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Abstract Precision nitrogen (N) fertilizer management has the potential to improve N 
fertilizer use efficiency, simultaneously reducing the cost of inputs for farmers and the off-
site environmental impact of crop production. Although technology is available to spatially 
vary sidedress N fertilizer application rates within fields, sensor technology capable of 
measuring soil nitrate  (NO3

−) levels in-real-time and on-the-go with sufficient accuracy to 
facilitate precision application of N fertilizers is lacking. The potential of Diamond-Atten-
uated Total internal Reflectance (D-ATR) Fourier Transform Infrared (FTIR) spectroscopy 
was evaluated as a soil  NO3

− sensor. Two independent datasets were tested; (1) the field 
dataset consisted of 124 GPS registered soil samples collected from four agricultural fields; 
and (2) the laboratory dataset consisted of five different soils spiked with various amounts 
of  KNO3 (135 samples) and incubated in the laboratory. Spectra were collected using an 
Agilent 4100 Exoscan FTIR spectrometer equipped with a D-ATR cell and analyzed using 
partial least squares regression. Calibration  R2 values (D-ATR-FTIR predicted versus inde-
pendently measured soil  NO3

− concentrations) for the field and laboratory datasets were 
0.83 and 0.90 (RMSE = 8.3 and 8.8 mg kg−1), respectively; and robust “leave one field/
soil out” cross validation tests yielded  R2 values for the field and laboratory datasets of 
0.65 and 0.83 (RMSE = 12.5 and 13.3 mg kg−1), respectively. The study demonstrates the 
potential of using D-ATR-FTIR spectroscopy for rapid field-mobile determination of soil 
 NO3

− concentrations.
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Introduction

Less than 50% of the 13 million tons of synthetic N fertilizer that is applied to U.S. agricul-
tural soils every year is actually used by the crops to which it was applied (Environmental 
Protection Agency 2011), the rest is either leached from the soil as  NO3

−, contaminating 
surface and ground water, or volatilized to the atmosphere as  NH3,  N2, or  N2O. This inef-
ficient use of N fertilizer by crops is both a major economic loss for farmers and the cause 
of serious environmental problems. Precision management of N fertilizer offers a unique 
opportunity to simultaneously reduce the cost of agricultural inputs for farmers while help-
ing to mitigate the negative environmental footprint of modern agriculture and thereby 
increase both the economic and environmental sustainability of production agriculture 
(Fahsi et al. 1998; Ma and Biswas 2015).

Precision farming is the integration of information technological tools, such as global 
navigation satellite systems (GNSS), chlorophyll meters, remote sensing of soils and crop 
canopies, soil electrical conductivity sensors and yield monitors with modern agricultural 
equipment such as fertilizer applicators, planters and sprayers to facilitate intra-field varia-
ble management of crops and soils. Yield monitors, for example, enable farmers to identify 
high and low productive areas of their fields, which can aid in spatially variable manage-
ment. The ultimate goal of precision agriculture is to enable farmers to identify, measure 
and differentially manage soils within-fields in a manner that increases farm profitability 
and decreases environmental impact associated with intensive agriculture. Despite recent 
advances, farmers still lack rapid and economical means of developing nutrient manage-
ment plans that accurately account for within-field variability of soil nutrient levels. Man-
aging soil N fertility is particularly problematic because weather, soil type and manage-
ment history all have a big influence on the soil N cycle. The complexity of the N cycle 
means that the amount of plant available N in soil varies substantially both with time dur-
ing a growing season and spatially across an agricultural field.

The late spring nitrate test (LSNT), also known as the Pre-Sidedress Nitrate Test, is an 
established tool for N fertility management in corn production (Binford et al. 1992; Black-
mer et al. 1989; Magdoff 1991). The LSNT protocol specifies that representative soil sam-
ples be collected from a field in the late spring when the corn is approximately 0.3 m tall 
(V6 growth stage; Pioneer 2018) and then analyzed for  NO3

− concentration. If the soil 
 NO3

−–N concentration is above a critical level (25 mg kg−1) then no additional N fertilizer 
is recommended for the cropping season; however if the concentration is below the critical 
level then sidredress N fertilizer is recommended. The LSNT can be used for precision N 
fertilizer management if enough GNSS registered soil samples are collected to represent 
the spatial variability of soil  NO3

− concentrations within the field. Although shown to be 
effective for improving N use efficiency (NUE) and reducing  NO3

