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Abstract Yield maps are recognized as a valuable tool with regard to managing upcoming

crop production but can contain a large amount of defective data that might result in

misleading decisions. These anomalies must be removed before further processing to

ensure the quality of future decisions. This paper proposes a new holistic methodology to

filter out defective observations likely to be present in yield datasets. The notion of spatial

neighbourhood has been refined to embrace the specific characteristics of such on-the-go

vehicle based datasets. Observations are compared with their newly-defined spatial

neighbourhood and the most abnormal ones are classified as defective observations based

on a density-based clustering algorithm. The approach was conceived to be as non-para-

metric and automated as far as possible to pre-process a growing number of datasets

without supervision. The proposed approach showed promising results on real yield

datasets with the detection of well-known sources of errors such as filling and emptying

times, speed changes and non-fully used cutting bar.

Keywords DBSCAN algorithm � Filtering � Local outliers � On-board
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Introduction

Yield maps have been extensively recognized as a valuable source of information for field

decision making (Diker et al. 2004; Florin et al. 2009; Pringle et al. 2003). They effectively

provide a global overview of the field spatial variability which makes it interesting to target
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areas or zones for variable rate management. As a combine harvester passes through a

field, yield monitors acquire almost in real-time multiple yield measurements all over the

field. At the same time, those data are associated with the GNSS positioning of the

machinery which enables precise location of each one of these observations at the within-

field level. As such, thousands of yield spatial observations are generated and are ready to

be used in the decision-making process. While this considerable volume of data is critical

for field management and decision-making, these datasets must be used with great caution.

They effectively contain lots of defective observations or technical errors that need to be

removed to ensure data quality (Arslan and Colvin 2002; Blackmore and Moore 1999). As

a consequence, yield datasets are often severely filtered to make sure further analyses are

not flawed (Robinson and Metternicht 2005; Sudduth and Drummond 2007; Sun et al.

2013). Several authors have described to what extent a yield map could evolve after

removing abnormal values (Simbahan et al. 2004; Sudduth and Drummond 2007). Griffin

et al. (2008) have even shown that these latter observations were able to influence field

management decisions.

These technical errors or defective observations have been largely documented in the

literature. Lyle et al. (2013) have proposed a categorization of those latter errors into four

major groups: (i) harvesting dynamics of the combine harvester, (ii) continuous mea-

surements of yield and moisture, (iii) accuracy of the positioning system and, (iv) harvester

operator. These technical errors are briefly described hereafter, in the previously defined

order, along with methodologies that have been proposed by the scientific community to

identify these defective observations.

• The harvesting dynamics of the machine include three different offsets, referred to as

the lag time, filling time and emptying time (Blackmore and Moore 1999). The lag time

induces an offset between the actual and the true location in space of a yield

observation because the yield is not measured simultaneously with the cutting of the

crop. Some attempts have been made to determine this offset through (i) geostatistical

methods (Chung et al. 2002), (ii) image processing techniques (Lee et al. 2012) and (iii)

signal deconvolution (Arslan 2008; Reinke et al. 2011). The filling time at the start of a

harvest pass leads to an under-estimation of the yield because the grain flow is

increasing and still has not reached a plateau, i.e. the permanent regime. Therefore,

yield measurements do not match the expected true yield values. At the end of a harvest

pass, some grain might still continue to flow after the last crop was harvested and the

lag time has been reached. As a consequence, the latest observations of a harvest pass

are generally under-estimated. The methods that have been proposed so far are

exclusively visual, i.e. the grain flow is plotted against the travel time or distance of the

machine and the data located before or after the plateau are removed (Lyle et al. 2013;

Simbahan et al. 2004).

• Continuous measurements relate to yield and moisture observations. So far, studies

have focused on thresholds, mostly determined empirically, to identify measurement

errors (Sudduth and Drummond 2007; Taylor et al. 2007). Arslan and Colvin (2002)

have reported sensor accuracies varying between 1 and 4% while other authors have

found differences up to 10% depending on environmental conditions during data

acquisition, e.g. steep slopes (Reitz and Kutzbach 1996). To overcome that issue, a

couple of studies have focused on the impact of the combine harvester vibrations on the

yield measurement accuracy (Hu et al. 2012; Jingtao and Shuhui 2010).

• The accuracy of the positioning systems can lead to (i) observations outside field

boundaries, (ii) measurements at the same spatial location, i.e. co-located points, or (iii)
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deviations in space according to a predefined harvest pass (Blackmore and Moore

1999). The two first types of errors are easily handled by removing the points outside

the boundaries of the field or points with similar co-ordinates (Robinson and

Metternicht 2005; Simbahan et al. 2004). Some algorithms have been implemented to

reconstruct precisely the harvest passes by studying the angles formed by consecutive

points (Lyle et al. 2013). Suspicious points—those the combine harvester is not likely

to have gone through—are removed from the dataset.

• Last type of errors has to do with the harvester operator. First, large variations in speed

are likely to have a major impact on the yield dataset quality (Arslan and Colvin 2002;

Sudduth and Drummond 2007). Speed issues are generally processed the same way as

yield and moisture, i.e. by setting thresholds to the whole dataset or only to

neighbouring data (Lyle et al. 2013). The harvester operator is also likely to overlap

consecutive or adjacent harvest passes which may result in yield measurement errors.

