midrib 
(Fig. 4, Table 4). There was no relationship between water content (g cm−2) and IA1775. For 
the green and whole leaf components, strong linear relationships were found between water 
content (g cm−2) and all index values. With the exception of NDWI, the slope and intercept 
of the regression for the green leaf component were significantly different from those of the 
whole leaf component (analysis of covariance; ANCOVA; P < 0.05; bold text in Table 4). 
The difference in the slope describing the relationship between water content and index 
was greater for those indices using longer wavelengths. For example, the difference in 

(3)y = y0 + a ∗ exp(b ∗ x)
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Fig. 3   Regression of index value on water content per unit weight (g g−1) of leaf: a midrib, b green parts 
of the leaves (solid symbols) and whole leaves (open symbols). Different symbols represent data from dif-
ferent image scans (see Table 1): Scan 1 (circle); Scan 2 (square); Scan 3(2)b (triangle); Scan 4 (inverted 
triangle); Scan 5(2)b (diamond); Scan 6(2)b (star). Lines of best fit for the green parts of the leaves (dashed 
line) and for the whole leaves (solid line) are shown
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slope between green and whole leaf components for MSI (that uses reflectance at 1660 nm) 
was greater than for NDWI (that uses reflectance at 1240 nm). Furthermore, differences in 
slope progressively increased with increasing wavelength used in those indices quantifying 
the intensity of discrete water absorptions (i.e. IA970, IA1170 and IA1775). The strong linear 
relationships between water content expressed per unit area (g cm−2) and all indices made 
these models (and the estimates derived from them) easier to interpret than the non-linear 

Table 3   Relationships between 
water content (per gram of plant 
material; g g−1) and intensity of 
water absorption measured by 
different indices: (a) midrib; (b) 
green parts of the leaves and (c) 
in whole leaves

Index R2 SE P y0 a b

(a)
 NDWI 0.29 0.027 < 0.01 0.068 2.45E−5 8.87
 MSI — — — — — —
 IA970 0.41 0.017 < 0.0001 0.036 0.0005 5.84
 IA1170 0.25 0.024 < 0.01 0.134 1.85E7 13.43
 IA1775 — — — — — —

(b)
 NDWI 0.64 0.007 < 0.0001 0.023 1.34E−12 25.65
 MSI 0.82 0.020 < 0.0001 0.196 2.70E−13 28.96
 IA970 0.82 0.004 < 0.0001 0.050 7.32E−16 33.36
 IA1170 0.85 0.006 < 0.0001 0.042 6.11E−14 29.24
 IA1775 0.87 0.004 < 0.0001 0.038 1.27E−15 32.94

(c)
 NDWI 0.70 0.008 < 0.0001 0.026 1.12E−11 23.46
 MSI 0.82 0.020 < 0.0001 0.204 7.36E−12 25.26
 IA970 0.84 0.004 < 0.0001 0.050 6.24E−12 23.85
 IA1170 0.87 0.006 < 0.0001 0.046 1.85E−12 25.56
 IA1775 0.87 0.004 < 0.0001 0.040 1.05E−14 30.30
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Fig. 4   Regression of index value on water content per unit area (g cm−2) of leaf: a midrib, b green parts 
of the leaves (GL; solid symbols) and whole leaves (WL; open symbols). Different symbols represent data 
from different image scans (see Table  1): Scan 1 (circle); Scan 2 (square); Scan 3(2)b (triangle); Scan 4 
(inverted triangle); Scan 5(2)b (diamond); Scan 6(2)b (star). Lines of best fit for the green parts of the leaves 
(dashed line) and for the whole leaves (solid line) are shown
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models. For this reason, all further analyses were done using models derived from water 
content expressed per unit area (g cm−2).

