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Abstract Early detection and counting of immature green citrus fruit using computer 
vision can help growers produce a predictive yield map which could be used to adjust man-
agement practices during the fruit maturing stages. However, such detecting and count-
ing is difficult because of varying illumination, random occlusion and color similarity with 
leaves. An immature fruit detection algorithm was developed with the aim of identifying 
and counting fruit in a citrus grove under varying illumination environments and ran-
dom occlusions using images acquired by a regular red–green–blue (RGB) color camera. 
Acquired citrus images included front-lighting and back-lighting illumination conditions. 
The Retinex image enhancement algorithm and the two-dimensional discrete wavelet trans-
form were used for image illumination normalization. Color-based K-means clustering and 
circular hough transform (CHT) were applied in order to detect potential fruit regions. A 
Local Binary Patterns feature-based Adaptive Boosting (AdaBoost) classifier was built for 
removing false positives. A sub-window was used to scan the difference image between 
the illumination-normalized image and the resulting image from CHT detection in order to 
detect small areas and partially occluded fruit. An overall accuracy of 85.6% was achieved 
for the validation set which showed promising potential for the proposed method.
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Abbreviations
LBP  Local Binary Patterns
RGB  Red, green and blue
CHT  Circle hough transform
FFT  Fast Fourier transform
ARB  Adaptive red and blue chromatic map
FNCC  Fast normalized cross correlation
Retinex  A compound word from ‘retina’ and ‘cortex’
SVM  Support vector machines
LS- SVM  The least squares support vector machine
AdaBoost  Abbreviations of adaptive boosting

Introduction

Florida contributed more than 65% of the citrus production in the U.S. per year during 
the last decade (USDA-NASS 2015). Early yield estimation of immature green citrus 
fruit using agricultural machinery is of great significance. It may help growers to identify 
growth conditions of immature citrus fruit and thus implement precise site-specific ferti-
lization based on their conditions and allocate labor based on yield maps. Detection and 
counting of immature green citrus fruit are critical steps in creating yield maps (Li et al. 
2016).

Computer vision may provide a promising tool for agricultural machinery-based fruit 
detection. Many researchers have proposed different image processing methods for detect-
ing immature green fruit. Stajnko et al. (2004) developed a method using a thermal camera 
to capture apple tree images for estimation of the number and diameter of immature green 
apple fruit in an orchard during the growing season. Wachs et al. (2010) designed a ther-
mal infrared and color image-based method for immature green apple detection using low 
and high-level visual features. Kane and Lee (2007) designed a method where immature 
green citrus fruit images were captured by a monochromatic near-infrared camera and the 
fruit were detected using morphological image processing techniques. Another green citrus 
fruit detection method proposed by Okamoto and Lee (2009) used hyperspectral images 
to detect the fruit, however, there were some occluded or highly contrasted fruit identified 
incorrectly.

The above methods that analyzed thermal and hyperspectral images of the fruit using 
visual and infrared information have potential to detect immature green fruit. How-
ever, the detection equipment costs are high, and hyperspectral images include much 
redundant information. Direct analysis of fruit color image from a much less expensive 
red–green–blue (RGB) camera may be a more easily acceptable method for fruit growers 
to estimate fruit yield. A large number of articles have focused on RGB color image-based 
detection algorithm for immature green fruit. Linker et al. (2012) developed an algorithm 
with four main steps, which combined the segmentation results of high probability apple 
areas to determine the number of green apples in the orchard. Kurtulmus et al. (2014) pro-
posed a feature-based algorithm for immature peach fruit detection using statistical classi-
fiers. Similarly, some algorithms for detection of immature green citrus fruit also have been 



1064 Precision Agric (2018) 19:1062–1083

1 3

developed using RGB color images of the natural outdoor citrus canopy. An ‘eigenfruit’ 
method with color and Gabor texture features was implemented by Kurtulmus et al. (2011) 
to identify and count immature green citrus under natural environment. However, three fac-
tors contributed to a high missed rate: (1) Varying illumination affected color and texture 
of the fruit; (2) partial occlusion made citrus fruit appear to be smaller and (3) the same 
fruit was detected multiple times. Bansal et al. (2013) proposed a fast Fourier transform 
(FFT) leakage-based green citrus detection method. However, this algorithm would pro-
duce faulty results when the image included sky background or another symmetric area. 
Another scheme was developed by Sengupta and Lee (2014) to detect immature green cit-
rus fruit. The fruit firstly was detected using shape analysis. Then a citrus texture-based 
support vector machine was applied to detect fruit. The algorithm was able to detect and 
count 80.4% of citrus fruit of natural canopy images for validation. However, the percent-
age of false positives was high (27.1%), which might have been caused by round objects 
from the Circular Hough Transform (CHT) and partial occlusion. After image segmen-
tation by using adaptive red and blue chromatic map (ARB), Zhao et  al. (2016) trained 
a support vector machine using color and the sum of absolute transformed difference to 
detect immature green citrus. More than 83% of the fruit was successfully detected in the 
validation set. In another study, Li et  al. (2016) firstly used a fast normalized cross cor-
relation (FNCC) method to detect potential green citrus fruit positions. Then the fruit was 
identified by combining color, texture and shape feature analysis. The successful detection 
rate of the fruit approached 84.4%. However, their algorithm had difficulty in detecting 
fruit with more than a half of their edges missing or occluded with a branch in the middle.

