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Abstract Jojoba Israel is a world-leading producer of Jojoba products, whose orchards are

covered with sensors that collect soil moisture data for monitoring plant needs at real-time.

Based on these data, the company’s agronomist defines a weekly irrigation plan. In

addition, data on weather, irrigation, and yield are recorded from other sources (e.g.

meteorological station and irrigation-plan records). However, so far, there has been no

attempt to use the entire set of collected data to reveal insights and interesting relationships

between different variables, such as soil, weather, irrigation characteristics, and resulting

yield. By integrating and utilizing data from different sources, our research aims at using

the collected data not only for monitoring and controlling the crop, but also for predicting

irrigation recommendations. In particular, a dataset was constructed by integrating data

collected over almost two years from 22 soil-sensors spread in four major plots (which are

divided into 28 subplots and eight irrigation groups), from a meteorological station, and

from actual irrigation records. Different regression and classification algorithms were

applied on this dataset to develop models that were able to predict the weekly irrigation

plan as recommended by the agronomist. The models were developed using eight different

subsets of variables to determine which variables consistently contributed to prediction

accuracy. By comparing the resulting models, it was shown that the best regression model

was Gradient Boosted Regression Trees, with 93% accuracy, and the best classification

model was the Boosted Tree Classifier, with 95% accuracy (on the test-set). Data that were

not contributing to the model prediction success rate were identified as well. The resulting

model can significantly facilitate the agronomist’s irrigation planning process. In addition,

the potential of applying machine learning on the company data for yield and disease

prediction is discussed.
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Introduction

Recent developments in the fields of wireless sensor networks, satellite imagery technol-

ogy, smart agricultural machinery, and ubiquitous mobile communication, together

forming the Internet of things (IoT), have led many farms to adopt precision agriculture

(PA) and become ‘smart farms’ (Castle et al. 2015; Zhang et al. 2002). Nevertheless, it

seems that still, in many of these smart farms, data gathered from different sources are

analyzed separately and the potential of value extraction from existing data is not fully

realized (Sørensen et al. 2010). In addition, collected data are mainly used for purposes of

monitoring and controlling crops, e.g., by responding to soil moisture levels or disease

symptoms (Damas et al. 2001; de Miranda 2003; Evans and Bergman 2007; Yunseop et al.

2008; Vellidis et al. 2016). Against this background, the present study shows that data

integrated from different sources could be also exploited for predicting agronomist irri-

gation recommendations.

This study was conducted in collaboration with Jojoba Israel, one of the world’s leading

producers of Jojoba oils, as well as a leader in the use of sensor-based agriculture. The

orchards of Jojoba Israel are covered by sensors that collect soil and plant-related data,

which are used for monitoring the state of plants at real-time. Additionally, the company’s

agronomist (hereinafter, the agronomist) uses these data, while also considering meteo-

rological data collected from a meteorological station and weather forecasts, to construct a

weekly irrigation plan for each plot.

A common approach for deciding on irrigation amounts is to use the Penman–Monteith

equation, which approximates net evapotranspiration (ET), given daily mean temperature,

wind speed, relative humidity, and solar radiation, as defined by the Food and Agriculture

Organization (FAO) in the FAO-56 standard (Allen 1998). However, since all the equation

parameters are measured by the meteorological station for the entire plantation (rather than

for each plot), the agronomist can calculate a single ET value for all plots, which would

lead to a single irrigation recommendation for all plots. The agronomist combines this ET

value with other measured parameters and plot-related characteristics to determine plot-

specific irrigation quantities, resulting in different irrigation quantities for different sub-

plots. The decision process is conducted ‘manually’, i.e. it is based on no explicit irrigation

model but rather on the tacit knowledge of the agronomist, who examines the plant and soil

conditions, as reflected in the sensor-based data, and decides accordingly. In fact, there is

no recommended model for Jojoba irrigation in the literature and the irrigation decision

process in Jojoba Israel has changed significantly over the years, resulting in a steady

increase of yield.