Using a model derived from one leaf component to estimate water content 
from data from a different leaf component (Objective 2)

For all indices, water content estimated from whole leaves using a model derived for the 
green parts of the leaves (WL-P-GL) were significantly smaller than estimates obtained 
by using a model derived from the same leaf component (WL-P-WL; in all cases P < 0.01; 
Fig. 5a; Table 5). Where the model used for the prediction was derived from the same leaf 
component as the data used in the prediction (WL-P-WL), estimates of leaf water content 
across all indices were consistent (0.0609). Difference in estimates derived by WL-P-GL 
and WL-P-WL were significant among indices, with some indices showing much greater 
differences than others, e.g. differences from IA1775 were much greater than those from 
IA970 (results from SNK tests are shown at the top of Fig.  5a). Differences in estimates 
provided by WL-P-GL and WL-P-WL, expressed as a percentage of the measured range 
of water content, ranged from ~ 19% (IA970) to ~ 37% (IA1775; Table  5). With increasing 
amount of measured water, the differences between estimates derived by WL-P-GL and 
WL-P-WL increased (Fig. 5b).

Relationships between water indices (Objective 3)

Qualitatively, the spatial distributions of water absorption as measured by different indices 
were broadly similar, but showed important differences (Fig.  6). All indices highlighted 
large variations in absorption by water across the leaves, with leaf veins having greater 

Table 4   Relationships between 
percent water content (per unit 
area of leaf; g−1 cm−2) and 
intensity of water absorption 
measured by different indices: 
(a) midrib; (b) green parts of the 
leaves and (c) whole leaves

Index R2 SE P slope intercept

(a)
 NDWI 0.62 0.020 < 0.0001 0.420 0.070
 MSI 0.45 0.036 < 0.0001 0.570 0.360
 IA970 0.53 0.010 < 0.0001 0.280 0.100
 IA1170 0.59 0.020 < 0.0001 0.360 0.100
 IA1775 0.02 — — — —

(b)
 NDWI 0.77 0.005 < 0.0001 1.180 0.000
 MSI 0.86 0.018 < 0.0001 5.187 0.086
 IA970 0.89 0.003 < 0.0001 0.927 0.029
 IA1170 0.91 0.004 < 0.0001 1.538 0.010
 IA1775 0.83 0.004 < 0.0001 1.023 0.016

(c)
 NDWI 0.83 0.005 < 0.0001 0.980 0.000
 MSI 0.72 0.025 < 0.0001 3.145 0.130
 IA970 0.88 0.004 < 0.0001 0.747 0.032
 IA1170 0.87 0.006 < 0.0001 1.124 0.017
 IA1775 0.52 0.006 < 0.0001 0.501 0.028
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absorption than areas of the leaf that were visually green. Veins in the leaf highlighting 
variations in water absorption comprised the central midrib, lateral veins extending from 
the midrib to the borders of the leaf and fine, complex, reticulated veins connecting the 
lateral veins. Reticulated veins were highlighted by NDWI, MSI and IA1170 (Fig. 6b, c, e) 
but were poorly resolved in colour imagery and by IA970 and IA1775 (Fig. 6a, d, f). Many 
veins that were not readily visible in the colour imagery, were resolved by the water indi-
ces (cf. Fig. 6a–f). With the exception of IA1775, the largest index values were found in the 
midrib of each leaf. IA1775 showed decreased index values in the midrib, suggesting that 
water absorption was smaller in this area than in the other parts of the leaves. Specular 
and topographic self-shading effects caused by fine-scale wrinkles on the leaf surface were 
effectively removed by all indices. Inspection of these images showed that different indices 
conveyed different information about water absorption in leaves. NDWI, MSI and IA1170 
showed similar spatial patterns of water absorption, however, these were different to IA970 
and IA1775.

Plots of index values along transverse and longitudinal leaf transects (location of tran-
sects are shown for leaf #3 in Fig.  6a) showed that NDWI, MSI, IA970 and IA1170 had 
broadly similar patterns, with peaks and troughs in index values being located at the same 
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Fig. 5   Differences in amounts of water (g cm−2) estimated from whole leaves by WL-P-GL and WL-P-WL: 
a Differences between WL-P-GL and WL-P-WL for each index. Results from SNK tests showing signifi-
cant differences among indices are indicated (top; P = 0.95(*), P = 0.99(**); b Difference in estimates for 
each index as a function of measured amounts of water in whole leaves (Color figure online)

Table 5   Average amounts of water (g cm−2) and standard error (SE) derived from WL-P-GL and WL-P-
WL (see text for details and Fig. 5a)