While comparing the above studies, the detection accuracies of immature green citrus 
fruit obtained by analyzing RGB color images did not show big differences from those of 
analyzing thermal and hyperspectral images. A regular RGB color camera may be a much 
easier option and cost less than a thermal or hyperspectral camera. It may be a better choice 
for growers to acquire citrus fruit images for early yield estimation using the regular RGB 
camera. However, varying illumination, random occlusion and color similarity with leaves 
may present many more challenges in immature green citrus fruit detection based on regu-
lar RGB image analysis.

Due to occlusion of leaves and branches and illumination variation, some fruit sur-
faces usually appear darker, which will increase the difficulty of fruit identification. Many 
researchers have used a logarithm transform to enhance image illumination (Savvides and 
Kumar 2003; Vishwakarma et al. 2009; Cheng et al. 2010; Kurtulmus et al. 2014). Retinex 
theory was proposed by Edwin (1977), where Retinex is a compound word and made up 
from the two words retina and cortex. It was established based on scientific experiments 
and analysis and considered as an image enhancement algorithm on the basis of the human 
visual system. It has been widely used in many fields due to its good performance. For 
example, edge enhancement, color constancy and balance in dynamic range compression 
made Retinex different from conventional image enhancement algorithms. However, a 
halo commonly exists in high contrast edges using this algorithm. Bilateral filtering may 
be a potential tool used for dealing with the disadvantage of Retinex. However, the origi-
nal bilateral filtering algorithm consumes too much processing time, so it has not been 
widely used, especially in computationally intensive tasks, such as fruit detection (Yang 
et al. 2015). Durand and Dorsey (2002) proposed two acceleration strategies for the origi-
nal bilateral filtering, piece-wise linear approximation and multi-scale implementation.

In face recognition research, illumination variation is one of the critical factors affect-
ing accuracies since it can make several images of the same person appear to be dramati-
cally different. Thus, algorithm development for eliminating the effects of illumination 
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variation has become a topic of interest. Similarly, varying illumination is also a significant 
factor in limiting the performance of citrus fruit recognition. Illumination normalization 
can be used for eliminating illumination variation. Among various illumination normali-
zation techniques, the wavelet transform has been widely researched. Duan et  al. (2004) 
used a wavelet transform to decompose a face image into an approximation component 
and an illumination component. Each pixel of the luminance component was set to the 
same gray value. The value was used as the mean of the approximation component. Thus, 
the illumination variation was removed from the approximation component. Du and Ward 
(2005) proposed a wavelet-based illumination compensation method. The method applied 
one level wavelet transform to decompose the image and use histogram equalization toward 
contrast enhancement, which yielded satisfactory results. Emadi et al. (2012) decomposed 
an input image into high and low-frequency components, and then set the low-frequency 
component to zero. The image was reconstructed by inverse wavelet transform. The result 
showed that the image had not only enhanced edges and details but also enhanced contrast.

Texture features may be more suitable for distinguishing immature green citrus fruit 
and non-fruit objects than color features. Local Binary Patterns (LBP) operator, initially 
proposed by Ojala et  al. (1996), is a powerful tool for texture description and has been 
widely used in many fields. Sun et al. (2011) extracted an overall face feature histogram 
with the LBP operator. Then the least squares support vector machine (LS-SVM) was used 
to identify and train samples of face images in order to improve the recognition rate of the 
face. Lei et al. (2012) combined the LBP operator and a Bayesian classifier to trace visual 
objects. Mazo et al. (2017) used the LBP operator to describe the texture information of the 
cardiovascular tissues. Thus, the cardiovascular tissues could be automatically classified by 
using texture information and support vector machines (SVM). A classifier usually needs 
to be applied in the LBP feature-based classification. The Adaptive Boosting (AdaBoost) 
algorithm proposed by Freund and Schapire (1995) has a robust classification ability using 
a strong classifier constructed by boosting a large number of weak classifiers that have 
weak classification abilities. Some research activities have been carried out for classifica-
tion using the AdaBoost algorithm (e.g., Wang et  al. 2004; Khammari et  al. 2005; Luo 
et al. 2016).