Some authors have focused on this ‘not fully used cutting bar’ effect and have come up

with vector-based pre-processing methods to take into account these overlaps, mainly

by reconstructing harvesting polygons (Drummond et al. 1999). These vector-based

methods are heavily dependent on the positioning accuracy of the GNSS device and

require a large processing time. Other authors have proposed specific on-board systems,

such as those based on ultrasonic sensors (Zhao et al. 2010). Finally, harvest turns and

headlands are also responsible for bad yield estimates (Lyle et al. 2013). Studies

dedicated to these last sources of errors—though limited in the literature—have

focused on finding the points inside harvest turns or headlands by using distance or

angle measures between consecutive points. Suspicious points are removed.

On-board sensors such as yield monitors generate an extremely large amount of

observations. This considerable volume of observations requires the filtering approaches to

be at the same time automated, very general and non-parametric (Simbahan et al. 2004;

Spekken et al. 2013). The automation condition is fundamental with regard to the

increasing size and number of yield datasets to process. For instance, it would not be

conceivable for an operator or advisor to spend time on the correction of hundreds of

possible within-field yield maps. General and non-parametric detection methods are also to

be preferred because of the diversity of datasets that have to be processed. These datasets

are effectively acquired through a variety of acquisition systems—machines, sensors—and

on multiple crops, with different operators and under varying conditions of acquisition, e.g.

topography or climate. It is therefore important to make sure that the approaches are able to

deliver conclusive results whatever the dataset to be analysed. Even though new operating

systems exist to improve the quality of yield datasets, e.g. ultrasonic sensors (Zhao et al.

2010), it can be argued that all the actual combine harvesters are far from being equipped

with it. General methods are therefore also required to process datasets arising from

multiple types of machines, whatever the level of additional equipment installed. It must be

kept in mind that agronomic datasets are often included in complex processes of field

management and decision-making, and are sometimes used as inputs in agronomic models.

Data filtering methods have therefore to be robust enough so that the decision-making

process is accurate and not flawed. A limitation of the actual literature is that most of the

existing approaches are semi-automatic and rely on expert thresholds and filters. These last

aspects might be problematical for the processing of yield maps at a larger scale as filtering

settings can be influenced by each map producer and as skilled operators might be required

for a considerable amount of time (Spekken et al. 2013).
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The principal contribution of this work is to propose a new holistic data-driven method

to filter out defective observations from on-the-go yield datasets. To the best of the

author’s knowledge, very few general or holistic data filtering approaches have been

dedicated to within-field yield datasets. The methodology is firstly formalised and

described to set all the concepts and definitions related to the removal of defective

observations in yield datasets. Then, an implementation of the methodology is proposed

with an emphasis on the approach to be as automated and non-parametric as possible.

Finally, the approach is tested on real datasets obtained from grain flow sensors mounted

on combine harvesters.

On-the-go vehicle based datasets and spatial outlier detection

Acquiring observations with on-board sensors

In agriculture, data acquisition with on-board sensors can be understood as a sequential

procedure through time during which a machine acquires information of a variable Z in

space. Indeed, the data collection process follows a temporal dynamic, i.e. observations are

recorded in a specific order and one at a time as the machine passes through the field

(Fig. 1). The machine can simply be modelled by a structuring element that moves through

the field, e.g. a rectangle whose dimensions are defined by the characteristics of the

machine and the associated on-board sensors. On-the-go measurements are punctual

observations, i.e. diverse realisations of Z, and each point synthesizes the response of Z

over the corresponding structuring element. The spatial resolution of the sensed variable is

Fig. 1 Principle of data acquisition with on-board sensors
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controlled by the distance between consecutive records and determined by the distance

between adjacent passes of the machine. The spatial distance between consecutive

observations is related to the speed of the machine and the sampling frequency. In a given

field, this frequency of acquisition is generally stable which means that the distance

between consecutive records only relies on the travel speed of the machine. On the other

hand, the distance between adjacent passes depends on multiple parameters such as the

work of the machine, the crop being sensed, or the cost of data acquisition among others.

For instance, when a combine harvester with an on-board grain yield monitor passes

through a field, the distance between adjacent passes is related to the width of the cutting

bar because the whole field has to be harvested.

According to Tobler’s first law of geography, everything is related to everything else,

but near things are more related than distant things (Tobler 1970). This concept assumes

that there exists some spatial correlation between spatially close observations, to a greater

or lesser extent. Multiple studies have shown that this spatial dependency has been clearly

exhibited by yield datasets (Pringle et al. 2003; Simbahan et al. 2004). The presence of this

spatial correlation is a central feature of the proposed filtering methodology.

Spatial outlier detection

The proposed approach will aim at removing the observations that are the cause of strong

local variations of Z(x) which might mask the true spatial correlation between neigh-

bouring points. This approach can therefore be seen as a spatial outlier detection problem.

Outlier detection is one of the major areas of investigation of the data mining community

and has extended to numerous applications such as fraud detection, traffic networks or

military monitoring (Ben-Gal 2005; Gogoi et al. 2011). Hawkins (1980) has proposed a

formal definition of an outlier which states that it can be described as an observation that

deviates so much from the rest of the observations as to arouse suspicions that it was

generated by a different mechanism. When observations are located in space, their spatial

attributes, i.e. co-ordinates, can be used to define a spatial neighbourhood, known as a

group of observations that are relatively close in space. A spatial outlier can then be

defined as an observation whose non-spatial attributes behave differently to those of other

observations in its spatial neighbourhood. From these two definitions arises the distinction

between global and local outliers (Chen et al. 2008). Indeed, spatial outliers are only

investigated in a spatial neighbourhood, meaning that the non-spatial attributes of outliers

do not necessarily deviate from the entire dataset. On the contrary, the definition of an

outlier proposed by Hawkins (1980) assumes a specific behaviour of an observation with

regard to the whole dataset.