Index Mean (SE) WL-P-GL Mean (SE) WL-P-WL Mean difference % of meas-
ured range

NDWI 0.0498 (0.0014) 0.0609 (0.0018) 0.011 21.93
MSI 0.0451 (0.0012) 0.0609 (0.0017) 0.016 31.27
IA970 0.0511 (0.0015) 0.0609 (0.0018) 0.010 19.40
IA1170 0.0486 (0.0014) 0.0609 (0.0018) 0.012 24.28
IA1775 0.0419 (0.0011) 0.0609 (0.0014) 0.019 37.53
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or similar distances along the transects (Fig.  7). The amplitude of peaks varied among 
these indices, with MSI and IA970 having the greatest and smallest amplitude, respectively. 
The relative heights of the peaks were also different among the indices. Peaks of similar 
height in one index (e.g. MSI) had different relative heights in other indices (e.g. cf. MSI 
and IA970; Fig. 7a). IA1775 showed a pattern that was different to all other indices, particu-
larly in the transverse transects which crossed the midrib (Fig.  7a, b). Values of IA1775 
over the midrib showed the opposite pattern to other indices, decreasing with respect to 
adjacent areas of the leaves. For other veins in the leaves (i.e. the smaller lateral and reticu-
lated veins), peaks and troughs of IA1775 values were broadly coincident with other indices, 
albeit at a much smaller amplitude.

Similarity between pairs of indices along the leaf transects, as measured by the spectral 
angle, were different for the transverse and longitudinal profiles (Table 6). For example, on 
average, the profiles of NDWI were most similar to profiles of IA1170, MSI and IA970 in the 
transverse transect (i.e. their angles were small), but in the longitudinal transects, profiles 

NDWI NDWI 

IA970 IA970 

IA1170 IA1170 

IA1775 

MSI MSI 

IA1775 

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 6   Example colour image (Image scan 1) and derived indices from detached lettuce leaves: a Colour 
image; b NDWI; c MSI; d IA970; e IA1170; f IA1775. Pixel values (brightness) are proportionate to value of 
each index. A zoomed area of leaf #4 is shown on the right (area shown as a rectangle in (a)). The location 
of the transverse (solid black line) and longitudinal (dashed line) transects used matching spatial patterns 
are shown for leaf #3 in (a) (Color figure online)
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Fig. 7   Index values along longitudinal and transverse transects of freshly detached, green leaves. a Trans-
verse transect (leaf # 4; Image  1; see Table  1); b Transverse transect (leaf # 4; Image  3(1)); c Longitu-
dinal transect (leaf 4; Image 1); d Longitudinal transect (leaf 4; Image 3(1)). The location of lateral and 
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online)

Table 6   Similarity (spectral angle) between profiles of indices extracted along longitudinal and transverse 
transects from leaves (left panel) and the significance (pairwise SNK tests) of mean differences in similarity 
between indices (right panel); P < 0.05 (*), P < 0.01 (**)

Transverse transects
Most Least
similar similar

NDWI MSI IA970 IA1170 NDWI vs. IA1170 < MSI = IA970 < IA1775

MSI 0.25 MSI vs. IA1170 < IA970 < IA1775

IA970 0.26 0.43 IA970 vs. IA1170 < IA1775

IA1170 0.19 0.32 0.23 IA1170 vs. IA1775 No test.
IA1775 0.79 0.59 0.92 0.86

Longitudinal transects
Most Least
similar similar

NDWI MSI IA970 IA1170 NDWI vs. MSI < IA1170 < IA970 < IA1775

MSI 0.18 MSI vs. IA1170 < IA1775 < IA970

IA970 0.31 0.29 IA970 vs. IA1170 < IA1775

IA1170 0.23 0.16 0.30 IA1170 vs. IA1775 No test.
IA1775 0.38 0.24 0.40 0.35

** ****

****

**

* **

****

**
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of NDWI were most similar to MSI and IA1170. In the transverse transect, profiles of IA1775 
were not similar to profiles of any other index i.e. spectral angles were very large (≥ 0.59) 
but in the longitudinal transect, IA1775 did show a much greater similarity with MSI, com-
pared with the other indices. The large angles between IA1775 and all other indices in the 
transverse transects can be attributed to the smaller values of IA1775 over the midrib (see 
Figs. 6, 7a, b). Although there was relative similarity between the profiles of some pairs 
indices in the longitudinal transects, as indicated by their small spectral angles, SNK tests 
showed that there were significant differences in similarity between them (Table 6; right 
panel). In the transverse transects, all profiles of indices were significantly different with 
the exception of MSI and IA970 which were statistically equal to each other when compared 
with NDWI.