− leaching losses (Jaynes 
et al. 2004), the LSNT is not widely used by farmers because; (1) labor for soil sampling 
and analysis is expensive, (2) its low spatial resolution (typically 1 composite soil sample is 
collected and analyzed per ha) misses substantial in-field variability, and (3) the time delay 
between soil sampling and the availability of a N fertilizer prescription increases risk for 
farmers. In recent years, development of field mobile soil analysis systems (such as SoilS-
can  360®, 360 Yield Center, Morton, IL USA) have allowed in-field determination of soil 
 NO3

− levels eliminating the time delay between sampling and availability of the results, 
but not the labor and time required for soil sampling. The bottom line for most farmers is 
that the LSNT is too impractical and too risky for large-scale use on production agriculture 
fields.
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A second approach to precision N management is measuring crop canopy reflectance 
during the growing season and applying midseason N fertilizer only where the crop is pale 
green or yellow (Rorie et  al. 2011; Scharf and Lory 2002; Scharf et  al. 2011). Nitrogen 
deficient plants often turn pale green or yellow and hence measuring canopy reflectance 
is effective for identifying regions of a field where soils have sub-optimal levels of plant 
available N. However, other factors, such as deficiencies of other nutrients, water stress 
and disease also cause plants to have similar symptoms. Nitrogen deficiency symptoms 
often are not apparent in a growing crop until late in the growing season and late-season 
sidedress N fertilization may not be effective in preventing substantial yield losses (Binder 
et al. 2000). Furthermore, canopy sensors are generally not effective until after canopy clo-
sure, hence specialized high clearance equipment is generally required for canopy sensors 
and to apply supplemental sidedress N fertilizer. As a result of these problems, adoption of 
canopy sensors by farmers for precision N management is limited.

The crop-soil-climate modeling approach to precision N fertilizer management has 
evolved over the past two decades and is now commercially available to farmers as agri-
cultural industry sponsored decision support services (Bendre et al. 2015). This approach, 
often called big data, integrates information related to agronomic management, soil analy-
sis, climate, soil and yield maps etc., over many farms. The data is used to model the soil-
crop system and predict soil N availability during the course of a growing season. These 
big data systems are being used by some farmers to provide within-field soil specific N 
fertilizer recommendations. Examples of this approach include  Encirca®, developed by sci-
entists at DuPont-Pioneer Co; Adopt-N®, developed by Agronomic Technology Corpora-
tion (Melkonian et al. 2008), and  FieldView® developed by Monsanto—Climate Corp. For 
example, the Adapt-N® tool models relevant soil processes and crop growth and incorpo-
rates real-time field-specific weather data to generate field-specific N fertilizer recommen-
dations (Sela et al. 2016). Though potentially useful, farmers have been slow to adopt big 
data tools because of concerns about data ownership, cost and the ability of such tools to 
accurately predict spatial variability of soil N status within their fields.

The growing interest in precision N fertilizer management has prompted the develop-
ment of proximal soil sensing techniques to directly measure soil N status in real-time. 
Indeed, numerous proximal soil  NO3

− sensor systems have been developed, yet none have 
been widely adopted for precision N fertilizer management in production agriculture, due 
to various technology-specific limitations (Adamchuk et al. 2004; Sethuramasamyraja et al. 
2008; Sinfield et al. 2010). The most common approach is the use of ion selective elec-
trodes (ISE) for real-time soil  NO3

− sensing (Adamchuk et  al. 2003; Adsett et  al. 1999; 
Kim et  al. 2007; Sibley et  al. 2009). For example, Adsett et  al. (1999) built and tested 
an automated system for on-the-go measurement of soil  NO3

−, which essentially brings a 
wet chemistry lab into the field. With this system, a soil sample is automatically collected, 
 NO3

− is extracted from the soil using deionized water (DI), and the extract is analyzed for 
 NO3

− with an ISE. While these and other similar studies have shown that ISEs can be used 
for proximal soil  NO3

− sensing, ISEs have had limited commercial success due to their 
inherent complexity and relatively slow response time. The typical ISE response time is 
10 s or more and accuracy is affected by many factors, which present difficulties in imple-
mentation of ISE technology for real-time on-the-go proximal soil  NO3

− sensing (Lobsey 
et al. 2010; Rossel et al. 2011).