Spatial outlier detection has gained much interest with the increasing amount of spatial

observations available. Although many more algorithms have been proposed to deal with

traditional outliers, i.e. observations with no reference in space, several methods have been

specifically addressed to the detection of spatial outliers (Chen et al. 2008; Filzmoser et al.

2014; Harris et al. 2014; Lu et al. 2003). These approaches generally involve three major

steps. First, for each observation xi, a spatial neighbourhood N(xi) needs to be associated

with each observation. To do so, the user can either define a spatial distance beyond which

observations are no longer part of the spatial neighbourhood or select the number of

k spatially close observations that belong to the spatial neighbourhood of each observation

(k nearest neighbours). The next step in spatial outlier detection is the computation of a

metric to quantify the difference between the non-spatial attributes of each observation and

those of its spatial neighbourhood. This problem has been well formalized by Lu et al.
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(2003). Let fA be an attribute function such that fA(xi) is the value of the attribute A of xi.

Let gA be an attribute function such that gA(xi) is a summary statistic of the attribute A of

the observations belonging to N(xi). A comparison function hA can then be defined as a

function of fA and gA to measure the ‘outlierness’ of each observation xi with regard to

N(xi). The ‘outlierness’ reports to what extent a given observation can be considered an

outlier. A high indicator of ‘outlierness’ means that an observation is likely to be of low

quality and as such can be regarded as a defective observation. As an example, Lu et al.

(2003) have proposed a function gA that returns the median of the attribute A of all the

observations inside N(xi) and hA was defined as fA - gA. Finally, the observations are

directly classified as outliers or normal observations (Chen et al. 2008), or at least they are

ordered from the most to the least suspicious observation (Filzmoser et al. 2014; Lu et al.

2003). In the last case, a threshold has to be manually selected to separate the outliers from

the non-outliers.

The definition of outliers in on-the-go vehicle-based datasets such as yield datasets has

not been stated so far and there is a need to be more specific about it. Observations can be

considered as outliers if they are significantly different from their neighbouring observa-

tions. From a general perspective, outliers are removed from the datasets because they can

negatively impact the quality of the entire population of observations. These outliers are

often the result of a sensor error or a very particular and isolated phenomenon, e.g. game

damage. However, in the case of sensors embedded on mobile machines, some outliers

arise from the machine pass in itself, i.e. from the data collection process. These types of

observations are different from their neighbouring observations, not because they are

abnormal but rather because these observations were acquired under a specific acquisition

process. For instance, when the cutting bar of a combine harvester is not fully used during a

machine pass, yield observations are under-estimated because the grain flow is weighed

over a harvest area that is bigger than it should be (Arslan and Colvin 2002; Lyle et al.

2013).

Materials and methods

A new data filtering algorithm dedicated to on-board sensor measurements

A specific neighbourhood for each observation

Spatial neighbours are observations that are relatively close to each other in the space

domain. When acquiring observations with on-board sensors, the data collection process

follows the passes of the machine. This means that spatially close observations might have

been acquired (i) during a short time interval, i.e. these observations belong at least to the

same machine pass, or (ii) at different time periods, i.e. they belong to different passes.

Given the varying machine dynamics through the passes, spatially close observations in the

same pass do not necessarily have the same characteristics as spatially close observations

in adjacent passes. In fact, it is reasonable to assume that the data collection process

induces in itself an anisotropic phenomenon in the direction of the machine pass, i.e.

between observations that belong to the same pass. This phenomenon should be taken into

account separately in the definition of the neighbourhood for each observation. As a

consequence, the proposed approach attempts to remove the observations that are the cause

of strong local variations of Z which might mask the true correlations between spatially
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close observations (i) in the same pass of the machine and (ii) in different passes of the

machine.

More formally, the spatial neighbourhood N(xi) of an observation xi can be separated

into two different neighbourhoods: a spatio-temporal and a spatio-not-temporal neigh-

bourhood. The spatio-temporal neighbours of xi are the spatial neighbours that are, at the

same time, near in space and time to xi. An observation xi and its spatio-temporal

neighbours are acquired in a short time interval. Spatio-not-temporal neighbours are near

observations in the space domain but not in the time domain. From now on, spatio-

temporal and spatio-not-temporal neighbours will be referred to as ST and SNT neigh-

bours. Hence, for each observation xi, the spatial neighbourhood N(xi) is divided into ST(xi)

and SNT(xi). An example is given in Fig. 2. Three passes are travelled in opposite direc-

tions. Observation 13 has ST neighbours (observations 10, 11, 12, 14 and 15 for example)

and SNT neighbours (observations 2–7 and 18–23, for instance). The number of ST and

SNT neighbours depends on the size of the neighbourhood. Note that the use of the two

neighbourhoods makes possible a distinction between the specific machine dynamics

inside the same pass and those in different passes of the machine.