Motivated by these studies, this study used a regular RGB color camera to obtain imma-
ture green citrus fruit images in a citrus grove with the aim of identifying the fruit under 
varying illumination and random occlusion conditions as accurately as possible. Specific 
objectives of this study were to:

(1) develop a fast bilateral filtering-based Retinex for immature green citrus image 
enhancement;

(2) develop a method for normalizing illumination as much as possible based on the wave-
let transform;

(3) develop a method for detecting potential fruit positions using color analysis and CHT; 
and

(4) develop a classification method by combining LBP features and an AdaBoost-based 
classifier for removing false positives and identifying as much immature green citrus 
fruit as possible including partially occluded fruit.
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Materials and methods

Image acquisition

Citrus canopy images, as shown in Fig. 1, including leaves, branches and immature green 
citrus fruit, were obtained using a typical digital color camera (Power Shot SD880IS, 
Canon Inc., USA) with a JPEG image format and a resolution of 3648 × 2736 pixels for 
developing an algorithm for fruit detection. The citrus variety was Orlando Tangelo. 
One hundred canopy images under both front-lighting and back-lighting conditions were 
obtained in a 1  week period at various times during daylight in October 2015 from an 
experimental citrus grove in the University of Florida, Gainesville, Florida (29°38′11.9″N, 
82°21′52.5″W), USA. The images were corresponding to approximately 240 × 180  mm2 
actual scene. All of the images were resized to 800 × 600 pixels by a bilinear interpola-
tion method for computational efficiency. Matlab (Ver. R2016b, Mathworks, Natick, MA, 
USA) and OpenCV (Ver. 3.0, Intel Corporation, Santa Clara, California, USA) were used 
to develop an immature green citrus fruit detection algorithm in this study.

Algorithm description

The proposed algorithm included three stages: preprocessing, training and testing for detecting 
and counting immature green citrus fruit from trees. As shown in Fig. 2a, the preprocessing 
stage was composed of image size conversion, and enhancement and normalization of illumi-
nation, which was the crucial part of the algorithm and was used to remove noise as much as 
possible. The algorithm firstly enhanced illumination of the resized images using the Retinex 
image enhancement algorithm based on a fast bilateral filtering, and then a wavelet trans-
formation-based algorithm was proposed for illumination normalization of the images. The 
illumination-normalized image was the output of the preprocessing stage, which also was the 
input of the testing stage and the training stage. Its specific details are demonstrated in the next 
section. As shown in Fig. 2b, in the training stage, 24 illumination normalized images were 
randomly selected for manual extraction of fruit regions and non-fruit regions so that their 
LBP features could be calculated. Each number of fruit regions and non-fruit regions was 200 
and the region size was 24 × 24 pixels. In parallel, in step 1 of the testing stage, potential citrus 
fruit regions were extracted by segmenting the illumination normalized images using color-
based K-means clustering and CHT. Thus, the images were divided into two parts, which were 

Fig. 1  An example RGB color 
image of a citrus canopy
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Fig. 2  Flow chart of the proposed algorithm: a flow of preprocessing stage; b flow of testing stage and 
training stage
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the image including detection results of CHT and the image without detection results of CHT, 
respectively. In step 2 of the testing stage, the CHT detection results were decided whether 
they were fruit regions using the training stage classifier. There were still some partial occlu-
sions and small area fruit after CHT detection. In step 3 of the testing stage, a 10 × 10 pixels 
window scanned the whole remainder image to search for any missing fruit regions. The fruit 
number would be the sum of the result of steps 2 and 3 (Fig. 2b).

Image enhancement using a fast bilateral filtering‑based Retinex

The first strategy proposed by Durand and Dorsey (2002) was used to accelerate the bilateral 
filtering for citrus image illumination enhancement in this study. Based on the Retinex theory, 
the resized citrus fruit image S(x, y) can be understood as the product of the reflectance image 
R(x, y) and the illumination image L(x, y) shown as Eq. 1.

Then, the illumination image of the citrus fruit image can be obtained using a logarithmic 
operation on Eq. 1. The intensity of the illumination image L(x, y) was segmented into some 
values {i j}, and the output value of the filtering for each value was firstly calculated using 
Eq. 2,

where Ω was the set of all pixels, f1 and f2 were both Gaussian functions, Ip was the bright 
value of point p and kj(s) was a normalization term that was defined by Eq. 3.

And the final output Is of the filtering for a pixel s was a linear interpolation between the 
output Bs

j of the two closest values i j.
After the fast bilateral filtering described above, the new illumination image I(x, y) was 

obtained. It was composed of a new image plus the contrast enhanced reflectance image R′(x, 
y). An illumination enhanced image S′(x, y) was finally obtained using an exponential opera-
tion on the new image.

