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Abstract
A survey of Australian grain growers was conducted to gauge grower attitudes to crop and 
soil sensing and their role in nitrogen fertilizer management. The technologies considered 
were yield monitors, remote and proximal crop sensing, high resolution soil survey, soil 
moisture sensing and digital elevation models (DEM). Whereas Australian grain growers 
have readily adopted machine guidance and autosteer, and a majority have access to yield 
monitoring, the rate of use of many crop and soil sensors remains comparatively low. How-
ever, the survey results suggest a positive effect on sensor adoption through present use of 
yield mapping. Access to yield maps was significantly associated with the use of remotely 
sensed imagery, high resolution soil survey, soil moisture sensing, DEM and variable rate 
application of fertilizers and/or soil amendments. There is some support for proximal crop 
sensing, albeit with low present rates of use; the use of soil water sensors and DEM is 
presently very low. For the further development of precision agriculture (PA), the results 
make clear that expending effort in enhancing the adoption and use of yield maps would 
be valuable as a lever to gain ‘buy-in’ from growers to sensing and PA more broadly. Since 
growers use many sources of information to support fertilizer decision-making, any new 
fertilizer decision aid needs to establish a point of difference from, but be complementary 
to, existing tools. One way of achieving this would be to use sensors, supported by locally 
derived algorithms, as a key input to fertilizer decision support.

Keywords Yield mapping · Remote and proximal sensing · Technology adoption · Variable 
rate application

Introduction

In a recent survey, 60% of farmers from EU countries (France, Germany, Poland and the 
UK) expressed a belief that by 2030, precision agriculture (PA) will be widely adopted 
(Corsini et  al. 2015), enabled by the increased use of sensors, software and wireless 
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connectivity on farming implements. Conversely, recent assessments of PA adoption in 
Australia (Robertson et al. 2012; Llewellyn and Ouzman 2015) and USA (Schimmelpfen-
nig and Ebel 2011; Miller et al. 2017) suggest that the rates of uptake of some PA tech-
nologies will need to increase greatly for this EU prediction to be realised in western farm-
ing systems more broadly. In Australia, recent studies (Keogh and Henry 2016; Leonard 
et  al. 2017 and the underpinning reports referenced therein) have identified numerous 
issues which need to be addressed for ‘Digital agriculture’ and ‘Big data’ (Sonka 2014) to 
become the trusted norm; PA contributes to these. In particular, a greater need for leader-
ship, governance and cross industry collaboration was identified, along with issues of trust 
in technology and service providers, internet connectivity, digital literacy (throughout the 
agricultural value chain, not just on farm), the availability of appropriate data and a need 
for new tools for data analysis and decision support (Leonard et al. 2017). Importantly, the 
value proposition for producers to change to digital agriculture was reported as “unclear” 
to producers. Many of these issues no doubt apply in other countries; for example, Mark 
et al. (2016) have identified internet connectivity as a major constraint to digital agriculture 
in the USA and noted the similarities between USA and Australia in this regard.

‘Future Farm’ is a new initiative focussed on the Australian grains and cotton sectors 
established to develop research in automation. It was structured around the themes of sens-
ing, decisions and delivery platforms, with nitrogen (N) fertilizer management chosen as 
the first exemplar farm operation for research and development focus. It was founded on the 
premise that farmer adopters of PA are seeking greater automation in their farming opera-
tions, especially in terms of the process of acquiring and then using data to make decisions 
and, indeed, in implementing these through a chosen management action. But what do 
Australian farmers think of sensing, automation and decision support tools? What are their 
attitudes towards adoption of such technologies? These are important questions given the 
apparent reluctance, as noted above, of some farmers to adopt digital technologies. They 
are also important given the suggestion (Leonard et  al. 2017) that ‘unconstrained deci-
sion agriculture’ could lead to an increase in the gross value of production in the Austral-
ian grains industry of 51%. In making this claim, Leonard et al. (2017) defined ‘decision 
agriculture’ as a “conclusion or action resulting from the application of knowledge and/or 
information that may be derived from digital agriculture.” Thus, ‘unconstrained decision 
agriculture’ infers a situation where digital technologies, along with more conventional 
sources, provide all the information that a farmer might need in order to make a beneficial 
business decision. This paper reports on a survey that was undertaken to assess Australian 
grain grower attitudes to the use of sensors in the operation of their farm businesses. It was 
conducted to assist in setting the direction for the early phase of Future Farm, a program 
with potential to facilitate moves towards an ‘unconstrained decision agriculture’.

Methods and materials

A questionnaire comprising over 40 questions was developed using the ‘Survey Monkey’ 
platform (https ://www.surve ymonk ey.com/). These were grouped to enable assessment of 
different components of PA, albeit with particular focus on N management. The questions 
are reproduced in Table 1 to facilitate comparative studies. For brevity, a reference in this 
paper to question 16, for example, is simply denoted by ‘(q16)’ rather than ‘(question 16; 
Table 1).

https://www.surveymonkey.com/
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Table 1  The survey questionnaire

Background information
 1. In which GRDC region are you located? Northern, Southern, Western
 2. What is the size of your farm (ha)?
 3. What is the typical area of your annual cropping program (ha)?
 4. How many years have you been farming? < 5/5–10/10–15/15–20/20–25/ > 25
 5. What is your average annual and growing season rainfall?