Given the spatial footprint of the machine and the sampling frequency, the spatial

distance between xi and the observations inside SNT(xi) is often larger than that between xi
and the observations inside ST(xi). If the spatial neighbourhood of xi is defined according to

the k nearest neighbours, it may be difficult to control the amount of ST and SNT neigh-

bours. As a consequence, it was decided to select the observations inside N(xi) via a

maximal spatial distance below which observations belong to N(xi), and not to rely on a

number of neighbours. This spatial distance was set as a function of the distance between

adjacent passes, e.g. the cutting width of the combine harvester. Once observations inside

N(xi) were found, they were split between ST(xi) and SNT(xi). To avoid choosing a specific

spatial distance for this neighbourhood research, observations inside N(xi) were selected in

Fig. 2 ST and SNT neighbourhoods of an observation. Each observation xi has a ST(xi) neighbourhood
(observations are acquired in a short time interval) and a SNT(xi) neighbourhood (observations belong to
different passes)
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three different squared neighbourhoods of size two, three and four cutting widths of the

machine. The algorithm was then applied on each of these neighbourhoods and the results

were averaged over them. It must be stated that the use of these three spatial neighbour-

hoods gave three times more importance to the neighbours located at a distance less than

two cutting widths of the machines than to those located at a distance of four cutting widths

of the machine.

A robust metric to quantify the ‘outlierness’ of each observation

Now that neighbouring relationships have been defined between observations, the spatial

outlier-based methodology can be put into place. Each observation xi will be compared to

the observations belonging to its two different neighbourhoods, i.e. ST and SNT neigh-

bours, to evaluate the ‘outlierness’ of xi. As previously explained, a large ‘outlierness’

value between an observation xi and its ST, SNT or both ST and SNT neighbours, indicates

that the attribute of xi is significantly different to the attribute of its neighbours and

therefore that xi might be considered as an outlier. As two neighbourhoods are considered

for each observation, the attribute functions fA, gA and the comparison function hA can be

computed twice. This leads to two measures of ‘outlierness’, one between xi and the

observations inside ST(xi), and the other between xi and the observations inside SNT(xi).

Given the number of defective observations likely to be present in yield datasets, each

observation xi needs to be compared to the observations inside ST(xi) and SNT(xi) with

robust metrics not sensitive to outliers. To lessen the influence of possible outliers inside

ST(xi) and SNT(xi), the attribute function gA was set to return the median of the observa-

tions belonging to ST(xi) and SNT(xi). This summary statistic was proven to be effective in

several studies (Chen et al. 2008, Lu et al., 2003). The ‘outlierness’ measures are defined in

the same way for ST(xi) and SNT(xi) with regard to xi.. The comparison function hA, i.e. the

‘outlierness’ measure, was defined as follows:

hA ¼ fA � gA ð1Þ

where fA and gA are the attribute functions of the variable A corresponding respectively to

observation xi and the observations inside ST(xi) and SNT(xi), hA is the comparison

function between fA and gA.

Bivariate plot of ‘outlierness’

Each observation xi is now characterized by two measures of ‘outlierness’ which can be

represented in a bivariate plot of ‘outlierness’ (Fig. 3). The bivariate plot does no longer

contain spatial information, i.e. co-ordinates, which means that the spatial outlier detection

has now turned into a traditional outlier detection with a two-dimensional dataset. Hence,

from now on, all the notions of distances will only refer to distances between observations in

the bivariate plot, in the non-spatial attributes domain. From a general perspective, outliers

can be defined as those observations that have a strong disagreement with either ST, SNT or

both ST and SNT neighbours. Despite the relatively high number of defective observations

that can be found in datasets obtained fromon-board sensors, themajority of observations can

be considered as non-outliers. These non-outliers, or normal observations, must have similar

characteristics to that of their ST and SNT neighbours and should all be found in the central

portion of the bivariate plot (Fig. 3). Indeed, normal observations have been given a small

‘outlierness’measure in absolute to indicate that their attribute value is really similar to that of
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their neighbours. Observations with large ‘outlierness’ values with regard to either ST, SNT

or both ST and SNT neighbours should be relatively far from the rest of the observations and

should be classified as outliers. All these observations must be now classified as outliers or

non-outliers to be able to automatically filter a high quantity of maps.

A density-based clustering algorithm

As the majority of observations are considered non-outliers, the density of observations

around normal observations should be much higher than around outliers (Fig. 3). Multiple

density-based methods have been proposed in the literature but the threshold to classify

observations as outliers or non-outliers is very often selected manually. As a consequence,

it was decided to go further and to cluster observations that shared the same density of

observations around them. One strong advantage of the clustering-based methods is that

they do not give an ‘outlierness’ score to each observation but rather intend to discover

groups of similar observations. On top of that, to automate the outlier identification, a non-

parametric, or unsupervised, method should be preferred. Indeed, datasets acquired with

on-board sensors are obtained through a variety of conditions, e.g. sensor, crop, operator,

field characteristics, conditions of acquisition, and it was considered irrelevant to infer or

consider a specific data distribution. A non-parametric method was also needed to deal

with any arbitrary shape of the data distribution that was likely to occur. The algorithm

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) was selected

because of its ability to combine both advantages of density and clustering-based

approaches (Ester et al. 1996). This method also fulfils the constraints that were set

previously, especially regarding the use of a non-parametric approach to classify the

observations. Duan et al. (2007) proposed some improvements of the DBSCAN algorithm

but they were not considered very useful in this outlier detection case. Other traditional

methods commonly reported, i.e. distribution-based or distance-based (Filzmoser et al.

2014; Harris et al. 2014). might have been used but they were considered difficult to

Fig. 3 ‘Outlierness’ of each observation with its ST and SNT neighbours. The majority of observations in
the centre of the plot have a small ‘outlierness’ value (relative to zero) with regard to their ST and SNT
neighbours which indicates that these observations have a consistent behaviour with their neighbours
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automate and to use in a non-parametric manner. Indeed, distribution-based methods rely

on strong statistical assumptions with regard to the distribution of the variable of interest.