The goal of this study was to develop a model that captures the unstructured decision

process of the agronomist. This objective was achieved by applying machine learning

(ML) on an integrated dataset, comprising sensor-based moisture data, meteorological

data, and actual irrigation plans defined by the agronomist in the past, in order to learn his

irrigation decision-making process.

Various models for irrigation decision support exist in the literature. These models are

used for different purposes, such as optimizing the allocation of water under different
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constraints (e.g. Lilburne et al. 1998), determining irrigation needs (e.g. Thysen and

Detlefsen 2006; Jensen et al. 2000), scheduling (e.g. Vellidis et al. 2013), and recording

water consumption (e.g., Mateos et al. 2002). Only few of the irrigation decision-support

models use ML. For example, Liu et al. (2006) used a genetic algorithm to optimize water

allocation for a single crop in different growing periods and for numerous types of crops,

given the water cost, market price of the crops, additional costs of irrigation, crop

expenses, and expected yield reduction because of under-irrigation or over-irrigation in the

entire growing period. The resulting optimization models were incorporated in a decision

support system (DSS) for precision irrigation. These models, however, did not account for

plot-specific characteristics. The literature also includes models for determining irrigation

needs based on plot-specific data. For example, Hedley et al. (2013) used ML to predict

soil water status and water table depth based on electromagnetic mapping. Smith and Peng

(2009) used ML to classify soil textural composition based on soil-sensor data to inform a

deficit irrigation control system. Another approach to infer plant water status is based on

infographics. For example, Murase et al. (1995) used a layered neural network to identify

plant water status based on the textural features of the pictorial information of the plant

canopy.

In many of the existing models (whether they use ML or not), decision support is based

on providing the farmer with simple water balance models (e.g. based on the Penman–

Monteith equation) that are subjected to capacity constraints and allowing the farmer to

simulate different irrigation alternatives and assess their implications. The support of these

models is also based on displaying the farmer information on plant and soil status that is

required for irrigation decision making.

A different approach, found in the literature, is to model the actual decision-making

process of the farmer. For example, Labbé et al. (2000) modeled the irrigation decision

making process of farmers for limited water allocation and irrigation scheduling for corn.

The model consisted of irrigation management rules for different irrigation-related tasks

that were derived from surveys of farmers and based on monitoring their irrigation prac-

tices during a period of 2 years. This model was incorporated in a simulator engine that,

given the decision context, was able to predict irrigation schedules and irrigation volumes

with average error ranging between 6 and 13 mm for different farmers, reflecting an error

below 6.7%. Instead of manually developing a model that captures the farmer’s decision

process using surveys and observations, in this study, ML was used to capture the agro-

nomist’s irrigation decision process. The potential of using ML to forecast future farmer

decisions was identified by Andriyas and McKee (2013). In particular, they tried to model

the farmer’s decision of whether or not to irrigate for three crops: alfalfa, barley, and corn.

Whereas their work focused on whether to irrigate or not, our work is aimed at predicting

the required irrigation quantities.

As mentioned above, a model that captures the unstructured decision process of the

agronomist was developed in this study. To find the best model, various models, developed

using different ML techniques and different subsets of the independent variables, were

compared. Thus, the model can automatically recommend an irrigation plan (the dependent

variable) and can be therefore used to support irrigation decisions and increase the effi-

ciency of the irrigation planning process.

Achieving the objective of this study would potentially contribute to the literature in

three ways. First, the study offers an irrigation recommendation model that is able to

automatically recommend irrigation quantities similar to the expert agronomist, while

accounting for plot-specific data. Automating the irrigation planning process of the

agronomist can reduce his workload and increase his efficiency. Thus, the irrigation
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planning process can be effortlessly replicated to additional orchards or be carried out more

often. In addition, the agronomist can use the model to fine-tune and validate his irrigation

decisions. Second, the study may provide insights into the variables that contribute to the

irrigation recommendation prediction model and should, therefore, be collected and

accounted for in similar analyses. Third, the study may provide insights into the ML

techniques that are most suitable for constructing irrigation recommendation models.