The long-term goal of the project is to develop a robust and rapid spectroscopic soil 
 NO3

− sensor system that can be attached to a fertilizer applicator and used to measure soil 
 NO3

− status and thereby modulate N fertilizer application rates in real-time. Such a sensor 
system would facilitate precision sidedress N fertilizer applications based on established 
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LSNT protocols by replacing the need for hand sampling and delayed laboratory analy-
sis of soil  NO3

− status with on-the-go real-time sensing. Here the use of a handheld dia-
mond attenuated total internal reflectance Fourier transform mid-infrared (D-ATR-FTIR) 
spectrometer is evaluated as a sensor for rapidly and directly measuring soil  NO3

−–N con-
centrations in field moist soils. Attenuated total internal reflection (ATR) is a sampling 
technique used with infrared spectroscopy, which enables samples to be analyzed with lit-
tle or no preparation in the solid or liquid state. ATR measurements are typically carried 
out through an attachment (ATR cell) to the infrared spectrometer that directs the infra-
red light beam toward a medium of high refractive index (often a crystal of zinc selenide, 
germanium or diamond). One of the crystal facets of the ATR crystal is placed in direct 
contact with a sample. Any light that impinges on the contact surface between the crystal 
and the sample from within the crystal at an angle greater than the “critical angle” will be 
reflected back into the crystal, if the sample material in contact with the ATR crystal has 
a lower refractive index. Under these conditions, a localized evanescent wave is generated 
in the sample material typically within the top few µm. The sample material interacts with 
and attenuates this interrogating evanescent wave differentially throughout the infrared fre-
quency regions thereby generating an absorbance spectrum of the sample (Griffiths and De 
Haseth 2007).

ATR-FTIR spectroscopy using a ZnSe ATR crystal has previously been used to analyze 
 NO3

− concentrations in saturated soil pastes with standard errors for non-calcareous soils 
of 4 mg[N]  kg−1 [dry soil] (Linker et al. 2004, 2005), which is more than adequate enough 
for the proposed application. Here a diamond ATR cell was used together with one of the 
new generation of small robust handheld battery-powered FTIR spectrometers; a combina-
tion which makes dynamic, in-field, on-the-go measurement of soil  NO3

− concentrations 
possible for the first time (Laird et al. 2016). The specific objective of this study was to 
determine whether or not a handheld D-ATR-FTIR system is capable of measuring soil 
 NO3

− concentrations with enough accuracy to be used as a sensor for modulating mineral 
N fertilizer application rates in real-time as fertilizer is being applied to agricultural fields.

Materials and methods

Field samples

The performance of the handheld D-ATR-FTIR spectrometer was tested using sam-
ples collected from four agricultural fields in central Iowa within the predominant Web-
ster–Clarion–Nicollet soil association. The tests were performed to evaluate the accuracy 
of D-ATR-FTIR spectrometer in predicting  NO3

−–N concentrations in soils with varying 
moisture, organic matter, texture and other chemical and physical properties. Soils ranged 
in texture from light silty clay loam to heavy clay loam and soil pH ranged from 5.1 to 
7.4 (average = 6.04). Two fields were in corn-soybean rotations (fields 1 and 3), while the 
other two fields were in continuous corn. For field 1, corn was following soybeans and the 
field received 112 kg N  ha−1 at planting with an additional 56 kg N  ha−1 at sidedress. For 
field 2, corn was following corn and the field received 134 kg N  ha−1 at planting with an 
additional 87 kg N  ha−1 at sidedress. For field 3, corn was following soybeans and the field 
received 78 kg N  ha−1 at planting with an additional 90 kg N  ha−1 at sidedress. For field 4, 
corn was following corn and the field received 115 kg N  ha−1 at planting with an additional 
112 kg N  ha−1 at sidedress.



44 Precision Agric (2019) 20:40–55

1 3

About 30 GPS registered soil samples per field (124 total samples) were collected in 
a grid pattern to a depth of ~ 0.10 m during late May-early June 2016 when corn plants 
were about 0.15 m tall. Soil sampling was performed after preplant application of N ferti-
lizer (late April) but before sidedress application of N fertilizer and was based on protocols 
for the LSNT. Samples were kept in plastic bags to prevent moisture loss due to evapora-
tion; and within 24 h of collection samples were brought to the laboratory, scanned with 
the D-ATR-FTIR spectrometer, extracted with 2  M KCl and the extracts were analyzed 
for  NO3

− using a standard wet-chemistry colorimetric procedure (Schnetger and Lehners 
2014). Soil moisture was also measured gravimetrically for all samples.

Soil moisture effects on spectra

The effect of soil moisture content on the D-ATR-FTIR spectra was determined by using 
soil samples adjusted to different moisture levels. To do so, air dry soil samples with known 
concentrations of  NO3

− were divided into three sub-samples, 20 g each. Each subsample 
received different quantities of DI water to achieve gravimetric moisture contents of 15, 20 
and 25%. The moistened soils were covered with plastic film to prevent water loss due to 
evaporation and allowed to equilibrate for about an hour. The soils were then scanned with 
the D-ATR-FTIR spectrometer.