Distance-based methods often require the variable distribution to be normal so that reliable

thresholds can be used to classify observations as outliers (Filzmoser et al. 2014).

DBSCAN requires two parameters to identify clusters: the distance from each obser-

vation to its neighbours (e) and the minimum number of observations inside the neigh-

bourhood given the distance e (Minpts) (Fig. 4). It must be clear that the DBSCAN

algorithm is applied on the bivariate plot of ‘outlierness’ and not on the initial dataset. To

avoid any confusion with the neighbourhood N(xi) previously introduced, this new

neighbourhood of an observation xi will be referred to as NO(xi), i.e. Neighbourhood with

regard to ‘Outlierness’ values. For a given observation xi, the algorithm finds its neigh-

bouring observations NO(xi) given the distance e and tests whether this NO neighbourhood

contains at least Minpts observations (Fig. 4). When this condition is fulfilled, xi is set

inside the core of a cluster and the algorithm expands the cluster by applying the same

method to the observations inside NO(xi) and their corresponding neighbours until the

constraint relative to Minpts is no longer respected. For instance, in Fig. 4, the triangles

have at least five neighbours within an e distance and therefore are included in the core of

the cluster. The square is reachable by one of the triangles, but this square has less than five

neighbours. The stars are not reachable by any point inside the core of the cluster and will

not be part of the central cluster. If an observation xj is inside the neighbourhood of an

observation xi but the neighbourhood of xj contains less than Minpts observations,

observation xj is labelled as noise but is still included in the cluster corresponding to xi, e.g.

the square in Fig. 4 (Ester et al. 1996). The insertion of xj in the cluster related to xi helps

retrieve the global shape of the cluster rather than the core of the cluster only. This method

was considered appropriate to build one large cluster retaining all the normal observations

while leaving the outliers in other clusters. To obtain a reliable clustering, it was necessary

to define the optimal parameters e and Minpts. Some works had already been proposed to

determine automatically these criteria but still requires some manual thresholds (Sawant

2014). The previous work helped to develop a fully-automated approach.

The distance e was defined in the first place as the most frequent distance between two

different observations (Fig. 7). In fact, as the majority of observations, i.e. the non-outliers,

are expected to be clustered in the same group, the most frequent distance between two

different observations should be a characteristic of normal observations. The distances

were calculated as euclidean distances between two observations within the bivariate plot

of ‘outlierness’ (Fig. 3). The ‘outlierness’ measures were centred and reduced to avoid

giving too much influence to one of these two measures of disagreement. Given this

optimal e distance, the number of neighbours inside NO(xi) was computed for each

Fig. 4 Application of the
DBSCAN algorithm
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observation xi. The distribution of the NO neighbours was used to select an optimal value

for the Minpts parameter (Fig. 7). As the Minpts value increases, the size of the clusters

diminishes because less and less observations fulfil the requirement regarding the mini-

mum number of observations inside their neighbourhood. This Minpts parameter must not

be set too high so that the whole shape of the cluster is taken into account. It was stated that

a break in the NO neighbours’ distribution should reflect an optimal separation between

different clusters. This break was chosen to be a local minimum in the distribution of the

NO neighbours. Indeed, a local minimum corresponding to k neighbours indicates that the

observations that have k neighbours within a e distance are located at the border between

two clusters of different density of neighbours. This first local minimum was considered a

good indicator of the separation between normal and outlying observations. To optimally

select the parameters e and Minpts, the densities of (i) the distance between different

observations and (ii) the number of neighbours for an optimal e distance, were estimated

via a kernel density estimation (KDE).

Adjusted filtering for wrongly identified outliers

When the ST and SNT neighbourhoods of an observation xi contain many defective

observations, the function hA might be sensitive to these outliers, even if robust metrics are

used. As a consequence, some observations might be wrongly classified as outliers only

because their neighbourhood is outnumbered by outliers. To overcome this limitation, the

‘outlierness’ values attributed to each observation xi that was previously classified as an

outlier has to be re-evaluated. More specifically, each observation must be compared to a

neighbourhood that only contains non-outlying observations considering the first iteration

of the approach. In this way, the influence of outliers in a spatial neighbourhood is

removed. To account for the wrongly identified outliers, a second iteration of the proposed

approach was put into place. For each observation xi, hA(xi) was recalculated except that

this time, the neighbourhoods of xi were set free of other outliers. This means that if an

observation is definitely an outlier, removing outliers from its neighbourhood will still

classify this observation as an outlier. On the other hand, if the observation was wrongly

classified as an outlier, removing outliers from its neighbourhood would significantly

decrease the ‘outlierness’ values associated and therefore would lead to classifying the

observations as a normal one. Once each observation xi was given new hA(xi) values with

regard to both ST and SNT neighbours, the classification based on the DBSCAN algorithm

was run a second time to identify the real outliers.

Last considerations before using the proposed algorithm

The adjusted spatial outlier detection was not applied directly on the raw dataset. Some

corrections were added before applying the proposed algorithm to improve the quality of

the results. Among the observations that were likely to affect the efficiency of the proposed

algorithm, especially co-located points and global outliers were of great concern and were

removed before searching for spatial outliers. Co-located records are observations that are

acquired at the same spatial position either due to a stop of the combine or to an error in the

GNSS position. In either case, these observations must be filtered out because they exhibit

most likely an abnormal value. Global outliers were removed because they could be

spotted relatively easily and could have some influence on the detection of the spatial

outliers. Global outliers were removed in a non-parametric way following the method of

Hubert and Van der Veeken (2008).
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To ease the understanding of the proposed approach and knowing that the procedure

requires to travel between multiple domains, i.e. spatial, temporal, and attribute, a

flowchart of the algorithm is provided (Fig. 5). A step-by-step description of the data

filtering process is also presented afterwards.