The rest of the paper is organized as follows. In the following section, the data

sources and research method employed to develop the prediction models are presented.

In addition, background on the relevant ML methods is provided. Then, the resulting

models are presented, followed by a discussion of the results and comparison of the

models. Finally, conclusions are provided and opportunities for developing other pre-

diction models (for disease and yield prediction) based on an integrated dataset are

discussed.

Materials and methods

The following subsections describe the data sources analyzed in this study, followed by the

various steps comprising the research method.

The study followed a typical data mining process (Fayyad 1996), which included the

stages of dataset definition, extraction-transformation-loading (ETL), application of ML

algorithms to the dataset to train recommendation models, evaluation of the trained

models, and selection of the best prediction model. Figure 1 presents the steps of the

research method, which are elaborated in the following subsections.

Data sources

Data from various sources were integrated in this study. Soil moisture data were collected

from uMANAGE
TM1—a real-time, web-based crop management system, connected to

different types of sensors. As shown in Fig. 2, the study focused on four major plots, in

which data had been collected since 2014. Each plot was characterized by the planting year

(age), the type of planting (seeds or clones), whether the planting was organic or not, and

the soil type. Each plot was further divided into 4–10 subplots that were separately irri-

gated. There were eight groups of subplots that were irrigated together, and each subplot

was part of a specific group (the borders of each irrigation group are highlighted). Each

subplot was also associated with one of eleven transmission stations, which transmitted

data from two moisture sensors, located at two depths, shallow (less than 0.4 m under-

ground) and deep (more than 0.4 m underground). In total, data were collected from 28

subplots of land, covered by 22 moisture sensors.

Apart from sensor-based moisture data, meteorological data were also gathered from a

nearby meteorological station (marked by a blue star in Fig. 2), namely, data on air

temperature, solar radiation, and air humidity. The plots were all within 1–2 km away from

the meteorological station. Forecast archives were not available to provide the forecasting

data available at the time of decision-making; instead, weekly average forecasts of tem-

perature, humidity, and radiation were estimated by averaging the actual temperature,

radiation, and humidity measured in the following week. Using actual data was considered

1 https://www.netafim.com/product-category/umanage.

424 Precision Agric (2018) 19:421–444

123

https://www.netafim.com/product-category/umanage


satisfactory for our purpose because weather forecasts in this area (the city of Be’er-Sheva)

are considered accurate (e.g. the standard error in temperature forecasts is 1 �C, according

to the Israel Meteorological Service). Weekly irrigation plans, created by the agronomist

and recorded in excel sheets, were also used. The dataset contained data that were gathered

from March 2014 until the end of 2015.

Dataset definition

In this step, the structure of the dataset for model training and testing was defined. The

dataset combined data from the sources listed above. The variables characterizing the

dataset observations, commonly referred to as ‘observation features’, are presented in

Table 1. Features that were gathered from uMANAGE (every 15 min) and from the

Fig. 1 Research process

Fig. 2 Jojoba Israel - plots divided into irrigation groups and subplots, transmission stations (each with two
sensors), and meteorological station
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Table 1 Dataset features

Variable Description and time
resolution

Time
resolution
of raw
data

Relevant
spatial unit

Source

Temperature Average over the week
preceding irrigation
planning

Every
20 min

The entire land
area

Meteorol.
stationSolar radiation

Relative air humidity

Temperature forecast
(Prediction_Avg_of_Air_
Temperature)

Average weekly
forecasts, estimated by
averaging the actual
values measured over
the week following
irrigation planning

Daily

Solar radiation forecast
(Prediction_Avg_of_Radiation)

Air humidity forecast
(Prediction_Avg_of_Humidity)