Wavelet transformation‑based illumination normalization

Though image edge and fruit surface illumination can be enhanced by the algorithm of the 
previous section, uneven illumination still exists on the surface of the fruit. The illumina-
tion enhanced citrus image S′(x, y) was firstly decomposed into three color channels of SR′(x, 
y),SG′(x, y), and SB′(x, y) in RGB color space. Considering each color channel as C(x, y), the 
two-dimensional discrete wavelet transform (two-dimensional Mallat algorithm) in the first 
layer was adopted to decompose it into low-frequency and high-frequency components. Its 
quick decomposition formula is as below:

(1)S(x, y) = R(x, y) × L(x, y)

(2)Bj
s
=

1

kj(s)

∑
p∈�

f1(p − s)f2(Ip − ij)Ip

(3)kj(s) =
∑
p∈�

f1(p − s)f2(Ip − ij)
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where x, y presented the co-ordinate of the pixel point, k, l were both integers, and g, h 
were a high-pass filter and a low-pass filter, respectively. cj was the original color chan-
nel, dV

j+1 was a vertical high-frequency component, dH
j+1 was a horizontal high-frequency 

component and dD
j+1 was a diagonal high-frequency component. cj+1 was a low-frequency 

component. Histogram equalization and contrast enhancement were then used for the low-
frequency component and the high-frequency component, respectively. Illumination nor-
malization was accomplished when the low-frequency component and the high-frequency 
component were reorganized into a gray scale image using two-dimensional wavelet recon-
struction using Eq. 5.

The parameters in Eq. 5 were the same as in Eq. 4. Programming was carried out using 
Matlab. Bi-orthogonal wavelet was selected as the wavelet function from the Matlab wave-
let toolbox. A wavelet transformation-based illumination normalization was then carried 
out by reorganization of the three illumination normalized color channels of the citrus 
color image.

AdaBoost classifier based on LBP features

The process of the LBP operator is similar to a filter template operation. For every pixel in 
the image, the gray value of the point is used as a threshold to transform its eight neigh-
bor-pixels into binary numbers. Based on a certain order, those binary numbers formed 
an 8 bit binary number, which was then converted to its corresponding decimal value 

(4)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

dV
j+1

(x, y) =
∑
k

∑
l

g(k − 2x)h(l − 2y)cj(k, l)

dH
j+1

(x, y) =
∑
k

∑
l

g(k − 2x)h(l − 2y)cj(k, l)

dD
j+1

(x, y) =
∑
k

∑
l

g(k − 2x)h(l − 2y)cj(k, l)

cj+1(x, y) =
∑
k

∑
l

g(k − 2x)h(l − 2y)cj(k, l)

(5)

cj(x, y) =
∑
l

∑
k

h(k − 2x)h(l − 2y)cj+1(k, l)

+
∑
l

∑
k

g(k − 2x)h(l − 2y)dH
j+1

(k, l)

+
∑
l

∑
k

h(k − 2x)g(l − 2y)dV
j+1

(k, l)

+
∑
l

∑
k

g(k − 2x)g(l − 2y)dD
j+1

(k, l)

1 2 3

9 5 6

5 3 1

0 0 0

1 1

1 0 0

Threshold

Fig. 3  The diagram of the process of the LBP operator
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(0–255). Eventually, this decimal value was used as the response of the center pixel. As 
shown in Fig. 3, ‘5’ is the gray value of the center pixel. By using it as a threshold, the 
gray values of the eight adjacent pixels are compared with it. If the surrounding pixels are 
greater than or equal to it, then the pixel location is labeled as 1, otherwise it is 0. Thus, 19 
(= (00010011)10) can be obtained in a clockwise direction and it is just the LBP value of 
the center pixel. In image recognition, the statistical histogram of the LBP pattern can be 
used as a texture descriptor so that a robust classifier could be trained by it.

LBP features extraction of fruit and non‑fruit objects

Positive samples, which were LBP features of fruit, were built using a 24 × 24 pixels sub-
window that was smaller than the area of the smallest fruit size to capture green citrus 
fruit areas. Each fruit area was divided into 576 (= 24 × 24) small non-overlapping regions 
R0, R1, … R575. The LBP pattern histogram Hi of each region Ri can be calculated using 
Eqs. 6 and 7,

where f(A) was defined as

m represented one LBP pattern and q was the number of LBP pattern categories. hi of each 
region obtained by equalizing each Hi was cascaded from row to column to constitute a 
vector Z; and Z was just the LBP histogram feature of one positive sample. Extraction of 
the LBP histogram feature ξ of each negative sample was implemented using the same 
procedure.

Classifier construction based on AdaBoost algorithm

The specific classifier construction process trained by using LBP features of fruit and non-
fruit is shown using the pseudo code in Table 1.