Algorithm (Adjusted Spatial Outlier detection)

1. Remove co-located points and global outliers [Global filtering]

2. Remove local outliers [Local filtering]

a. For each point xi remaining in the dataset:

i Compute the square neighbourhoods based on a radius of two, three

and four cutting widths. For each of these neighbourhoods:

1. Separate the neighbourhood N(xi) into ST(xi) and SNT(xi)

2. Calculate the ‘outlierness’ value of xi with regard to ST(xi) and

SNT(xi) using the function hA

ii Average the ‘outlierness’ values with regard to ST(xi) and SNT(xi)

over the three square neighbourhoods

b. Determine optimal parameters e and Minpts for the DBSCAN algorithm

c. Apply DBSCAN to extract the cluster consisting of normal observations

3. Refine detection of local outliers [Adjusted filtering]

4. Extract the final cluster of normal observations.

The whole methodology was developed using the R statistical environment (R Core

Team 2013).

Fig. 5 A simple flowchart of the proposed approach
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Evaluation of the proposed algorithm and datasets used

The proposed algorithm was tested on ten real within-field yield datasets arising from three

different farms, i.e. two located near Evreux, in the north-western part of France (Farm 1—

WGS84: E: 0.779, N: 48.955; Farm 2—WGS84: E: 1.032, N: 48.828) and one located

close to Peterborough, UK (Farm 3—WGS84: E: -0.105, N: 52.643). Fields were mostly

cropped in wheat and harvested with combines of different brands, especially New Holland

(Turin, Italy) and Claas (Harsewinkel, Germany) combines. Among these ten datasets, two

of them (dataset 1 from Farm 3 and dataset 2 from Farm 2) were selected to provide

readers with a deeper analysis of the proposed approach. The two datasets (datasets 1 and

2) were especially chosen for containing different sources of defective observations.

Tables 1 and 2 respectively report yield statistics for the two (datasets 1 and 2) and ten

datasets under consideration.

For the ten yield datasets, the proposed approach was evaluated in the same way as in

many previous studies, i.e. by looking at the yield distribution and spatial structure before

and after filtering out outliers (Simbahan et al. 2004, Sudduth and Drummond 2007). This

evaluation procedure still has some limits as this validation remains somehow qualitative.

Indeed, outliers are not labelled in the yield datasets so one cannot be entirely sure whether

an outlier is truly one. However, this procedure was considered sufficient in the first

instance. Furthermore, for datasets 1 and 2, the detected outliers were plotted on their

corresponding field to better understand their characteristics.

Results and discussion

Improvements in the yield distribution and spatial structure

A specific attention to datasets 1 and 2

Both raw and filtered yield datasets of datasets 1 and 2 are presented via their principal

descriptive statistics (Table 1) and semi-variograms (Fig. 6). The pre-filtering step, i.e.

Glob outliers, consisted in the removal of co-located points and global outliers.

Table 1 Yield descriptive statistics (t ha-1) of datasets 1 and 2

Dataset Type Min Mean Median Max SD Nb. observations

1 Raw 0 7.75 8.13 90.41 2.65 6526

Glob filtered 3.20 8.04 8.20 11.64 1.38 6143

Loc filtered 4.26 8.26 8.32 11.31 1.04 5333

Adjusted 4.56 8.26 8.31 11.37 1.06 5400

2 Raw 0 8.65 9.10 40.00 1.99 3279

Glob filtered 5.80 9.07 9.20 11.20 0.87 3003

Loc filtered 6.80 9.16 9.20 11.20 0.68 2743

Adjusted 6.80 9.16 9.20 11.20 0.70 2803

Raw the original dataset, Glob filtered the original dataset after the pre-filtering step (essentially global
outliers, co-located points and zero-yield observations. Loc filtered the dataset after the pre-filtering step and
the removal of local outliers, Adjusted the dataset after adjustment for wrongly identified outliers, SD
standard deviation, Nb. observations is the number of observations in the corresponding dataset
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Observations with a yield value equal to zero were also discarded because they were likely

to mask the presence of some global outliers. Indeed, observations with a zero yield value

are definitely not expected and might have been obtained when the cutter bar was lowered

while the crop had already been harvested. The removal of zero yield values, co-located

points and global outliers substantially changed the summary statistics of yield datasets by

Table 2 Yield statistics for the ten datasets under consideration

Dataset Descriptive statistics (raw yield
dataset)

Spatial statistics

Surface
(ha)

Mean
(t ha-1)

CV (%) Nugget/sill
(%)

Nugget/sill
(%)

Points removed (%)

Glob filtered Loc filtered

1 20.5 7.75 23.0 72 52 19

2 3.5 8.65 34.2 66 49 17

3 13.1 5.1 114 100 50 42

4 28.0 4.9 57.5 100 55 45

5 45.2 6.3 48.5 82 41 33

6 10.5 7.1 67.7 85 33 50

7 25.1 7.5 50.3 92 29 33

8 13.1 7.6 60.7 85 76 32

9 22.2 7.1 73.4 84 40 39

10 30.5 9.4 21.1 32 21 21

CV coefficient of variation

Spatial statistics are presented before (Glob filtered) and after (Loc filtered) removing yield local outliers.
The percentage of points removed during the whole filtering process (from ‘raw’ to ‘adjusted’ yield datasets)
is also reported