Laboratory samples

Bulk samples (0–0.20 m) of five soils varying in texture and soil organic matter content 
were collected in October 2015: The soils are Hanlon fine sandy loam (Coarse-loamy, 
mixed, superactive, mesic Cumulic Hapludolls); Webster silty clay loam (Fine-loamy, 
mixed, superactive, mesic Typic Endoaquolls); Okoboji mucky silty clay loam (Fine, smec-
titic, mesic Cumulic Vertic Endoaquolls); Nicollet clay loam (Fine-loamy, mixed, superac-
tive, mesic Aquic Hapludolls); and Exira silty clay loam (Fine-silty, mixed, superactive, 
mesic Typic Hapludolls).

The bulk soils were air-dried to 5–9% moisture, ground, sieved to pass a 2 mm screen, 
and divided into 100 g (oven-dry basis) samples. Each 100 g sample was amended with 
0, 10, 20, 30, 40, 50, 70, 90 and 110 mg kg−1 of  NO3

−–N by adding various amounts of 
a  KNO3 solution. The difference in  KNO3 solution quantities were adjusted by adding DI 
water to bring each soil sample to specific soil moisture content. Because of differences in 
textural classes of selected soils, samples from each soil type were equilibrated at different 
moisture contents; for Nicolet and Exira, moisture content was adjusted to 30%; Hanlon to 
17%; Okoboji to 34%, and Webster to 26%. Control samples (added  NO3–N = 0 mg kg−1) 
were treated only with DI water. Soil samples were thoroughly mixed and left to equilibrate 
in a cold room at 4  °C for 20-24 h. Each  NO3

− concentration x soil type treatment was 
replicated three times for total of 135 samples. After equilibration, the soil samples were 
placed in small containers (Petri dish) and 5–7 infrared spectra were collected per soil sam-
ple. Soil samples were then extracted with 2 M KCl and analyzed for  NO3

− concentrations 
using a standard colorimetric microplate technique (Schnetger and Lehners 2014).

Spectral measurement

An Agilent 4100 ExoScan (Agilent Technologies, Santa Clara, CA, USA) handheld spec-
trometer with a diamond ATR crystal was used for all spectral measurements. For each 
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sample, 5–7 individual scans were collected each at a different location within the sample, 
covering the 803–2499 cm−1 spectral range with a resolution of 16 cm−1. At each location, 
the D-ATR cell of the spectrometer was directly pressed onto the soil surface and spectrum 
collected in about 1  s. Good contact with the soil is essential for obtaining high quality 
spectra as the presence of air bubbles or gaps at the sample contact surface degrades spec-
tra quality. Two separate datasets were collected: the field dataset contained 767 individual 
spectra; and the laboratory dataset included 883 individual spectra. Both, field and labora-
tory spectra datasets were pre-processed to identify outliers using the sum of squares for 
differences between each spectrum and the overall mean spectrum. This process identified 
48 individual spectra out of 767 (field dataset) and 39 out of 883 (laboratory dataset) that 
were discarded. With the remaining 720 and 844 spectra, an average spectrum for each soil 
sample (typically 6 spectra per sample) was calculated. This process led to 124 (field data-
set) and 135 (laboratory dataset) average raw spectra—one spectrum for each soil sample.

Chemometric analysis was performed using The Unscrambler 10.3 (CAMO Software, 
Inc., Magnolia, TX, USA) software separately for the field and laboratory datasets using 
partial least squares (PLS1) regression. The number of factors used in the PLS1 regression 
models was selected based on the minimum value of the root mean squared error (RMSE) 
for a leave-one-out cross validation procedure. Field and laboratory datasets were then 
combined to create a combined dataset that included all soil samples from the four fields 
and all of the Webster, Nicollet and Okoboji soils (205 total spectra and related  NO3

−–N 
concentrations). The Exira and Hanlon soils were excluded from the combined data-
set because these soils were not represented in any of the four agricultural fields studied, 
whereas Webster, Nicollet and Okoboji soils were present in the agricultural fields. The 
combined dataset was used for a robust “leave one field/soil out” validation procedure. For 
the validation procedure, PLS1 calibration models were created using all of the data in the 
combined dataset except for data for one of the fields or soils. The calibration model was 
then used to predict  NO3

− concentrations for the field or soil that was left out of the model 
calibration. This procedure was repeated 7 times so that all fields and soils in the combined 
dataset were analyzed. Linear regression  (R2) and RMSE were used to assess the ‘leave 
one field/soil out’ validation results. RMSE was calculated as outlined in Borenstein et al. 
(2006);

where y and yʹ are the predicted and measured concentrations, and N is the number of 
spectra.