(6)Hi = {h0, h1,… , hq−1}

(7)hm =
∑
(x,y)

f {I(x, y) = m}(m = 0, 1,… , q − 1)

f (A) =

{
1, if A = true

0, if A = false

Table 1  The pseudo code of classifier construction
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Where xi represented sample i including fruit LBP feature Z and non-fruit LBP fea-
ture ξ, yi = 0 or yi = 1 indicated sample i was a negative or positive sample, respectively, 
and N was the total number of positive and negative samples. Firstly, the weights D1(xi) 
of all samples were initialized. For the jth feature of each sample, one weak classifier 
hj(xi) as shown in Eq. 8 can be obtained by calculating its minimum error,

where θi was a threshold, pi was direction parameter and gj was the jth LBP feature. Then, 
in the resulting weak classifiers, one weak classifier ht(x) with the minimum error ɛt can be 
obtained. Thus, the weights of all the samples Dt(xi) were updated into Dt+1(xi), where βt 
was equal to ɛt/1 − ɛt, Zt was a normalization factor made 

∑N

i=1
Dt+1

�
xi
�
 to be 1. If xi was 

correctly classified by ht(x), ei would be 0, otherwise 1. Finally, the strong classifier H(x) 
was constructed as Eq. 9.

where �t = log 1∕�t = log
1−�t

�t
.

Training of the classifier using LBP feature

The proposed method of this study (Method 3) used the LBP features of 200 fruit sam-
ples and 200 non-fruit samples of illumination-normalized images to train the Ada-
Boost-based classifier in the training stage. To build the training data, firstly, the fruit 
samples and the non-fruit samples were manually extracted from the illumination-nor-
malized color images of the citrus canopy. Then, these samples were uniformly pro-
cessed into 24 × 24 sub-window images as shown in Fig.  4a. Next, the sub-window 
images were transformed to LBP texture maps as shown in Fig.  4c. Finally, the tex-
ture maps were used to extract LBP features of both fruit and non-fruit in the process 
stated in the previous section. In the testing stage, the classifier was used to determine 
whether the potential fruit regions extracted by the developed algorithm were fruit or 
non-fruit. Details are presented in the next section.

In order to demonstrate the performance of illumination normalization and the pro-
posed algorithm, two other methods were presented for comparison as follows.

Method 1 Referring to the requirements of samples selection for the AdaBoost algo-
rithm (Freund and Schapire 1997), 300 fruit samples and 600 non-fruit samples were 
manually extracted. Instead of using illumination-normalized images, those samples 
were extracted from the original citrus canopy color images as shown in Fig. 4b. Their 
corresponding LBP texture maps are shown in Fig. 4d. Then, the classifier was trained 
by the LBP features in the training stage. However, the trained classifier would be used 
to detect the immature green citrus fruit in the original citrus canopy color images, 
instead of illumination-normalized images, in the testing stage.

(8)hj(x) =

{
1 if pjgj(x) ≤ pj�j

0 otherwise

(9)H(x) =

⎧⎪⎨⎪⎩

1 if
T∑
t=1

�tht(x) ≥ 1∕2

T�
t=1

�t

0 others
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Method 2 The training stage was the same as Method 3. However, the trained Ada-
Boost-based classifier was directly used to detect the immature green citrus fruit in the 
original citrus canopy color images in the testing stage.

Potential fruit region detection based on K‑means clustering and CHT

Immature green citrus fruit are usually light green, which is different from branches and 
background. Thus, color analysis has the potential for obtaining fruit regions. This is a 
simple procedure to find the green components and discard other colors. Clustering is an 
unsupervised learning that can automatically divide a data set into different classes each 
of which has greater similarity and a large degree of difference simultaneously between 
different classes. K-means clustering is a commonly used clustering algorithm. It deter-
mines K divisions which reach a minimum squared error. When a cluster is dense, the dis-
tinction between classes is obvious, and the algorithm has better results. For dealing with 
large datasets, the algorithm is relatively scalable and efficient. K-means clustering needs 
to specify the number of clusters to be partitioned and a distance metric to quantify how 
near the two classes are to each other. Immature green citrus fruit and leaves are green, 
and the peduncles, branches and most backgrounds are other colors, thus the number of 
clusters was determined as two based on multiple trials. Therefore, in the testing stage, illu-
mination normalized citrus color image was firstly segmented into the green and non-green 
components using K-means clustering. Fruit regions can be located in the green color com-
ponent. As the shape of the fruit was roughly circular, a basic shape analysis should be 
conducted for extracting fruit regions from the green color component. CHT first applied 
by Duda and Hart (1972) is a variation of the standard Hough transform, which is a feature 
extraction technique and used widely in the computer vision community. The parameters 

Fig. 4  An example of training dataset images: a fruit and non-fruit samples of illumination-normalized 
images; b fruit and non-fruit images of original images; c LBP feature images of (a); d LBP feature image 
of (b)



1073Precision Agric (2018) 19:1062–1083 

1 3

of the detected circles can be determined by the CHT. If the radius of the circle is known 
beforehand, the CHT algorithm is easier to implement. In the training stage, the minimum 
and maximum radii were found to be approximately 20 and 50 pixels, respectively. Using 
these radius ranges, a fast circle search can be performed in the gray level image of the 
segmented green color component using Matlab. ‘Imfindcircles’ was selected as the CHT 
function, and the parameter ‘Sensitivity’ was set to be 0.91, which was determined from 
the training set. The detection results based on K-means clustering and CHT were overlaid 
on the illumination normalized citrus image.