Fig. 6 Spatial structure of yield datasets 1 and 2 with the proposed methodology. Raw the original dataset,
Glob filtered the original dataset after the pre-filtering step (essentially global outliers, co-located points and
zero-yielding observations, Loc filtered the dataset after the pre-filtering step and the removal of local
outliers, Adjusted the dataset after adjustment for wrongly identified outliers
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lowering the standard deviation by a factor of 2 and increasing the average yield in the

fields by almost 5%. More interestingly, these first outliers were completely masking the

yield spatial structure in the two fields of interest (Fig. 6). Indeed, the semi-variograms

testify of a clear yield spatial structure with well-defined nugget and sill parameters. These

results demonstrate to what extent a simple pre-filtering approach such as the removal of

global outliers and really unexpected values (zero-yield observations) can improve the

characteristics of within-field yield datasets.

Local outliers were removed from the previously pre-filtered dataset (Loc filtered).

These outliers have less influence on yield summary statistics compared to the global

outliers (Table. 1). This is essentially due to the fact that these statistics characterize the

yield dataset at a global level. However, it can be seen that local statistics are substantially

impacted by these local outliers (Fig. 6). The spatial structure appears effectively much

more clearly once outliers have been removed. As expected, the final step of the proposed

methodology, i.e. Adjusted, does not produce major improvements on either the yield

distribution or spatial structure. This step can rather be considered like a refinement of the

proposed approach and was not aimed to drastically impact the yield characteristics.

Analysis of the ten datasets under study

Table 2 reports descriptive and spatial statistics regarding the ten datasets under consid-

eration. All the raw yield datasets exhibit a large variability, i.e. high coefficient of vari-

ation, because of the presence of global and local defective observations. The influence of

local outliers on the yield spatial structure is clear for all the ten datasets under study

(Table 2). Indeed, nugget to sill ratios are significantly improved, i.e. reduced, once local

outliers are filtered out from the yield datasets. Even though the level of autocorrelation

remains medium for some datasets after the removal of local outliers, e.g. nugget to sill

ratio more than 50%, it must be clear that the spatial structure is still stronger than when

local outliers were left inside the yield datasets. The proposed methodology removed a

relatively high number of observations, i.e. from 19 to 50% of the dataset size (Table 2).

These defective observations are, at the same time, global and local outliers, and with

different proportions of each type for each dataset. Some datasets effectively contain more

global outliers, e.g. because of more measurements when the cutting bar was up, while

more local outliers have been filtered in others, e.g. more speed changes. Note also that this

number of defective observations substantially varies among the datasets under study

which demonstrates that all yield datasets are different and that a general filtering

methodology is interesting to consider.

Evaluation of the density-based clustering approach

Detection of the DBSCAN parameters

Figure 6 demonstrates the application of the DBSCAN algorithm on the bivariate plot of

‘outlierness’ for datasets 1 and 2. For both datasets, there is a clear maximum value in the

density of distances between different observations which enables a clear detection of the e
distance (Fig. 7, left). As the distance between different observations increases, more and

more distant observations are considered. Small distances between different observations

characterize essentially the nearest neighbour distances between observations inside the

core of the cluster of normal observations which is why the density is relatively low for

these distances. The clear peak identifies the distance between two different observations
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that is the most representative of the cluster of normal observations. After the peak, the

larger distances account for very distant observations such as, for instance, a normal

observation and an outlier, or two normal observations very far from each other inside the

cluster of normal observations. The most frequent distance between two different obser-

vations should therefore reliably discriminate the cluster of normal observations.

For both datasets, the first local minimum in the density of the number of neighbours,

i.e. corresponding to the parameter Minpts, appears relatively clearly. For the optimal e
distance that was previously chosen, as the number of neighbours increases, the density of

Fig. 7 Optimal selection of DBSCAN parameters and corresponding detection of normal observations. For
each dataset, the plot in the top left-hand corner helps determine the optimal e distance while that in the
bottom left-hand corner enables retrieval of the Minpts parameter of the DBSCAN algorithm. The right plot
shows the cluster of normal observations in the centre portion of the plot (red dots in the online version) and
the outliers identified by the proposed method (Color figure online)
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the number of neighbours starts decreasing relatively quickly then increases smoothly at

first, then more abruptly (Fig. 7, left). The first peak and neighbouring values is due to

outlying observations that have a few number of neighbours within an e distance. The last
peak and neighbouring values are related to normal observations, i.e. inside the core of the

cluster of normal observations, with a very high number of neighbours within an e distance.
Between these two peaks, the first local minimum in the density of the number of

neighbours, from the lesser to greater number of neighbours, is considered a good separator

between the cluster of normal observations and the outliers. Indeed, it separates a high-

density region from low-density regions. The first local minimum is also generally the

global minimum in the distribution of the NO neighbours. It was therefore selected as a

good estimate to separate outliers from normal observations.

Be aware that the identification of the DBSCAN parameters, i.e. e and Minpt, was clear

for the ten yield datasets under consideration (data not shown) meaning that the outliers

could be separated from the rest of the observations. Depending on the type and number of

defective observations, the shape of the density curves did not match perfectly but the

overall structure was similar.