Temperature IPPDa

(Temp_IPPD)
Average of the values

measured during the
day preceding irrigation
planning (Irrigation
planning preceding
day—IPPD)

Every
20 min

Solar radiation IPPD
(Radiation_IPPD)

Air humidity IPPD
(Hum_IPPD)

Organic
(Organic_plot)

Boolean:
1—organic
0—not organic

Plot
(1-4)

Land data,
maintained
in excel
filesLand name

(Plot)
Categorical:
1999 seeds
1999 clones
2002
2004 east

Irrigation group
(Sub_plot)

Categorical:
A, B, C, D, E, F, G, H

Subplots
related to an
irrigation
group

(1–8)

Total drought-stress duration at
depth db (shallow_state_1,
deep_state_1)

Duration (in days) in
which the soil moisture
was lower than 20% at
depth d in the previous
week

Every
15 min

Subplots
related to a
transmission
station

(1–11)

uMANAGE

Total saturation duration at
depth db (Shallow_state_2,
deep_state_2)

Duration (in days) in
which the soil moisture
was higher than 27% at
depth d in the previous
week

Soil moisture at depth db

(Moisture_sensor_deep,
moisture_sensor_shallow)

Average soil moisture at
depth d
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meteorological station (every 20 min) were averaged or summed to represent a granularity

of one week.

Data extraction, transformation, and loading

After the dataset structure was defined, the relevant data were processed following the ETL

process—they were extracted from their sources, cleaned and transformed into the required

features, and finally were loaded to a flat table. This ETL process is summarized next.

Sensor data

When sensors are used, noisy data is often a problem. To clean the data, following

guidelines provided by the agronomist, moisture values smaller than 17 or higher than

39%, considered abnormal, were filtered out. In the complete dataset, such anomalies,

likely to be caused by a faulty or uncalibrated sensor or transmitter, occurred only twice. In

these two instances, the values were replaced by using spatial mean imputation (Kennedy

and Tobler 1983), i.e. by the average of the values gathered from the two nearest sensors.

Weekly soil moisture averages were then calculated for each irrigation group. Moisture

sensors were located in two depths: deep (deeper than 0.4 m) and shallow (less than 0.4 m

deep). Thus, two weekly moisture averages were calculated—one for each depth. In

addition, for each irrigation group at each depth, the duration (in days), in which the soil

was saturated (moisture level was higher than 27%, as determined by the agronomist) and

drought-stressed (moisture level was lower than 20%, as determined by the agronomist)

over the preceding week were calculated. These durations were represented as integers

(1–7 days).

The reason for aggregating data on a weekly basis was that the irrigation planning

process was carried out once a week, based on data collected over the previous week.

Meteorological data

Average air temperature, humidity, and radiation over the preceding week and during the

preceding day were calculated based on data that were gathered from the nearby meteo-

rological station (Fig. 2), which measured these values every 20 min. Averages were

calculated over the entire day. Additionally, these data were used to estimate the weekly

Table 1 continued

Variable Description and time
resolution

Time
resolution
of raw
data

Relevant
spatial unit

Source

Planned irrigation (millimeter)
(Watering)

The dependent variable.
Every week the
agronomist plans
irrigation volumes per
plot

Once a
week

Subplots
related to an
irrigation
group (1–8)

Irrigation
excel
sheets

a IPPD irrigation planning preceding day
b d sensor depth, either shallow (less than 0.4 m underground) or deep (deeper than 0.4 m underground)
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average forecasts of temperature, humidity, and radiation by averaging the actual tem-

perature, radiation, and humidity that were measured in the week for which the irrigation

plan was prepared.

Other attributes

Each row of the dataset captured the above week-level data for a particular irrigation group

(there were eight groups) in a particular week and year. Each row also included the

characteristics of the irrigation group: the plot it belonged to (determining the soil type),

whether it was organic or not, and the actual irrigation quantity in millimeters (mm), which

served as the dependent variable.