Geospatial analysis

Maps of measured and D-ATR-FTIR predicted soil  NO3
−–N concentrations for the 4 fields 

were prepared using 3D Analyst Spline with Barriers Raster Interpolation tool in ArcGIS 
10.4.1 software (Environmental Systems Research Institute, Inc., Redlands, CA, USA). 
The maps are divided into management zones based on the LSNT protocols, which stipu-
lates that areas with soil  NO3

−–N < 10 mg kg−1 require on average 174 kg N  ha−1, areas 
with 10 and 15 mg  NO3

−–N kg−1 require 107 kg N  ha−1, and areas with 15 and 25 mg 
 NO3

−–N kg−1 require an additional 40 kg of sidedress N fertilizer. Areas with soil  NO3
−–N 

concentrations > 25  mg  NO3
−–N  kg−1—have a sufficient supply of plant available N to 

(1)RMSE =

�

∑n

i=1
(y − y�)2

N
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sustain crop growth through the remainder of the growing season and do not require addi-
tional sidedress N fertilizer (Blackmer et al. 1997).

Results

Spectral characteristics

D-ATR-FTIR spectra of a typical Iowa agricultural soil equilibrated at 15, 20 and 25% 
gravimetric water content are shown in Fig. 1. In these spectra, the presence of liquid water 
is indicated by the prominent ν2 (O–H bending) band centered at 1644 cm−1 and a much 
weaker ν2 + liberation band centered at 2130 cm−1 (Verma et al., 2017). Also evident in the 
spectra are a prominent set of at least 5 overlapping bands between 850 and 1200 cm−1. 
Specific identification of the absorption bands in this region is outside of the scope of this 
paper; however these bands are attributed to inorganic mineral phases present in the soils. 
In general, both symmetric and asymmetric M–O (where M is primarily Si but can also be 
Al, Fe or Mg) stretching bands for both tectosilicates (quartz and feldspars) and phyllo-
silicates (smectite, illite and kaolinite) contribute to adsorption in this region. These M–O 
stretching bands are superimposed on a broad water liberation band, which causes a pro-
gressive increase in the background of the spectra below 1000  cm−1. The effect of this 
water liberation band is evident by comparing the baseline in the 800–1000 cm−1 region 
for spectra of the soils equilibrated at 20 and 25% moisture with the same region for spec-
tra of the soil equilibrated at 15% moisture (Fig. 1).

Nitrate has a prominent asymmetric N–O stretching band centered at 1400 cm−1. How-
ever, because  NO3

− concentrations are low in the studied soils, the N–O band is only barely 
visible as a slight positive curvature in the baseline of the spectra between the much larger 
ν2 (O–H bending) band for water and the M–O stretching bands for the inorganic phases. 

Fig. 1  Differences in D-ATR-FTIR spectra of the same soil equilibrated with different amounts of water to 
achieve 15, 20 and 25% gravimetric moisture content. Major bands contributing to the spectra are identified, 
where M is primarily Si but can also be Al, Fe or Mg
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Critically, however, neither the O–H bending band nor the M–O stretching band over-
lap with the N–O stretching region. Increasing soil water content causes the background 
to increase around 1400 cm−1 but does not interfere with the shape of the spectra in this 
region (Fig. 1).

D-ATR-FTIR spectra of a carbonate free soil and a soil containing free carbonates are 
shown in Fig. 2. The spectra of the soil that contains free carbonates has a prominent asym-
metric C–O stretching band centered at 1440 cm−1 and ranging from 1337 to 1537 cm−1 
and a smaller asymmetric C–O deformation band centered at 877 cm−1. Because the large 
asymmetric C–O stretching band for carbonate interferes with the N–O stretching band 
for  NO3

− the use of D-ATR-FTIR for quantifying  NO3
− in calcareous soils is problematic 

(Linker et al. 2005).

Soil water and nitrate determination

The124 field moist soil samples (gravimetric water content ranging from 7 to 38%) col-
lected from four agricultural fields were analyzed to assess the ability of D-ATR-FTIR cou-
pled with PLS1 modeling to predict gravimetric moisture content of soils (Fig.  3). The 
results,  R2  = 0.85 and RMSE = 0.025 g-H2O g-soil−1, demonstrate that D-ATR-FTIR is 
effective for determining water content of soil. The findings are in agreement with those 
presented by Borenstein et al. (2006) who found that ATR-FTIR could be used to deter-
mine water content of soil pastes.