Removal of false detections and determination of the final number of fruit

After extraction of potential fruit regions, the illumination normalized image of citrus 
was segmented into the image with the CHT detection result and the image without the 
CHT detection result, which were stored as image_CHT and image_WCHT, respectively. 
False positives can occur in image_CHT and false negatives can exist in image_WCHT. In 
the image_CHT, a maximum inscribed rectangle of each circle was divided into multiple 
20 × 20 sub-windows. Then each sub-window was classified using the trained AdaBoost-
based classifier and it was then determined whether it satisfied the citrus fruit feature. 
In the maximum inscribed rectangle, if the number of sub-windows which satisfied the 
fruit feature were greater than the number of sub-windows that did not satisfy the fruit 
feature, the circumscribed circle of the rectangle could be determined as a fruit region by 
majority voting. Otherwise, it would be determined as a non-fruit region, and the circle 
region would be assigned to ‘0’. All of the circles in the image were scanned using this 
method. The center co-ordinates of the identified circles were stored into (xi, yi), where i 
was the number of the identified circles. Euclidean distance was used to measure the dis-
tance between any two centers. If the distance was less than 20 pixels, the two centers were 
determined as the same center and i was updated into i − 1. The distance parameter (20 
pixels) was determined from the training data set. Following this procedure, i finally was 
updated into i′ that represented the final number of fruit regions in image_CHT after false 
positive removal, and the rectangle that was tangent to the identified circle was used to 
represent the fruit.

In the image_WCHT, a 10 × 10 sub-window scanned the whole image from left to right 
and from top to bottom by moving 10 pixels at one time for searching the region that sat-
isfied the fruit feature. The classifier would be used to determine whether the region was 
fruit or not. If the sub-window satisfied the fruit feature, the co-ordinates of its four verti-
ces were recorded. Then, its center can be calculated and stored into (xi′, yi′). i represented 
the number of the identified sub-windows. If the Euclidean distance between two identified 
sub-window centers was smaller than 10 pixels, the two sub-windows were considered to 
belong to the same fruit. They were combined into a large rectangle to represent the fruit. 
The rectangle’s four vertices were the minimum and maximum abscissas and the minimum 
and maximum ordinates of the two sub-windows. i was updated into i − 1. Finally, i was 
updated into i″ that represented the final number of fruit regions in image_WCHT after 
false negative removal. Thus, the final number of immature green citrus fruit detected by 
the proposed algorithm was the sum of i′ and i″.
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Results

Some example images including Fig.  1 were randomly chosen from the 76 validation 
images to demonstrate how the proposed method worked. The intermediate results are 
shown in the following sub-section.

Illumination enhancement

To illustrate algorithm performance under different illumination conditions, citrus 
canopy images were captured under both front-lighting and back-lighting conditions 
as shown in Fig.  5a and b. The image enhancement method which was used in this 
study enhanced the whole image illumination and preserved fruit edges. The resulting 
images of the fast bilateral filtering-based Retinex are shown in Fig. 5c and d. Darker 
areas in the original image became brighter, and fruit edges were kept clear after illu-
mination enhancement.

Fig. 5  Image enhancement results: a a citrus canopy image under front-lighting condition; b a citrus can-
opy image under back-lighting condition; c image enhancement result of (a); d image enhancement result 
of (b)
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Result from illumination normalization

Based on wavelet transformation, illumination normalized images from Fig. 5c and d can 
be seen in Fig. 6a and b. There were no apparent brightness differences between most of 
the shadow and light areas apart from the two regions where there was much stronger 

Fig. 6  Illumination normalization results: a illumination normalization result of Fig.  5c; b illumination 
normalization result of Fig. 5d; c histogram for Fig. 5c; d histogram for Fig. 5d; e histogram for (a); f histo-
gram for (b)
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illumination than other regions. The two regions are the upper left corner of Fig. 6a and a 
bunch of bright bands in Fig. 6b middle, respectively. The histograms for Fig. 6a and b are 
shown in Fig. 6e and f, where a more even image intensity distribution was shown com-
pared to Fig. 6c and d which are the histograms for Fig. 5c and d. These results indicated 
that the proposed illumination normalization algorithm was effective.