Data and advice
 6. Do you have an agronomic consultant? Yes/No
 7. How do you manage data that is generated from soil testing or other point measurements (e.g. a weather 

station)? Paper format/spreadsheet/farm management software/other
Farm survey
 8. Have the boundaries of your farm and its fields been surveyed? Yes by GPS/Yes with Google Earth/Yes 

other/No
 9. Do you use controlled traffic/machine guidance on your farm? Yes/No
 10. If yes, is your system an auto-steer system? 2 cm/20 cm/other
 11. Have you or your advisor used data collected by your guidance system to generate an elevation or ter-

rain model of all or part of your farm? Yes/No
 12. Has any or all of your farm been surveyed using a high resolution soil sensor (e.g. EM38)? Yes/No
 13. If yes, what sort of sensor was used for the survey? EM38 or similar (electromagnetic) sensor/VERIS 

3100/gamma radiometrics/VERIS pH/other
 14. Have you used such a soil survey to guide your management? Yes—crop choice/Yes—seeding rate/

Yes—fertilizer/Yes—other/No
Yield monitoring/mapping
 15. Does your header have a yield monitor installed? Yes/No
 16. If yes, do you use the yield monitor when harvesting? Yes/No
 17. Do you or an adviser generate yield maps from the data collected by the yield monitor? I do/an advi-

sor does/maps are not produced
 18. If you have yield maps, for how many years do you have them?
 19. Have you used your yield maps to identify ‘management zones’ in your farm or paddocks within your 

farm? Yes/No
Crop sensing
 20. Have you purchased or otherwise accessed remotely sensed imagery on your farm? Yes/No
 21. If yes, was this imagery acquired from a satellite, aeroplane or drone? Satellite/Aeroplane/Drone
 22. Have you used such imagery to guide your management? Yes—crop choice/Yes—seeding rate/Yes—

fertilizer rate/Yes—other/No
 23. Have you accessed crop imagery using a proximal sensor? Yes—Greenseeker/Yes—CropCircle/Yes—

CropSpec/Yes—Yarra N sensor/Yes— other/No
 24. If you accessed remote or proximally sensed imagery, did you use it to guide N fertilizer management? 

On the go/to derive a prescription map/other
Management zones
 25. If you use management zones on your farm, which of these sources of information were used to derive 

them? Yield maps/Remotely sensed imagery/Proximal crop sensing/High resolution soil survey/Other 
soil survey/An elevation model/other

 26. How many zones do you typically divide each paddock into?
 27. Would you consider increasing the number of zones to increase precision? Yes/No, Why/Why not
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The survey was made ‘open’ to approximately 49,000 growers on the mailing list of 
the Australian Grains Research and Development Corporation (GRDC) via emails sent 
by GRDC on January 12, 2017, with a reminder sent to the same list on January 31, 
2017. The survey remained open until 25 February, 2017, although the overwhelming 
majority of responses were received within 24 h of these emails being sent. Note that 
response to the survey was voluntary. Note also that all Australian grain growers pay a 
levy to GRDC and as such, the email list used to distribute the survey was sent to every 
grower with an email address; we are confident that those growers without an email 
address represent a very small proportion of the total grain growing population.

Following download of the survey results from ‘Survey Monkey’, data management 
and analysis were done using Excel (Microsoft Office Professional Plus 2013, Micro-
soft Corporation, Redmond, WA, USA) and JMP (v. 11.0, SAS Institute Inc, Cary, NC, 
USA). Since most of the data were categorical, the significance of associations between 
the factors surveyed was tested using contingency analysis and the ‘likelihood ratio’ Chi 

Table 1  (continued)

Variable Rate
 28. Does your fertilizer application system have the capacity to be used in variable rate mode? Yes/No
 29. Do you use variable rate fertilizer application? Yes—within paddock/Yes—between paddocks/No
 30. Which nutrients do you apply using variable rate? N/P/K/other
 31. Do you use solid or liquid fertilizers? Solid/Liquid

Soil moisture
 32. Do you have a soil moisture sensor on your farm? Yes/No
 33. If yes, how many soil moisture sensors do you have?
 34. Do you take notice of soil moisture data when making N fertilizer decisions? Yes—to guide rate/Yes—

to guide timing of application/Yes—to guide fertilizer type/Yes—other/No
Intentions regarding the use of sensing
 35. If you DO NOT currently use one of the following sensor types, do you nevertheless intend to use it 

in the future (within the next 3 years/In 3–10 years/Unlikely to use at all)? Yield maps/Remotely sensed 
imagery/Proximal crop sensing/High resolution soil survey/Elevation model/Soil moisture sensing

 36. If cost was not a consideration and you were able to acquire 3 types of sensor or sources of sen-
sor data, in order of priority, which three things would you like to be able to sense on your farm? (In 
answering this question, please do not be constrained by your current knowledge of sensing—assume 
that it would be possible to sense whatever you like) 1st/2nd/3rd

 37. Do you believe you need to develop substantial new skills and knowledge to use new sensors/PA 
technologies? Yes/No/Not really

 38. If you do not already use sensing technologies as part of your N fertilizer management, what increase 
in profitability ($/ha) would entice you to do so? < $10/$10–15/$15–20/$20–25/$25–30/ > $30

N fertilizer decision making
 39. How do you decide what rate of fertilizer to apply? Own calculations/Follow district practice/Agrono-

mist advice/Recommendation from a soil testing service/Sensor-based algorithm/Decision support tool 
(e.g. Yield Prophet, Mallee Calculator)/Other

 40. In making N fertilizer decisions, do you use any of the following decision support tools?
 41. Do you have any suggestions of tools or technologies that would assist with your N fertilizer decision 

making?

The questions posed are shown here in normal font, with the various answer options shown in italic font. 
For questions with ‘other’ as an answer option, respondents were asked to specify which alternative they 
used or preferred. Question 35 was offered in matrix format. In the case of question 40, a list of 25 decision 
tools thought to be used in at least some parts of the Australian grains industry were listed as options. Note 
that the survey was approved through the CSIRO Social Science Human Research Ethics Committee
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squared test (SAS Institute Inc. 2013). Continuous data were analysed using one-way 
analysis of variance with the significance of differences tested using the Tukey–Kramer 
test.

To enable comparison with other recent surveys (Llewellyn and Ouzman 2015; Rob-
ertson et al. 2012), the analysis was structured on the basis of GRDC region (Fig. 1), farm 
size, rainfall, whether or not a grower uses an agronomic consultant and current practice in 
terms of yield mapping. Note that the northern GRDC region encompasses the grain grow-
ing areas in Queensland and New South Wales and has relatively high seasonal rainfall and 
more diversity of production (both summer and winter crops and a range of crop types) 
than the other regions. It is the largest source of Australia’s premium hard high protein 
wheat. The southern region encompasses Victoria, Tasmania and South Australia and is 
focussed on winter cropping with yield potential strongly driven by seasonal rainfall, with 
many enterprises also engaged in livestock production. The western region is confined to 
Western Australia. This is the lowest yielding of the Australian grain regions (ABARES 
2017) with production conducted over large scale as a consequence; as in the southern 
region, yields are dependent on seasonal rainfall. Further information is available at https ://
grdc.com.au/about /our-indus try/growi ng-regio ns and in ABARES (2017). Because of the 
water-limited nature of Australian grain growing, it was of interest to know whether being 
either severely or relatively un-constrained in this regard impacted on survey responses. 
Accordingly, respondents receiving less than 350  mm annual rainfall were regarded as 
being in ‘low’ rainfall areas, with those receiving more than 500 mm regarded as being 
from ‘higher’ rainfall locations. Similarly, those cropping more than 2500 ha were regarded 
as having ‘large’ operations and those cropping less than 2500 ha were treated as ‘small’.