The dataset for the 124 soil samples from the four agricultural fields and the dataset for 
the 135 soil samples from 5 soils amended with different  NO3

− levels were used to assess 
the ability of D-ATR-FTIR coupled with PLS1 modeling to predict soil  NO3

−–N concen-
trations (Figs. 4, 5). The results for the field samples,  R2 = 0.83 and RMSE =  8.3 mg kg−1, 
and for the 5 soils,  R2 = 0.90 and RMSE = 8.6 mg kg−1, independently demonstrate the 
ability of D-ATR-FTIR coupled with PLS1 modeling to predict soil  NO3

− concentrations 
in moist soils. Finally, the combined dataset (205 spectra and soil  NO3

−–N analyses) was 
used for a robust ‘leave one field/soil out’ validation test (Fig. 6). Results for the validation 
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Fig. 3  Measured versus pre-
dicted water content (g-water 
g-soil−1) for 124 field soil sam-
ples collected in late May—early 
June of 2016. The four farms are 
distinguished by symbols with 
different colors (Color figure 
online)
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test of the field samples,  R2 = 0.65 and RMSE = 12.5 mg kg−1, and the 5 soils,  R2 = 0.82 
and RMSE = 13.3 mg kg−1, provide an independent validation of the ability of D-ATR-
FTIR to predict soil  NO3

− levels across a broad range of soil textures and soil moisture 
content. Although physically impossible, the PLS1 regression model occasionally predicts 
negative  NO3

−–N concentrations, these values should be considered as zero within the 
margin of error.

The spatial distribution of soil  NO3
− concentrations in four agricultural fields deter-

mined using high density grid sampling and geospatial analysis are shown in Fig. 7. The 
spatial pattern of LSNT N-management zones based on standard laboratory and D-ATR-
FTIR analysis of soil  NO3

− concentrations show similar spatial patterns.

Discussion

A key goal of precision agriculture is to apply the right amount of N-fertilizer in the right 
place and at the right time. While GNSS and variable rate application technology have 
been available to farmers for over two decades, the lack of a practical and cost effective 
means for rapidly measuring the spatial variability of plant available N in soils has limited 
adoption of precision N fertilizer management.

As stated above, the purpose of this study was to determine whether or not a handheld 
battery powered D-ATR-FTIR spectrometer is accurate enough to be used as a soil  NO3

− 
sensor system to facilitate precision N fertilizer management. Linker et al. (2005) previ-
ously demonstrated that an ATR-FTIR system was capable of determining soil  NO3

−–N 
concentrations in non-calcareous soils with a standard error of 4  mg  kg−1. Linker et  al. 
used a laboratory grade FTIR spectrometer (Bruker Vector 22™, Bruker Optics, Inc. Bill-
erica, MA, USA) equipped with a ZnSe-ATR sample cell and a DTGS detector that was 
capable of achieving 2  cm−1 resolution. Their soil samples were prepared as saturated 
pastes and spread uniformly across the ZnSe ATR crystal. However, the use of a labo-
ratory grade spectrometer, which cannot tolerate vibration, high humidity or temperature 
extremes, a relatively soft ZnSe ATR crystal that is easily scratched or abraded by soil 
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Fig. 6  Validation of D-ATR-FTIR predictions of soil  NO3
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validation, and b leave one soil out validation. Different fields and soil types are distinguished by symbol 
color (Color figure online)
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minerals, and saturated pastes precludes field deployment of the system used by Linker 
et  al. (2004, 2005). In contrast, the handheld battery powered D-ATR-FTIR spectrome-
ter with 16 cm−1 spectral resolution used here is resistant to vibration, high humidity, and 
temperature extremes (Agilent 4100 ExoScan FTIR Operation Manual). Furthermore, the 
sample presentation consisted of pressing field moist soil against the optical surface of the 
D-ATR cell. Thus the instrument and the analytical conditions employed in this study are 
amenable to field deployment. Indeed, spectra of fresh soil samples were collected in the 
field.

Transmission and diffuse reflectance FTIR spectroscopy generally require that soil 
samples be oven dried and that the optical path be purged with desiccated air or  N2 gas, 
because the presence of any water vapor in the optical path degrades the quality of the 
spectra. By contrast, the presence of free water in a soil sample is essential to obtain qual-
ity spectra of soils using D-ATR-FTIR spectroscopy. When moist soil is pressed onto the 
optical surface of the D-ATR cell some water is extruded from the soil forming a thin film 
of liquid water on the optical surface of the diamond. Hence, D-ATR-FTIR spectra of field 
moist soils consist primarily of absorption bands for liquid water and any mineral parti-
cles that are physically touching or within ~ 2  µm (actual penetration depth depends on 
wavelength, refractive index and incident angle: Khoshhesab, 2012) of the optical surface 
of the diamond (Figs. 1, 2). D-ATR-FTIR spectra of air-dried soil samples are generally 
unusable because they are dominated by numerous water vapor absorption bands between 