Potential fruit regions detection results from K‑means clustering and CHT

After illumination normalization, extraction results of potential fruit regions based on 
K-means clustering and CHT are shown in Fig. 7. Figure 7a was the extraction result 
of green color components of Fig.  6b based on K-means clustering, and Fig.  7b was 
the part that belonged to red and blue color components. It can be seen that green color 
components including citrus fruit and leaves can almost be segmented from the origi-
nal illumination normalized image. Most of the fruit in Fig. 6b can be seen in Fig. 7a. 
However, there were still some small holes in the fruit surfaces and leaves. After those 
holes were filled, fruit shapes became obvious. Thus most of the fruit regions can be 
determined by CHT as shown in Fig. 7c. The results based on K-means clustering and 

Fig. 7  Extraction results of potential fruit regions: a green color component of Fig. 6a; b other color com-
ponents of Fig.  6a; c morphological processing result; d potential fruit regions detection overlaid on the 
original illumination normalized image
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CHT were overlapped on the original illumination normalized image. Though most of 
the fruit regions can be identified, false positives and false negatives also occurred as 
shown in Fig. 7d.

LBP feature‑based fruit detection result and removal of false detections

Figure 8a and b are the detection results using Method 1 and Method 2, respectively. The 
figures show that fruit detection using the LBP feature-based AdaBoost classifier was 
effective. However, apparent false negatives appeared in the result from Method 1. Though 
Method 2 had less false negatives, more false positives occurred in the detection result. 
After the potential fruit region detection, the proposed algorithm divided Fig.  7d into 
image_CHT and image_WCHT shown as Fig. 8c and d, respectively. False positive removal 
result is shown in Fig. 8e and red rectangles represent the final fruit detection results in 
the image_CHT. In the image_WCHT, false negatives including three partially occluded 
fruit were removed in Fig. 8f. After false positive removal, the detection result of immature 
green citrus fruit using the algorithm is shown in Fig. 8g.

Performance of the algorithm

Successful detections and misclassifications

The successful detection results were obtained under varying illumination environments. 
Figure 9a shows eleven citrus fruit with different surface illumination including five fruit 
partially occluded by the leaves which were successfully detected by the algorithm under 
front-lighting conditions. In Fig. 9b, some successful detections for smaller fruit partially 
occluded by leaves and partially occluded by other fruit can be seen. Figure  9c and d 
show other images taken from a little closer distance under different illumination condi-
tions with bigger fruit sizes compared with the previous images. All fruit, including some 
fruit partially occluded with branches in the middle (Fig. 9d) were successfully detected in 
these images. However, due to the visible part being much smaller than half of one fruit, 
three partially occluded fruit were missed in the detection result of Fig. 10a. Similar false 
detection happened in Fig. 10b where, beyond the main view, two small blurred fruit were 
missed, and two small background regions were mistaken for fruit. Illumination conditions 
and visibility of fruit may have caused these false detections. However, it is inevitable that 
some citrus canopy images will include these disadvantageous factors under varying illu-
mination environments. These results indicated that the algorithm had potential for imma-
ture green citrus fruit detection under varying illumination and random partial occlusion 
conditions.

For the validation dataset including 76 citrus canopy images, three different detection 
methods were applied. The detection results are summarized in Table 2. There were a 
total of 458 citrus fruit in the validation images. A total of 392 fruit were correctly iden-
tified by the proposed method, much larger than the 329 fruit and 351 fruit identified by 

Fig. 8  Results of LBP feature-based detection and false removal: a detection result based on LBP feature 
using original citrus canopy image; b detection result based on LBP feature using illumination normalized 
image of citrus canopy; c image_CHT; d image_WCHT; e false positive removal result in image_CHT; f 
false negative removal result in image_WCHT; g detection result based on the proposed method

▸
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Fig. 9  Successful detection results under different conditions: a detection result with a large capturing dis-
tance under front-lighting conditions; b detection result with a large capturing distance under back-lighting 
conditions; c detection result with closer capturing distance under front-lighting conditions; d detection 
result with closer capturing distance under back-lighting conditions

Fig. 10  The detection results including false detection: a the detection result including three missed fruit; b 
the detection result including two false positives and two missed fruit
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Method 1 and Method 2, respectively. The correct fruit detection accuracy was 85.6%, 
higher than the 71.8 and 76.6% accuracy of Method 1 and Method 2, respectively. 
From Table  2, Method 1 had 113 false positives, smaller than the 121 false positives 
by Method 2. However, 129 fruit were missed compared with 107 missed by Method 
2. That implies that the LBP feature-based AdaBoost classifier could detect immature 
green citrus fruit under natural environment conditions. However, results were better 
when the AdaBoost classifier based on LBP feature of illumination normalized images 
was used to detect fruit.

The proposed method introduced 54 false positives and 66 missed fruit in compari-
son, which is described in Table 3. False positive usually indicates non-fruit is incor-
rectly identified as fruit. For false positives, in this study, partial occlusion means that 
the identified region includes more than two non-fruit objects. False positives occurred 
more under unoccluded conditions, which were 11 and 23, than those under partial 
occlusion conditions, which were 7 and 13. Missed fruit more easily happened in a par-
tially occluded environment, which 30 and 15 more than those 15 and 6 under unoc-
cluded conditions.