Fig. 1  Australian grain growing regions. Map provided courtesy of GRDC

https://grdc.com.au/about/our-industry/growing-regions
https://grdc.com.au/about/our-industry/growing-regions
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Results and discussion

Respondents, demographics and background information

A total of 203 survey responses were received; 30.5, 43.8 and 25.6% were from the north-
ern, southern and western GRDC regions, respectively. The farm size of respondents varied 
from 100 to 27,000 ha with a median farm size of 2500 ha. The median cropping percent-
age was 77% of arable land. When examined on a regional basis, the median farm size in 
both the southern (range of 220–11,500 ha) and northern (100–27,000) regions (2000 ha) 
was approximately half that seen in the western region (median size of 4139 ha; range of 
1000–14,000 ha).

The survey respondents were dominated by grain growers who had been farming for 
more than 25 years, with no significant between-region differences in grower experience 
(P > 0.05). This is an interesting result if time spent farming is treated as a surrogate for 
farmer age, given the common assumption that younger farmers are likely to be more com-
fortable with modern technology. Note that, since the survey did not ask about the ages of 
different family members involved in the farm business, we assume here that the time spent 
farming/farmer age refers to the person filling out the survey and that this person was the 
primary decision maker in terms of farm management.

Unsurprisingly, there were significant (P < 0.05) between-region differences in reported 
annual rainfall with means of 569, 432 and 375 mm in the northern, southern and west-
ern regions respectively. However, whilst reported growing season rainfall followed the 
same trend (326, 297 and 281 mm), there were no significant between-region differences in 
growing season rainfall (P > 0.05) amongst the survey cohort.

Data management, agronomic advice and possible survey bias

Of the 200 respondents who answered q6, 156 (78%) use an agronomic consultant; of the 
104 respondents with yield maps (q17, 18), 85 (82%) also used a consultant. This result is 
consistent with those from previous surveys (Robertson et al. 2012; Llewellyn and Ouzman 
2015), which highlighted the importance of a grower having a paid agronomic consult-
ant to their likelihood of earlier adoption of some PA practices. However, of the issues 
canvassed in this survey, having a consultant only had a significant positive relationship 
with adoption of soil moisture sensing (P < 0.01). These results likely reflect the voluntary 
nature of the survey and points towards the self-selected respondents being biased towards 
those likely to be interested in PA and sensing. Since the survey purpose was to assist in 
setting a direction for a research and development project, this is no bad thing, but it does 
nevertheless place a caveat on the results.

Notwithstanding familiarity with or interest in technology, ‘paper format’ remains the 
dominant mode of record keeping (q7) with only approximately 30% of those surveyed 
managing their farm data either in a spreadsheet or using some form of dedicated farm 
management software, with many of these respondents also using paper format. Inter-
estingly, the number of years spent farming had no significant impact (P > 0.05) on the 
mode of record keeping, with the exception of a significant positive relationship (P < 0.01) 
between time spent farming and spreadsheet use.

Farm size had no significant impact on whether a consultant was used (P > 0.05); 84% 
of respondents from larger farms (> 2500 ha) and 74% from smaller farms (< 2500 ha) use 



163Precision Agriculture (2019) 20:157–175 

1 3

a consultant. By comparison, a 2014 unbiased survey reported by Llewellyn et al. (2016) 
indicated that 58% of grain growers “pay for cropping advice”; Llewellyn and Ouzman 
(2015) predicted that this figure would rise to 63% by 2017. The present survey did not 
specify that “consultants” should be paid and it is possible that use of agronomists linked 
to retailers could have been included amongst the responses received to the present survey. 
Llewellyn and Ouzman (2015) noted that the use of unpaid advisers from retail outlets was 
high (~ 60%) in some regions, especially in parts of New South Wales, Victoria and South 
Australia; paid consultant use was greatest in Western Australia.

Table 2 summarises the statistical significance of the various factors canvassed in the 
survey on adoption of sensing technologies.

Yield monitoring/mapping

Production of yield maps (q15–18), rather than just use of a yield monitor, was used as an 
indicator of the level of adoption of PA given that most new headers sold in Australia now 
come with a yield monitor already installed. Thus, 87% of survey respondents have access 
to a yield monitor (q15) and 88% of those who do, use it when harvesting (q16). However, 
only 57% of those with a yield monitor generate yield maps (q15, 17), either themselves 
(the majority) or with the assistance of a consultant (26% of those who obtain maps).

Table 2  Summary of the statistical significance of various factors on the current (or future) adoption of pre-
cision agriculture sensing technologies

Items in parentheses refer to future adoption. For both current and future adoption, the significance of 
mitigating factors on adoption is denoted by: ns, not significant; *P < 0.05; **P < 0.01; ***P < 0.001; 
****P < 0.0001. An ‘empty’ cell indicates that the relationship between the various factors was not investi-
gated

Mitigating factor Yield maps Consultant Farm size Region Rainfall Guidance Years farming

Technology or practice
 Access to yield maps *** * *
 No. years of yield 

maps
** * *

 Guidance/auto-steer * ns
 Farm survey ** *
 Remote sensing *** (*) ns (ns) * (ns) ns (ns) ns (ns)
 Proximal canopy 

sensing
***

 High resolution soil 
survey

*** (ns) ns (ns) ns (ns) ns (ns) ns (ns)

 Soil moisture sensing ** ** ns
 Digital elevation 

model
**** ** (ns) * *

 Variable rate (VRA) *** * * * **
 DSS for fertilizer N ns
 Need for new skills (ns)
 Adoption of multiple 

sensors
** (**)

 Profit expectations 
from adoption

* ns
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Farm size had a significant impact (P < 0.01) on whether a farm has a yield monitor and 
on whether or not yield maps are produced (P < 0.001). Of the 71 farmers on ‘large’ farms 
who have yield monitors, 54 produce maps (76%) whereas only 50% of growers on smaller 
farms who have yield monitors generate yield maps. Of 77 southern region respondents 
with a yield monitor, 57 generate yield maps (74%). This is a higher rate of yield map pro-
duction than in either the western (58% of those with a yield monitor) or northern region 
(43%). However, and in spite of the western region being the driest, 72% of low rainfall 
growers with a yield monitor generate maps compared to 50% in the higher rainfall areas; 
this result could be a reflection of the northern regional difference given that the northern 
region has a greater proportion of higher rainfall growers than the other regions.