Relationships between indices from different leaf components were visualised by creat-
ing a confusion matrix showing index values from the midrib (M) and green parts of leaves 
(GL; Fig. 8). Correlations between some pairs of indices across whole leaves (WL) were 
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strong, specifically: NDWI and IA970 (R2 = 0.94), NDWI and IA1170 (R2 = 0.98), and IA970 
and IA1170 (R2 = 0.93). The weakest correlations were found between IA1775 and all other 
indices (R2 ≤ 0.22). Relationships between indices were different for different leaf compo-
nents, with the indices from the midrib having, in most cases, a very different relation-
ship to indices from the green parts of leaves. For example, the relationship between MSI 
and IA970 had a different slope and intercept for the midrib (short dashed line) and the 
green parts of leaves (long dashed line) and both were different from the relationship for 
the whole leaves (solid line; Fig. 8). The relationship between NDWI and IA1170 was the 
exception, with relationships for the midrib, green parts of leaves and whole leaves (WL) 
being similar. The strength of relationships (R2) between indices across whole leaves were 
dependent upon the difference in slopes that describe relationships between indices from 
the green parts of leaves and the midrib. With increasing difference in slope between the 
green parts of leaves and the midrib there is a progressive decrease in R2 for whole leaves 
(inset; Fig. 8).

Relationships between IA1775 and other indices were very different to that for all other 
pairs of indices (Fig.  8). IA1775 was the only index that was negatively correlated with 
other indices (i.e. relationships had a negative slope). This was caused by pixels in the 
midribs having, on average, a relatively smaller IA1775 index values than in the rest of the 
leaves. For all other indices, pixels in the midribs had the greatest index value of all leaf 
components.

Discussion

Water indices derived from hyperspectral images are strongly and linearly related to water 
content expressed per unit area of leaf (g cm−2) but not per gram of plant material (g g−1). 
Non-linear relationships between water indices and water content expressed in grams per 
unit weight of plant material are likely caused in part by light penetrating to variable depths 
within the leaves, a factor that depends on the type and thickness of plant tissues through 
which it passes. Furthermore, measurements of plant material, used in the calculation of 
water content per unit weight of plant material (g g−1), are obtained using the whole thick-
ness of the midrib or leaf, across a distance where plant tissues may be of variable den-
sity. Comparison of remote sensing measurements made at the surface (or integrated across 
some unknown depth from it), with weight-based measurements (integrated over the total 
thickness of leaves) is likely to cause non-linear effects, as was observed for intertidal sedi-
ments by Murphy et al. (2005).

Indices describing the intensity of specific water absorptions in the spectrum (IA970, 
IA1170, IA1775) use only wavelengths in the relatively narrow spectral regions in which they 
are located. The exponential increase in water absorption towards longer wavelengths has 
implications for the use of specific absorptions located at longer wavelengths (e.g. IA1775) 
as an index of water content. The large increases in absorption background towards longer 
wavelengths flattens the absorption near 1775  nm by depressing reflectance across the 
whole feature, including its shoulders, thus reducing the intensity of the feature as water 
content increases. Additionally, absorption by lingo-cellulose may also have had an impact 
on the intensity of IA1775 (Dawson et  al. 1998 and references therein).These finding are 
consistent with those of other researchers who found that the wavelengths that were most 
strongly correlated with water content were those where water most weakly absorbed and 
vice versa (Danson et al. 1992; Sims and Gamon 2003).
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Intricate spatial patterns in water absorption across the leaves were revealed by the indi-
ces, which effectively normalised brightness variations and specular effects caused by the 
wrinkled leaf surfaces. NDWI and MSI resolved fine-scale reticulated patterns of water 
absorption, however, these were not well resolved by IA970 or IA1775. For IA970 the likely 
cause of this is an increase in noise due to a falloff in sensitivity towards the longwave limit 
(1000 nm) detected by the VNIR hyperspectral sensor. For IA1775, the lack of fine-scale 
structure is most likely due to variability in absorption by dry plant material, including 
lingo-cellulose in the leaf tissues. Because IA1775 uses only wavelengths around the loca-
tion of this absorption feature (1662–1849 nm), normalisation for absorption by dry plant 
material (using a VNIR band) is not done. These factors may partly explain the differences 
in spatial patterns along the leaf transects. The findings of this study have implications for 
the use of hyperspectral data for estimating leaf water content in the context of precision 
agriculture, particularly where crops have leaves where a significant proportion of the leaf 
is occupied by a thick, fleshy midrib (as in the case of lettuce). The present study used 
hyperspectral imagery acquired in the laboratory under artificial light because it removed 
any variability caused by atmospheric effects. Results presented here therefore represent 
the best case scenario for measuring leaf water content using hyperspectral imagery. All 
water absorptions, by definition, are impacted by atmospheric water absorption, which 
reduces the amount light detectable by sensors. When coupled with decreasing solar output 
towards longer wavelengths and loss of sensitivity of sensors towards the limits of their 
sensed spectral range, atmospheric water absorption can significantly reduce the signal-to-
noise ratio of the data and increase errors in estimates of water absorption.