Fig. 7  Maps of four fields showing spatial distribution of soil  NO3
−–N concentrations based on high den-

sity grid sampling; site names with A, standard laboratory method used to measure soil  NO3
−–N concentra-

tions, sampling points shown on the maps; site names with B, soil  NO3
−–N concentrations predicted using 

the D-ATR-FTIR sensor. Maps were generated using a spline with barriers—raster interpolation technique 
in ArcGIS software. The thin gray lines are soil mapping unit boundaries. Soil  NO3

−–N categories are very 
low (< 10 mg kg−1), low (10–15 mg kg−1), medium (15–25 mg kg−1), high (25–50 mg kg−1) and very high 
(> 50 mg kg−1)
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1250 and 2000 cm−1. Indeed, the lack of water vapor absorption bands and the presence of 
the O–H bending band for liquid water (Figs. 1, 2) is evidence that a film of liquid water 
formed across the surface of the diamond in this experiment. Nitrate is present in the aque-
ous phase of soils and electrostatically repelled from the negatively charged surfaces of soil 
mineral and organic particles. Hence,  NO3

− is effectively concentrated in the film of liquid 
water touching the optical surface of the diamond. For example, in a soil that has  NO3

−–N 
concentration of 25 mg kg−1 and a water content of 30%, the effective  NO3

−–N concentra-
tion of the aqueous phase is 83 mg l−1, and due to anion exclusion from diffuse double lay-
ers adjacent to particle surfaces, the actual concentration of  NO3

−–N in the water film on 
the diamond surface is even higher. Thus the sample presentation concentrates  NO3

− in the 
analytical zone of the ATR crystal allowing  NO3

− concentrations to be measured despite 
the low levels present in most soils.

Three different tests of the viability of using D-ATR-FITR to determine soil  NO3
−–N 

concentrations were used. First, the 124 samples collected from four agricultural fields dur-
ing the late-May to early-June sidedress N fertilizer application window had a wide range 
in soil moisture (7 to 38%, average 21% and SD 6.6%; Figs. 3, 4). Second, the five soils 
amended with various amounts of  KNO3 and equilibrated in the laboratory had a wide 
range of soil textures (sandy loam to silty clay loam) and  NO3

− concentrations (Fig. 5). 
Third, the combined field and laboratory dataset facilitated a robust “leave-one field/soil 
out” cross validation test (Fig. 6). All three tests indicated the ability of D-ATR-FTIR to 
determine soil  NO3

−–N concentrations with calibration  R2 values ranging from 0.83 to 
0.90 and validation  R2 values ranging from 0.65 to 0.82. The RMSEs for the calibration 
and validation tests ranged from 8.3 to 8.6 mg kg−1 and from 12.5 to 13.3 mg kg−1, respec-
tively. Collectively the results of these three tests demonstrate that the handheld D-ATR-
FTIR spectrometer is capable of determining soil  NO3

− concentrations across broad ranges 
of soil moisture and texture.

The distribution of measured versus predicted data points for the four fields and five 
soils show no evidence of bias in the calibration tests (Figs. 4, 5). This result is anticipated 
as all of the data were used to make the calibration models. In the validation test, however, 
some bias is evident for the three soils included in the combined dataset (Fig. 6b). Specifi-
cally, most of the data points for the Nicollet soil are below the 1:1 line, while most of the 
data points for the Webster soil are above the 1:1 line. This result indicates the potential 
to improve the accuracy of calibration models by using a more diverse calibration data-
set together with locally weighted chemometric model, such as that used by Chang et al. 
(2001).

The LSNT protocol (Blackmer et al. 1997) stipulates five N fertilizer management zones 
based on soil  NO3

−–N concentrations; very low (< 10  mg  kg−1), low (10–15  mg  kg−1), 
medium (15–25 mg kg−1), high (25–50 mg kg−1) and very high (> 50 mg kg−1). No side-
dress N fertilizer is recommended for soils in the high and very high categories; while side-
dress N fertilizer is recommended for soils in the very low (174 kg N  ha−1), low (107 kg N 
 ha−1) and medium (40  kg  N  ha−1) categories. The RMSE for  NO3

−–N determined by 
D-ATR-FTIR ranged from 8.3 to 13.3 mg kg−1 for the three tests described above. Thus 
the error in determining soil  NO3

−–N concentrations is about the same size as the range in 
soil  NO3

− concentrations specified in the very low, low and medium management zone cat-
egories. To assess the implications of this level of precision, N fertilizer management zones 
determined by the D-ATR-FTIR method with N fertilizer management zones determined 
by the standard laboratory method were compared.