Farm size was also significantly associated with the number of years for which yield 
maps had been produced (P < 0.01) with large farms having yield maps for 8.9 years com-
pared to 5.7  years for small farms. This result is no doubt associated with a significant 
regional effect, with yield mapping in the western region (9.9  years) having a signifi-
cantly longer history than either the southern (6.6 years; P < 0.05) or northern (5.9 years; 
P < 0.05) regions; the northern and southern regions were not significantly different 
(P > 0.05). The longer history of yield mapping in the west is likely a reflection of much of 
the early Australian PA research being conducted in Western Australia (Cook et al. 1996; 
Cook and Bramley 1998; Adams et al. 1999). This regional effect is also likely the reason 
for the significant effect of rainfall on yield mapping; farms classified as ‘dry’ (< 350 mm/
year) had a significantly larger (P < 0.05) number of years of yield maps (8.4) compared to 
farms in wetter areas (> 500 mm/year; 5.5 years of yield maps).

Of the 105 growers with yield maps, 65 (62%) use them to assist in management zone 
delineation (q18). Conversely, one could say that in spite of typically having yield maps for 
5–7 years, 38% of growers have not made use of them for decision-making relating to tar-
geting management. Given the frequent anecdotal reporting that farmers ‘don’t know what 
to do with their maps’, it is suggested that the development of easy-to-use tools, which 
automate the process of map generation and analysis, would be useful.

Farm survey and machine guidance

A key platform underpinning PA implementation, including the production of robust yield 
maps and identification of management zones (e.g. Taylor et  al. 2007), is some form of 
spatial farm survey (q8). Overall, of the 197 respondents who answered q8, 158 (80%) had 
conducted some form of farm survey; 100 of these had used GPS to do the survey whilst 50 
had used ‘Google Earth’. Of those who had not surveyed their farm, 10 were from ‘large’ 
farms (13% of ‘large’ farms not surveyed), whilst 27 were from ‘smaller’ farms (22% of 
‘smaller’ farms not surveyed); this difference was not significant (P > 0.05). Unsurpris-
ingly, farm boundary surveys were significantly more common amongst those with yield 
maps than those without (87.5% compared to 67.4%; P < 0.01); that 12.5% of growers who 
have produced yield maps do not have farm boundaries surveyed is perhaps of some con-
cern since it indicates that the maps are not being interpolated onto raster grids defined by 
the field boundaries. Such data processing is necessary for data overlay and robust zone 
delineation (e.g. Taylor et al. 2007).

The rate of adoption of controlled traffic or machine guidance was high at 84% (q9) 
with the majority of adopters (65%) using higher accuracy (20  mm) auto-steer systems 
(q10). This result is consistent with the 77% rate of autosteer adoption in 2012 noted by 
Llewellyn and Ouzman (2015), suggesting further adoption since the 2012 survey. Here, 
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farm size was found to have a significant association (P < 0.05) with adoption of guidance, 
which is used on 92% of large farms compared to 80% of smaller farms; 74% of large 
farms use higher accuracy (20 mm) systems compared to 44% of small farms (P < 0.0001). 
Several growers noted the use of systems of varying accuracy (20, 100, 150, 200, 500 mm) 
on different machines, with some using the high accuracy systems (20 mm) without auto-
steer. In spite of the association between farm size and adoption of this technology and the 
larger farm size in the western compared to the northern and southern regions, there was 
no significant regional difference in the adoption of guidance/auto-steer technology per se 
(P > 0.05). However, region did have a significant impact (P < 0.05) on the use of higher 
accuracy (20 mm) systems, which are used by 62% northern growers, 61% southern grow-
ers, but only 39% western growers.

Given the frequent demonstration of the utility of a digital elevation model (DEM) 
to understanding field-scale variation in crop performance, in the PA literature (i.e. by 
researchers such as Bramley and Trengove 2013) and at grower technical meetings (i.e. 
by consultants; Michael Wells, PCT-Ag—pers. comm.), it was surprising that only 37% 
of machine guidance users had used their guidance system to generate a DEM of their 
farm (q11). This was especially so since having machine guidance had a significant posi-
tive effect on adoption of at least one of the sensing technologies canvassed in this sur-
vey (P < 0.01). However, farm size had a significant bearing (P < 0.01) on possession of a 
DEM; 46% of large farms have a DEM compared to 26% of small farms. Anecdotal evi-
dence, including that obtained in other industry sectors (e.g. sugar), suggests that there is 
a low level of awareness amongst Australian farmers of the ability to obtain a DEM from 
a machine guidance system. However, there was a highly significant (P < 0.0001) effect 
of having yield maps on whether or not a DEM had been generated. Fifty-two percent of 
survey respondents who have yield maps and use auto-steer have obtained a DEM; only 
15% of growers who do not have yield maps have generated a DEM and this figure only 
increases to 18% when confined to growers without yield maps but who do use auto-steer.

An even smaller proportion (26%) of respondents have acquired a high-resolution soil 
survey (e.g. using an electromagnetic sensor or gamma radiometrics) on their farm (q12) 
with no significant regional, farm size or rainfall effect on adoption (P > 0.05). However, 
the likelihood of having acquired high-resolution soil survey was significantly associated 
(P < 0.001) with also having yield maps. Only 11% of growers without yield maps have 
acquired high resolution soil survey, whilst amongst growers who have yield maps, 37% 
have also acquired high resolution soil survey. Amongst this cohort of respondents, use of 
an agronomic consultant had no effect on use of high-resolution soil survey (P > 0.05).