Detection of local outliers

Using the parameters previously defined, the DBSCAN algorithm was able to find a large

and dense cluster in the centre of the data for both datasets (Fig. 7, right). Regarding

dataset 1, some outliers expand towards the left of the plot and exhibit a large ‘outlierness’

value with regard to their SNT neighbours (value far from 0) and a low ‘outlierness’ value

with regard to their ST neighbours. These outliers are observations that belong to passes

harvested with a low cutting width (Fig. 8, left). Indeed, a long tail of low-yielding

observations surrounded by observations with a much higher yield value is very often the

sign of a non-fully used cutting bar. These observations are consistent with spatially close

observations in the same pass because all of them were recorded with a low cutting width.

In contrast, adjacent passes were harvested with a full cutting bar which is why these

outliers do not share similar characteristics with spatially close observations in adjacent

passes.

Fig. 8 Location and label of the outliers detected by the proposed methodology within the fields
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For the two fields under study, some outliers are located on the diagonal of the plot, i.e.

the yield values of these observations are significantly different from those of their ST and

SNT neighbours. This characteristic is specific to observations recorded at the start and end

of each row (Fig. 8). When the combine harvester enters or leaves a pass, the grain flow

can be significantly different from within the pass. The filling time at the start of a harvest

pass induces an under-estimation of the yield because the grain flow is increasing and still

has not reached a plateau, i.e. within the pass. Therefore, the yield measurement does not

match the expected true yield. At the end of a harvest pass, some grain might still continue

to flow after the last crop was harvested and the lag time has been reached. As a conse-

quence, these observations have a different behaviour to that of spatially close observations

in the same and in adjacent passes. These two known sources of error are the most easily

detected on the right-hand side plot because the corresponding observations are relatively

clustered on the plot.

In contrast to the two previous sources of errors, some outliers are detected more

irregularly in the field and might be the sign of abrupt speed changes or bad moisture/yield

records. Some of these other sources of error, e.g. speed changes can also be identified

relatively precisely. From a practical point of view, the yield is the ratio of the grain flow to

the corresponding harvested area during a fixed time interval. A harvest area can be defined

by both the cutting width and the travel speed of the machine. As a consequence, large

speed variations during a specific time interval result in large yield variations. Observations

acquired during a speed change will likely have different properties than those of spatially

close observations in the same and in adjacent passes.

Regarding the ten datasets under study, each bivariate plot of ‘outlierness’ had its proper

characteristics depending on the types of outlier present (data not shown). Some features

were recurrent, e.g. the outliers located on the diagonal of the plot, because all the yield

datasets contained observations related to the filling and emptying time of the machine, to a

greater or lesser extent. Others were less present such as the tail of outliers expanding

towards the left of the plot because overlaps were very rare within the datasets. From a

general perspective, it is clear that each yield dataset has its own properties. This implies

that there is a need for filtering procedures to be as flexible and general as possible so that

each dataset can be processed accordingly no matter the type or number of outliers.

The proposed methodology has only been applied to the yield attribute in yield datasets.

It could be argued that none of the other attributes in yield datasets, such as the speed of the

machine or the grain moisture, had been used to detect the possible outliers. It was actually

considered that all these attributes were used in the calculation of the yield attribute and

therefore that any strong deviations of one of these attributes should have led to a bad yield

estimate that would have been spotted as outliers with regard to its ST or SNT neighbours.

In this study, several outliers that were detected by the proposed algorithm were put in

relation to some technical errors that can be found within yield datasets (Fig. 8).

Nonetheless, it remains relatively difficult to assess the effectiveness of a specific filtering

methodology. In fact, as raw yield observations are not labelled within the datasets, one

cannot be entirely sure whether an observation identified as an outlier is truly one.

Obviously, some errors are clearly visible on the map but for others, it is much more

difficult to be sure, even with a skilled operator. To cope with this issue, one possibility

could be to generate simulated yield datasets in which the location of outliers is known so

as to assess more objectively the interest and reliability of a filtering approach (Leroux

et al. 2017). Another improvement of the proposed methodology would be to intend to

correct the outliers detected instead of abruptly removing them. Indeed, even if the removal

of outliers is not dramatic for the size of the yield datasets as they already contain lots of
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observations, it could be still interesting to see whether a proper correction is possible. As

it was found that multiple sources of error had a specific behaviour in the bivariate plot of

‘outlierness’, it might be conceivable to identify and label these errors so as to propose a

correction. For instance, observations belonging to passes harvested with a low cutting

width could be extracted and corrected properly by estimating the proportion of the cutting

width that was actually used when these observations were acquired.

Conclusion

A new holistic data-driven method was proposed to filter out local outliers from within-

field yield datasets. This approach essentially consisted in finding observations whose

attribute of interest had the most significant difference with regard to that of the obser-

vations inside their spatial neighbourhood. To meet the specificities of within-field yield

datasets, a new concept of neighbourhood has been formalised. Outlying observations were

then detected by a density-based clustering method. One of the major interests of the

approach is that it does not require any manual settings prior to the filtering. All metrics

and thresholds are driven by the data themselves. The approach was successfully tested on

yield datasets but could be extended to many more spatial datasets from on-the-go sensors.

Besides, it must be said that the methodology was applied solely on the yield attribute, i.e.

on univariate datasets. The approach could also be extended to datasets of higher

dimension. Overall, the proposed algorithm was proven effective at removing unwanted

observations from on-the-go vehicle-based yield datasets and should be used as a first step

before deeper processing. Despite significant improvements in the distribution and spatial

structure of yield datasets, the evaluation of the algorithm was still subjective. Future work

will involve the comparison of multiple approaches through the use of simulated datasets

to offer much more objective conclusions.
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