The D-ATR-FTIR method was effective for identifying soil samples that fall in 
the high and very high categories, as 59 and 93% of samples falling in the high and 
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very high categories, respectively, were identified correctly (Table  1). The D-ATR-
FTIR method was less effective for distinguishing samples that fall in the very low, 
low and moderate categories, as only approximately one-third of the samples fall-
ing in each of these categories were identified correctly (Table  1). Most samples that 
were incorrectly categorized, however, were in an adjacent category. Considering 
only two N fertilizer management zones; Zone 1—soils that need sidedress N ferti-
lizer (soil  NO3

−–N < 25 mg kg−1) and Zone 2—soils that do not need sidedress N fer-
tilizer (soil  NO3

−–N > 25 mg kg−1), then the D-ATR-FTIR method over predicted only 
5% of samples (indicated > 25 mg kg−1 while the lab test indicated < 25 mg kg−1) and 
under predicted only 12% of samples (indicated < 25  mg  kg−1 while the lab test indi-
cated > 25  mg  kg−1). Although the accuracy reported here only supports two N ferti-
lizer management zones; advances in D-ATR-FTIR technology, the use of larger more 
diverse calibration databases and advanced chemometric algorithms are anticipated to 
allow accurate identification of management zones in the future.

The maps in Fig. 7 compare the spatial arrangement of LSNT management zones for 
the four studied fields based on analysis of soil  NO3

− concentrations by D-ATR-FTIR and 
the standard laboratory method. Although not identical, similar spatial patterns of soil 
 NO3

− concentrations are apparent and the overall effectiveness of the D-ATR-FTIR method 
for distinguishing between regions that need sidedress N fertilizer (< 25 mg kg−1) versus 
regions that do not need N sidedress N fertilizer (> 25 mg kg−1) is apparent.

The handheld ruggedized D-ATR-FTIR instrument used in this study requires no 
sample preparation and is capable of measuring soil  NO3

− concentrations in non-cal-
careous soils at field moisture levels in less than one second. These abilities suggest 
a potential for automation of soil sampling and analysis that would facilitate real-time 
on-the-go soil  NO3

− determinations. The need for real-time soil  NO3
− sensing is illus-

trated by the maps in Fig. 7. The soil N fertilizer management zones identified by high 
density grid soil sampling in the four studied fields did not correspond well with soil 
mapping unit boundaries. This suggests that big data modeling systems that use soil 
survey data to predict within field variation in sidedress N fertilizer requirements would 
have missed much of the actual within field variability for these four fields in 2016. In 
the future, soil  NO3

− sensing systems may work in combination with big data modeling 
systems to optimize fertilizer management.

Table 1  Percent of samples in the very low, low, medium, high and very high soil N fertilizer management 
zone categories predicted using the D-ATR-FTIR relative categories determined by the standard laboratory 
method

Percentages in bold are in the correct categories, percentages in italics are either over or under predicted by 
the D-ATR-FTIR method relative to the standard laboratory method

Nitrate-N concen-
tration (mg kg−1)

Categories predicted using D-ATR-FTIR (% of samples)

Very low < 10 Low 10–15 Medium 15–25 High 25–50 Very high > 50

Categories predicted using laboratory method (% of samples)
 Very low < 10 39 43 18
 Low 10–15 35 27 38
 Medium 15–25 18 16 44 22
 High 25–50 2 4 30 59 5
 Very high > 50 1 6 93
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Conclusions

Results of this study demonstrate that the handheld D-ATR-FTIR system is capable of 
collecting spectra of field moist soils in less than one second and that the spectra can be 
used to estimate  NO3

−–N concentrations in non-calcareous soils with sufficient accuracy 
to facilitate precision N fertilizer management (validation RMSE = 13 mg kg−1). While 
the D-ATR-FTIR method used in this study was not accurate enough to warrant dividing 
a field into five N fertilizer management zones, the results were accurate enough to sup-
port two N management zones. In the future, advances in D-ATR-FTIR technology and 
the use of advanced chemometric techniques that leverage larger more diverse datasets 
may enhance both the accuracy and the precision of soil  NO3

− measurements. Hand 
soil sampling and a handheld D-ATR-FTIR spectrometer were used in this study; in the 
future, however, an automated D-ATR-FTIR soil  NO3

− sensing system could be coupled 
with a fertilizer applicator to facilitate modulation of sidedress N fertilizer application 
rates based on real-time on-the-go soil  NO3

− sensing.
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