Electromagnetic sensing (e.g. EM38) remains the dominant form of high-resolution soil 
survey used (q13) albeit amongst a small pool of users (n = 50). Gamma radiometrics has 
been used by only 7 respondents and 4 of these were from the western region where EM38 
has limitations for distinguishing between sandy and gravelly soils and where gamma radi-
ometrics has been shown to have particular utility (Wong et al. 2008). These results, along 
with comments made by those who replied to q13 with ‘Other’, tend to suggest that the 
level of understanding of this technology, and/or perceptions of its relative utility, is low. 
Previous surveys (Robertson et al. 2012; Llewellyn and Ouzman 2015) have indicated that 
use of EM38 has been greatest in regions such as the Victorian and South Australian Mal-
lee where it has correlated well with important and obvious changes in soil type (Llewellyn 
et al. 2008). However, there may not be on-going extensive high use in these regions due 
to increasing grower understanding of the relationship between EM38 and landscape posi-
tion in the Mallee’s relic dune-swale systems and the impact of landscape position on yield 
(Whitbread et  al. 2008; McBeath et  al. 2015). However, those who have acquired high 
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resolution soil survey clearly find it useful: a majority (88%) had used it to assist in guiding 
fertilizer management, whilst 49% used it to assist with crop choice decisions and 31% to 
guide seed rate (q14).

Crop sensing

Over 40% of all survey respondents have accessed remotely sensed imagery of their farms 
(q20) with 88% of users sourcing this from satellite-based platforms (q21). There was no 
significant difference (P > 0.05) between the regions in remote sensing usage, nor between 
‘wet’ and ‘dry’ farms. However, of 193 respondents, growers from large farms were sig-
nificantly more likely (P < 0.05) to have accessed remote sensing than those from smaller 
farms (58% compared to 40%). Whereas 49% of growers using an agronomic consultant 
had accessed imagery, only 33% of those who do not have a consultant had done so, albeit 
with this consultant effect not being statistically significant (P > 0.05). However, the biggest 
effect on acquisition of remotely sensed imagery was possession of yield maps (P < 0.001); 
60% of growers who have yield maps have accessed imagery whereas only 28% of growers 
without yield maps have done so. In spite of all the present hype, unmanned aerial vehicles 
(UAVs) or drones do not yet seem to have taken off (no pun intended!) (q21); only five 
growers in the survey had made use of a drone.

Of the 90 growers who have accessed remotely sensed imagery, 56% used it to guide 
variable fertilizer management; around 13% used it to guide crop choice or seeding rate. 
Other interesting applications for the use of remotely sensed imagery include identifica-
tion of areas for clay spreading (e.g. Cann 2000; Hall et  al. 2010), planning for chang-
ing paddock boundaries and identification of areas on a newly purchased property which 
were unsuitable for cropping. A few respondents indicated their use of imagery to assist in 
zoning without specifying what form of variable management such zoning might help to 
inform.

In contrast to remotely sensed imagery, there was a low rate (only 12% of 186 respond-
ents) of use of proximal canopy sensing (q 23), with 14 of the 25 users being located in 
the southern region; there were only two users of proximal sensing in the northern region. 
This low rate of use of proximal canopy sensing may reflect the lack of Australian-based 
interpretive algorithms for such technology and/or uncertainty amongst Australian farm-
ers as to its benefit:cost. The recent review of Colaço and Bramley (2018) suggests that 
such circumspection is appropriate in the absence of means to integrate the information 
provided by proximal canopy sensors and ‘N-rich strips’ (Raun et al. 2005) with that from 
other sources, such as soil moisture sensors. Lawes et  al. (2009) have noted the impor-
tance of knowledge of soil moisture to N fertilizer decision-making. Importantly, recent 
research (R. Lawes and N Huth, CSIRO, 2018—pers. comm.) has identified that, under 
water-limited rain-fed systems such as predominate in the Australian grain belt, canopy 
sensing in conjunction with access to a ‘zero-N strip’ is likely to be considerably more 
beneficial than an ‘N-rich strip’ because the key decision aid is knowledge of when a crop 
is likely to encounter N stress. Unsurprisingly therefore, the responses to q24 (n = 41) sug-
gest that the issue of using proximal sensing to guide N fertilizer management is not well 
understood amongst Australian grain growers. Nonetheless, it is of interest that the Crop 
Circle sensor (Holland Scientific, Lincoln, NE, USA) has no commercial use amongst the 
Australian farmer respondents to this survey, with GreenSeeker (Trimble, Sunnyvale, CA, 
USA) the dominant technology used by survey respondents. The CropCircle ACS-470 is 
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arguably the ‘preferred’ model amongst Australian researchers due to the ability to change 
wavelength filters.

All but one of the 23 users of proximal canopy sensing had yield maps. Users of proxi-
mal sensing were also overwhelmingly (70%) on large farms (P < 0.001).

Management zones

One hundred survey respondents answered q25 dealing with management zones and the 
information used to derive them, although the ‘Other’ responses indicated that, in fact, 94 
respondents work with zones. Of the 27 ‘Other’ responses that were retained, 22 clearly 
indicated use of zones based on farmer knowledge of their soil and other observations 
of variation in the land and/or crop performance; another 4 used soil testing to derive 
zones. Clearly, what one respondent noted as ‘technology-free zone delineation’ is impor-
tant amongst Australian grain growers with 28% using this approach. However, if these 
responses are merged with the use of “other soil survey” (i.e. not high resolution soil sur-
vey using a sensor), 76% of growers can be seen to use a non-sensor based method of 
soil survey as a basis for zone delineation, which greatly outweighs the use of a sensor-
based (i.e. high resolution) approach to acquisition of soil information (15%). This is the 
most used input to zone delineation followed by yield maps (68%), remote sensing (31%) 
and a DEM (21%). Only four respondents use proximal crop sensing as an input to zone 
delineation.