Real‑time performance of the proposed algorithm

The processing time for the proposed algorithm mainly occurred during false positive 
removal. Although the fast bilateral filtering-based Retinex algorithm decreased the 
original Reinex algorithm processing speed, the average processing time was 6765 ms 
for 76 citrus images. For this research, a 2.40 GHz CPU was used to run the algorithm. 
Moreover, the average processing time of wavelet-based illumination normalization 
was 1186 ms. Although the CHT algorithm took too much time, the proposed potential 
fruit regions detection algorithm used packaged CHT functions in Matlab to search for 
circles in the green color component of the K-means clustering extraction results. The 
average time of processing for CHT was 965 ms. However, the false detection removal 
determining whether the CHT detection results were fruit regions in image_CHT and 

Table 2  Fruit detection accuracy of different methods for validation dataset with a percent in the parenthe-
sis

Total fruit count (%) Correct identifica-
tion (%)

False positive (%) Missed (%)

Method 1 458 (100) 329 (71.8) 113 (24.8) 129 (28.2)
Method 2 458 (100) 351 (76.6) 121 (26.4) 107 (23.4)
Method 3 458 (100) 392 (85.6) 54 (11.8) 66 (14.4)

Table 3  False detection results (number of fruit) under different conditions

Front-lighting 
and unoccluded

Back-lighting 
and unoccluded

Front-lighting and 
partial occlusion

Back-lighting and 
partial occlusion

Total

False positives 11 23 7 13 54
Missed fruit 15 6 30 15 66
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traversing the sub-window into image_WCHT to search for the region that satisfied fruit 
feature based on different LBP features took much time. The average processing time 
from citrus image preprocessing to the final fruit counting was 16 928 ms.

Discussions

This study used only regular RGB images of the citrus canopy to detect immature green 
citrus fruit under natural environment. There were large challenges such as varying illu-
mination, random occlusion and color similarity to leaves. RGB images could be affected 
more easily than hyperspectral or thermal images by varying illumination so that informa-
tion of the fruit surface could be changed. Random occlusion by fruit or other objects also 
could affect correct fruit detection. The similar color made it difficult to detect the fruit 
using color information. This study introduced the LBP features to express texture features 
of fruit and non-fruit objects. Then the AdaBoost algorithm-based classifier was trained 
by the LBP features. Thus, false positives were removed by using the potential fruit region 
detection and the classifier. Finally, immature green citrus fruit were detected.

Although the LBP feature was an illumination invariant, it was not possible to obtain 
a reasonable accuracy by using only the LBP feature of the original citrus color image 
based-classifier to detect the fruit under natural environmental conditions. Fruit detection 
under natural environment may be more complicated than human face recognition. How-
ever, LBP was a potential tool to combine with another method. Before the fruit detection, 
varying illumination of the original citrus color image was normalized, which improved 
the overall accuracy by using only LBP features of the illumination-normalized image. 
Color-based K-means clustering and shape-based CHT were helpful for detecting potential 
fruit regions because the fruit usually is green and circular. After potential fruit regions 
detection, the classifier based on the LBP feature of the illumination normalized images 
determined whether the CHT detection results were fruit and searched for missed fruit. Not 
only did this method combine color, shape and texture features but also reduced the inter-
ference of varying illumination. The classifier based on the LBP feature of the illumina-
tion normalized image played an important role as well. Finally, by combining two partial 
results of false detection removal, the detection achieved a satisfactory result of an overall 
accuracy of 85.6%.

Two improvements will be developed in future research. They will be an adaptive algo-
rithm for fruit detection under variable illumination and improving the image processing 
speed by decreasing false positive removal time.

Conclusions

Detection and counting of immature green citrus fruit based on the LBP feature using illu-
mination-normalized images was proposed in this research. The major conclusions can be 
summarized as follows:

(1) The fast bilateral filtering-based Retinex algorithm enhanced illumination of the citrus 
canopy images.
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(2) Wavelet transformation-based illumination normalization algorithm was helpful to 
normalize illumination of the citrus canopy images.

(3) Combining K-means clustering with CHT improved detection of potential fruit regions 
after illumination normalization.

(4) The AdaBoost classifier trained by using both LBP features of fruit and non-fruit was 
able to identify immature green citrus fruit, but results were better when the AdaBoost 
classifier was used based on LBP features of fruit and non-fruit of illumination-nor-
malized images to detect the fruit.

(5) The proposed method used the same AdaBoost classifier (based on LBP features of 
fruit and non-fruit of illumination-normalized images) to remove false detections after 
potential fruit region detection, which yielded better detection results under varying 
illumination and partial occlusion conditions.

(6) In this study, for the fruit detection, an accuracy of 85.6% was achieved. It indicated 
that the proposed algorithm has the potential to develop an early citrus yield mapping 
system.
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