The increasing use of hyperspectral data to inform growers of changes in the physiologi-
cal status of crops will open up new opportunities for their use in precision agriculture. 
This paper, one of the first to quantify absorption by individual leaves across their surfaces 
using a combination of VNIR and SWIR wavelengths, shows that consistent measurements 
of leaf water content are dependent on the choice of index and the use of appropriate proto-
cols for sampling image data at leaf scales.

Conclusions

(1)	 Non-linear relationships were found between leaf water content expressed per unit 
weight of plant material (g g−1) and all indices. Relationships were linear where water 
content was expressed per unit area (g cm−2) of leaf. Weaker relationships were found 
between indices and water content in the midrib than for the green parts of leaves or 
whole leaves. The linearity and strength of the relationship between the indices and 
water content per unit area (g cm−2) makes it a more suitable measure than water con-
tent per unit weight (g g−1).

(2)	 IA970 and IA1170 has the strongest correlations with water content (g cm−2) of all the 
indices, including the more sophisticated indices that used both VNIR and SWIR bands 
(i.e. NDWI, MSI). IA1775 was strongly related to water content (g cm−2) in the green 
parts of leaves but not in whole leaves. Hypothesis 1, that all indices will have similarly 
strong relationships with water content is therefore rejected.

(3)	 Leaf water content was significantly underestimated (P < 0.01) if it was predicted from 
average index values from whole leaves using a model developed for the green parts 
of leaves. Hypothesis 2 that leaf water content can be estimated from indices from one 
leaf component (whole leaves) using a model developed for a different leaf component 
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(green parts of leaves) is therefore rejected. Thus, if indices are to be comparable across 
time or space they should best be extracted from the same leaf component.

(4)	 Intricate, reticulated patterns of water absorption were highlighted by NDWI, MSI 
and IA1170. Reticulated patterns were less evident in IA970 and IA1775 probably due to 
spectral noise and absorption by dry matter, respectively. Resolution of variations in 
absorption across leaves opens up the possibility for developing new methods to detect 
stress based on changes in patterns of water absorption across leaves.

(5)	 Indices extracted along transverse and longitudinal transects from the leaves showed 
significantly different spatial patterns along the transects. Consistent with qualitative 
observations of spatial patterns of index values (Conclusion 4), NDWI, MSI and IA1170 
had, on average, the greatest similarity of patterns along the transects. Patterns of IA1775 
along the transects were different to other indices. Hypothesis 3(a) that indices will 
show similar spatial patterns across leaves is therefore rejected.

(6)	 Some pairs of indices were strongly correlated but others were not. The strongest cor-
relations were found between NDWI and IA970 and IA1170. IA1775 was weakly correlated 
with all other indices indicating that, at the leaf scale, IA1775 did not contain the same 
information as other indices and should be interpreted with great caution. Weak cor-
relations between indicates were attributed to differences in the relationships between 
the midrib and the green parts of leaves. Thus, Hypothesis 3(b) that all indices will 
have strong, positive and linear relationships with each other is rejected.
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