Whilst one respondent reported identifying as many as 11 zones, most respondents 
use a smaller number with three zones being the norm (99 respondents; q26). However, 
approximately 50% of survey respondents (n = 109) would consider increasing the number 
of zones used (q27). Of the 71 responses which explained why growers would/would not 
change the number of zones used, common themes included: a desire to keep things simple 
and/or concerns at the perceived complexity of VRT equipment (n = 14); concerns as to the 
benefit:cost of change (n = 8); perceptions that present knowledge of soil variation did not 
justify it and/or that soils were too variable for the simple implementation of zonal man-
agement (n = 11); a lack of access to equipment (n = 5); and agronomic concerns (n = 5). In 
the latter connection, one grower noted that response curves were not well enough under-
stood, with another noting that he/she had insufficient information as to how to treat each 
zone.

Variable rate

Of the 188 respondents to q28 and q29, 57% had the capacity to implement variable rate 
fertilization whilst 52% actually use variable rate application (VRA) for fertilizers.

Use of VRA was significantly lower (P < 0.05) in the northern region (35%) compared 
to the southern and western regions (58%). Furthermore, whereas 71% VRA users in the 
southern region vary fertilizer rate within-paddocks, within-paddock rate variation drops 
to 59% VRA users in the western region and to only 32% in the northern region, with this 
regional difference also significant (P < 0.05).

Of the 97 growers who use VRA, 82 employ a consultant and 66 have yield maps. Fifty-
eight of these growers use VRA within-paddock and of these, 50 employ a consultant 
whilst all of them have yield maps, suggesting that these growers are amongst the more 
sophisticated adopters of PA. Overall, VRA is used on 63% of large farms and 69% of 
farms receiving < 350 mm rainfall; whilst 66% of farms with yield maps use VRA. Thus, 
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consultant use (P < 0.05), farm size (P < 0.05), rainfall (P < 0.01) and having yield maps 
(P < 0.001) all had significant association with adoption of VRA, although neither consult-
ant use nor having yield maps had an impact on whether VRA use was between- or within-
paddock (P > 0.05). Nonetheless, of the 82 VRA users who employ an agronomic consult-
ant, 61% vary fertilizer rates within-paddock. Only 15 growers without a consultant use 
VRA with only eight of these varying rates within-paddock. Within-paddock use of VRA 
was significantly more likely on low rainfall farms (P < 0.05); between-paddock VRA was 
more likely on higher rainfall farms.

Nitrogen is the dominant nutrient managed using VRA (68% VRA users) with 43% 
of VRA users varying phosphorus (P) rates, in spite of the interest in recent years in P 
replacement (e.g. Whelan and Taylor 2013) as a management strategy (q30). When the 
analysis is restricted to those using VRA within-paddock, 72% vary N rates and 43% vary 
P. Other uses of VRA amongst the 97 growers using this technology included lime (6), 
gypsum (2), sulphur (3) and seed (2). Almost 100% survey respondents continue to use 
solid fertilizers (q31) with liquids also used by 32%. Of the 59 survey respondents using 
liquid fertilizers, 25 (42%) did not use VRA, although there was no significant interaction 
between fertilizer type and use of VRA (P > 0.05), an interesting result given that VRA 
application of liquids may be more precisely controlled than for solid fertilizers.

Soil moisture

In spite of the recent interest in soil moisture sensors as a tool to assist in enhancing water 
use efficiency (WUE; e.g. Kirkegaard et  al. 2014), only 44 out of 188 respondents to 
q32 (23%) have a soil moisture sensor, with 40 of these using an agronomic consultant 
(P < 0.01). Amongst those with soil moisture sensors, three have five sensors, whilst 16 
have one; most owners of soil moisture sensors have two of them (q33). Farm size had no 
bearing on ownership of a soil moisture sensor (P > 0.05), whilst their use was significantly 
greater on higher rainfall farms (P < 0.05). Consistent with this, use of soil moisture sen-
sors was significantly affected by region (P < 0.05); whilst 90% of growers in the west-
ern region do not have a soil moisture sensor, 25 and 31% of growers in the northern and 
southern regions use this technology. Growers with yield maps were significantly more 
likely to own a soil moisture sensor than those without (P < 0.01). Given this rate of use of 
soil moisture sensing, it is perhaps not surprising that only 37% of growers take any notice 
of soil moisture when making N fertilizer decisions (q34), with fertilizer rate the dominant 
consideration (46% respondents); timing of application (26%) and fertilizer type (8%) were 
also considered. Since 37% of growers take notice of soil moisture in making N fertilizer 
decisions, but only 23% have a soil moisture sensor, non-sensor sources of soil moisture 
information are used by at least 14% of growers. Anecdotal evidence suggests that many 
growers integrate knowledge of seasonal rainfall (to date) with knowledge of rainfall pat-
terns and crop yields from previous seasons, along with public weather forecasting to make 
a judgement as to the need for fertilizer and its likely benefit:cost.

N fertilizer decision making

An array of information sources is used to guide decisions as to how much N fertilizer 
to apply (Table  3). The dominant inputs to N fertilizer decision-making are the grow-
ers own calculations and the advice of an agronomist, used by 77 and 66% respondents 
respectively. Interestingly, simply following district practice (10%) is the least used of the 
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methods, and does not draw on a specific technology. Amongst the ‘Other’ responses to 
q39, pricing and cash flow were important; only one grower noted the value of an ‘N-rich 
strip’ (Raun et al. 2005) and another commented on conducting trials to assist with deci-
sion making. When analysis of the answers to this question are confined to growers who 
use an agronomic consultant, the response percentage for the various options changed very 
little, with the exception of the to-be-expected finding that the use of advice from con-
sultants increased to 81%. Of interest, whether or not a consultant is employed was not 
associated with use of a DSS. Overall, the main conclusion to be drawn from q39 is that 
growers typically use more than one source of information in making their fertilizer deci-
sions. Indeed, of the 184 respondents to q39, only 45 used a single source of information; 
54 growers used two sources of information, 56 used three, 22 used four and five used five. 
Notably for Future Farm and other initiatives targeted at sensor-based solutions, whether 
these be research-focussed or commercially driven, only 3% of growers currently make 
use of sensor-based algorithms (Table  3). This is presumably a reflection of the lack of 
calibrated algorithms for the Australian grain regions and, more broadly, uncertainty over 
benefit:cost (Colaço and Bramley 2018).

Decision support tools (DSS) such as Yield Prophet (Hochman et al. 2009), or propri-
etary systems such as NU Logic (CSBP Ltd, Kwinana, Western Australia) are used by 26% 
of growers. A possible reason for the relatively low ranking of DSS tools is the wide array 
available; 25 were listed for q40. Another might be that, having been used a few times, they 
are no-longer actively used given some adjustment of a growers ‘rule of thumb’ through 
temporary DSS use. Given that all of these provide guidance in some aspect of N fertilizer 
decision making (some also consider factors other than N), understanding how growers 
perceive their points of difference and/or suitability to their particular farming situation 
would be of interest. Indeed, what is clear from q39 and q40 is that if a grower uses a DSS 
at all, he/she is highly likely to use more than one of them. Thus, whereas 26% of grow-
ers use a DSS (q39), 206 DSS uses were reported by the 112 respondents to q40. All but 
two of the ‘Other’ responses to q40 did not infer use of a DSS, listed or otherwise, and it 
is therefore concluded that the 206 DSS uses is spread amongst 82 respondents; that is, 
on average, each DSS user in fact accesses 2.5 DSS. Whether this is a reflection of lack of 
trust in this technology (Leonard et al. 2017) is unclear, although even accounting for the 
geographical spread of the Australian grainbelt (Fig. 1), it would not be surprising to learn 
that farmers are confused by the simple fact that 25 different Australian DSS are available 
to grain growers making N decisions.

Of the 206 DSS uses, 75 (36%) involve tools based on the APSIM crop model (Keating 
et al. 2003) with Yield Prophet (Hochman et al. 2009) accounting for over half of these. 

Table 3  Sources of information 
used by grain growers in 
choosing fertilizer rates (q39)

Information source Count %

Own calculations 142 77
Agronomist advice 122 66
Recommendation from soil testing 

service
89 48

Decision support tool 47 26
District practice 19 10
Sensor-based algorithm 6 3
Other 21 11
n 184



170 Precision Agriculture (2019) 20:157–175

1 3

Suggestions as to what would further assist with N decision making (q45) were dominated 
by pleas for improved weather forecasting/rainfall prediction, although remote and ‘in 
crop’ N sensing were mentioned, as were sensor based algorithms and N rich strips, the 
integration of yield mapping with protein sensing and tools for converting such maps into 
prescription maps for following seasons. A greater focus on N budgeting and an ‘N tracker’ 
were also suggested.

Future intentions regarding sensing

Of the growers who do not currently use a particular sensor type, a high proportion envis-
age using one in the future (q35). Thus, for example, of the 95 growers who are not cur-
rently using yield maps, 54% expect to start doing so within the next three years, with a 
further 27% expecting to adopt this technology in 3–10 years. However, time spent farming 
was seen to have a significant (P < 0.01) effect on the likelihood of adopting sensing tech-
nologies. Eighty seven percent of growers who have been farming for less than 10 years 
intend to use sensors as a part of their farm practice compared to 65% of growers who 
have been farming for more than 20  years; those who have farmed for between 10 and 
20 years were intermediate between the other groups in their intention to use sensors. It 
is assumed here that those who have been farming for less than 10 years are the youngest 
group amongst the survey respondents.

Elevation models were the technology least likely to be adopted, again reflecting the rel-
ative lack of awareness that machine guidance technology readily enables production of a 
DEM and/or a low perceived value of DEMs by farmers. As illustrated by Table 4, the pro-
portions of respondents not currently using a technology who could not readily conceive 
of using it in the future (i.e. no intention to adopt) were markedly affected by whether they 
currently had yield maps. Thus, as with other elements in this survey, this result strongly 
suggests that an important enabling step in promoting the use of agricultural sensing and 
integration of its use into decision-making, may be assisting growers to get value from 
yield monitoring and the yield maps produced as a result. Such an approach is consistent 
with, and would also facilitate, the stepwise adoption (Aldana et al. 2010; Robertson et al. 
2012; Wilkinson 2011) of PA technologies other than yield maps. Overall, growers with 

Table 4  The effect of having 
yield maps on grain grower 
reluctance to adopt additional 
sensing technologies

Derived from q35. The figures reported are the % of growers who have 
not currently adopted a technology who have no intention of adopting 
it in the future

Technology not currently used Proportion (%) of non-adopting 
farmers with no future intention 
for adoption

No yield maps Yield maps

Yield maps 20
Remote sensing of crops 24 15
Proximal sensing of crops 34 17
High resolution soil survey 31 23
Digital elevation model 46 29
Soil moisture sensor 24 13
Mean 31.8 19.4
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yield maps were significantly more likely to adopt remotely sensed imagery in the future 
(P < 0.05); whilst the effect of having yield maps on intention to adopt high resolution soil 
survey was not significant (P > 0.05), of the 71 growers who intend to adopt high resolution 
soil survey, 73% have yield maps. Neither rainfall (‘wet’ vs ‘dry’), farm size, region, nor 
consultant use, had any significant effect on intentions to adopt either high-resolution soil 
survey or remote sensing (P > 0.05). In spite of large farms being significantly more likely 
(P < 0.01) to have a DEM, there was no significant effect of farm size on future intention to 
acquire a DEM (P > 0.05).

Growers were asked (q36) to nominate what kinds of sensors they would like if cost 
was not a consideration. Although specifically asked not to be constrained by their cur-
rent knowledge of sensing and to assume that it would be possible to sense whatever they 
wished, many of the 149 respondents simply nominated the various technologies men-
tioned in the survey, which they were yet to adopt. For example, 17 people listed yield 
maps as their first or second choice; 19 did likewise for soil moisture sensing. In terms of 
‘new’ sensors, plant nutrient sensing received 38 first or second choice nominations, whilst 
soil nutrient sensing received 18 nominations. Sensing of weeds (8), diseases (4) and soil 
biology were also mentioned as first or second choices. A possible reason for reticence/lack 
of novelty in these answers may be that 57% respondents believe that they need to develop 
substantial new skills and knowledge to use new sensors or PA technologies (q37). On 
the other hand, 43% did not see such a skills/knowledge need. Whether a consultant was 
employed had no bearing on the perceived need for new skills (P > 0.05), nor did current 
use of yield maps.

Recently, Colaço and Bramley (2018) have advocated a multi-sensor, multivariate 
approach to the use of crop sensors in N fertilizer decision-making, for example, cou-
pling information from crop sensing with that from soil moisture sensing. Similarly, a 
recent  analysis based on crop modelling and machine learning (R.  Lawes and N.  Huth, 
CSIRO, 2018—pers.comm.) noted a hierarchy of factors that benefit good N fertilizer man-
agement, identifying knowledge of soil moisture and ability to predict N stress, via use of 
a ‘zero-N strip’ as of greatest value. It is therefore of interest that adoption of multiple sen-
sors is significantly affected by farm size (P < 0.01). Amongst farms where either no sen-
sors, or just one sensor type is used, small farms predominate (80 and 76% respectively). 
On farms where either two (45% large, 55% small) or three (47% large, 53% small) sensors 
are used, farm size is clearly less important. However, 63, 56 and 67% of farms where, 
respectively, four, five or six sensor types are used are large (> 2500  ha). Paustian and 
Theuvsen (2017) report a somewhat similar effect of farm size on PA adoption in Germany, 
whilst Miller et al. (2017) found that, in Kansas (USA), farms which had either adopted no 
or several PA technologies were “steadfast” in their view of technology adoption, whereas 
intermediate adopters were more flexible. We infer from this that, whereas development of 
a multi-sensor approach to farm decision making might be most effectively undertaken in 
collaboration with growers from large farms, extension efforts aimed at encouraging new 
adoption of sensing technologies may be more productively targeted away from the largest 
farms and focussed on farms of medium size. Webster et al. (2016) drew a similar conclu-
sion when working in the Australian sugar industry. Across all farm sizes, a greater focus 
on soil moisture sensing would also be beneficial (see above).

Of course, adoption of any new technology will ultimately be driven by its perceived 
relative advantage, compatibility, complexity, trialability and observability (Rogers 2003). 
Robertson et al. (2012) suggested that relative advantage (i.e. benefit cost) and complexity 
(i.e. ease of use) are arguably of greatest importance to the adoption of PA technologies. 
Leonard et al. (2017) identified trust in technology as critical to growers attitudes to ‘Big 
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Data’. For growers not currently using sensors as a part of the N decision making pro-
cess, there is an even spread of opinion as to what level of increased profitability would be 
required to encourage adoption (q38), with no significant effect of any perceived need for 
new skills on this required profit increase (P > 0.05). Using the target increases in profit 
detailed at q38 (< $10, $10–15, $15–20, $20–25, $25–30 and > $30/ha), current access to 
yield maps had a significant effect on the profit increase required to induce adoption of 
additional sensors (P < 0.05), with those who had yield maps willing to adopt additional 
sensors for lower profit gain than those without yield maps. Thus, amongst those with yield 
maps, the profit increase category attracting the greatest proportion of respondents (28%) 
was $10–15/ha, whereas amongst those without yield maps, the majority (24%) sought 
$20–25/ha to justify adopting a sensor; there were 111 respondents to q38. Whilst there 
was no significant regional effect on required profit increase (P > 0.05), over 40% of the 
growers seeking a > $30/ha profit increase from sensor adoption were from the northern 
region. To explore this further, the responses to q38 were grouped into either three (< $15, 
$15–25 and > $25/ha) or two profit increase classes (< $20 and > $20/ha). In spite of an 
apparent desire for greater profit increases amongst northern growers and willingness to 
accept lower increases amongst southern growers, the regional effect remained non-signifi-
cant (P > 0.05) when either the two or three profit increase categories were used. However, 
we conclude that this issue needs more careful analysis with a larger sample set, because 
when the effect of current access to yield maps was examined with the reduced grouping 
of profit increases required for sensor adoption, the effect of current access to yield maps 
was no longer significant (P > 0.05) for the three class analysis. For the two class analysis, 
access to yield maps was significant (P < 0.05). Thus, 60% of growers without yield maps 
sought more than $20/ha in return for adopting a sensor, whereas 60% of growers with 
yield maps were willing to accept less than $20/ha to adopt an additional sensor.

One of the reasons that Future Farm and like endeavours might focus on sensing is the 
opportunity for automation in data collection that sensors afford. The rapid uptake of guid-
ance and autosteer is indicative that automation per se is a concept that, in general, farm-
ers are comfortable with. Similarly, VRA offers an automated solution to implementation 
of variable application of fertilizers and other inputs once the decision as to the rates to 
be applied has been made. However, the FARMSCAPE experience (Carberry et al. 2002) 
indicated that whereas Australian farmers like DSS to explore ‘what if’ questions, espe-
cially when explored in conjunction with their consultants, they do not want decision 
making to be taken away from them. Rather, effective DSS support the learning needs of 
farmers and their transactions with advisers and help build their ‘actionable knowledge’ 
(Evans et  al. 2017). It is important therefore, that as sensors become increasingly avail-
able to farmers, these are integrated into decision support as aids, rather than as a means 
of automating the decision making process and thereby lessening the role of the farmer in 
managing the farm business. Such an approach enables the farmer’s own attitude to risk, 
along with expectations of seasonal rainfall, to be factored into the decision, something 
which is arguably not readily achieved with fully automated systems.

Conclusions

These results suggest a very clear positive effect on adoption of sensing technologies, and 
intention to adopt, through present use of yield mapping with the profit increase required 
to justify adoption being lower amongst those with yield maps compared to those without 
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maps. The survey indicates some support for crop sensing, albeit with low present rates of 
use of proximal sensors; the use of soil water sensors and DEM is presently very low.

Previous surveys support the view that agronomic research projects would be wise to 
interact closely with consultants in addition to leading growers. For the further develop-
ment of PA, the present results make clear that expending at least some effort in enhanc-
ing the adoption and use of yield maps would be valuable as a lever to gaining ‘buy-in’ to 
sensing and PA more broadly. Since growers clearly use many sources of information as 
input to decision making, any new fertilizer management DSS needs to establish a point 
of difference from existing tools. One way of doing so would be by making use of sensor 
input, supported by appropriate locally derived algorithms; desirably, it would also be able 
to work in concert with alternative decision tools such as those currently in use.
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