The resulting dataset included 695 records, representing a period of 98 weeks. This

dataset was then segmented into training and validation sets: 70% of the records (randomly

selected) were defined as the training-set and used to train the models, and the remaining

records (30%) were defined as the test-set and used to evaluate the performance of the

model.

Machine learning methods

The field of machine learning (ML) is concerned with the question of how to construct

computer programs that automatically improve with experience (Mitchell 1997). A pri-

mary goal of ML is the construction of algorithms that can learn from data and make

predictions using data. Usually, these algorithms use a large set of input observations,

called a training-set, in order to tune the parameters of an adaptive model (Bishop 2006,

p. 2).

ML algorithms aim at various tasks, including Regression—a process for estimating the

relationships between a dependent variable and one or more independent variables;

Classification—a process of identifying to which category, out of a given set of categories

(classes), an observation belongs to, based on a training-set of previously classified

observations; Clustering—a process of dividing a set of observations into a number of

groups (clusters), such that observations grouped in the same cluster are more similar to

each other than to those in other clusters (according to a given similarity function); and

Association rule learning—a statistical process of identifying strong interesting relation-

ships (rules) between variables based on large sets of observations (Liu 2011).

In the present study, regression and classification models were developed to predict the

irrigation volumes recommended by the agronomist (in the case of classification models,

observations were classified into five irrigation level classes). In the following subsections,

these types of models are presented.

Regression models

A regression task can be defined as follows: Given a training set comprising N observations

of an input variable X, written X : (X1,…, XN)T, together with corresponding observa-

tions of the values of a target variable t : (t1,…, tN)T, the goal is to exploit the training set

in order to make predictions of the value t’ of the target variable for some new value X’ of

the input variable. X is in fact a vector of D features (x1,…,xD) characterizing each

observation.
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A simple approach for handling this task is to use linear regression (Mitchell 1997,

p. 237; Bishop 2006, p. 5), where a function y X;Wð Þ ¼ w0 þ w1x
1 þ w2x

2 þ . . .þ

wDx
D ¼

PD

i¼1

wix
i is fitted to the training set, by finding the W that minimizes a loss function

that measures the misfit between the function y(X,W) and the training set data points. The

root-mean-squared error (RSME) is commonly used to measure the misfit. The advantage

of the linear regression model is that it can be used to explain the effect of different factors

(feature values) on the target (dependent) variable.

A more advanced approach to regression is regression trees. Regression trees models

(Loh 2011), similar to linear regression, are used to predict the value of the dependent

variable, given a new data sample. However, different from linear regression, regression

trees algorithms do not try to capture a linear relationship between the model features and

the target variable. Instead, they are based on decision trees. A decision tree is a tree-graph,

in which each internal node (i.e. a vertex with outgoing edges) is labeled with an input

feature and the edges coming from the node are labeled with each of the possible values of

that feature. Observations are sorted according to their feature values from the root of the

tree downwards to the leaves. While in decision tree classifiers, each leaf (i.e. a vertex

without outgoing edges) is labeled with a name of a class to which observations may

belong, in regression trees, each leaf is labeled with a target value, which is the average of

target-variable values of observations assigned to that leaf. For additional information on

regression tree see (Loh 2011; Bishop 2006, p. 663).

In this study, a regression tree model, called gradient boosted regression trees (GBRT),

is used. The GBRT is a type of additive model that makes predictions by combining

decisions from a sequence of base regression tree models (Elith et al. 2008). Unlike

random forest (Breiman 2001), a ML approach that constructs a multitude of decision trees

independently, each using a subsample of data, and returns the mean prediction of the

individual trees, GBRT uses a particular model ensemble technique called gradient

boosting, which iteratively builds a model, while improving the performance of the pre-

vious iteration model. This model ensemble can be written formally as g(x) = f0(-

x) ? f1(x) ? f2(x) ? …, where regression tree g(x) is a sum of base regression trees fi.

The name Gradient Boosting comes from the association of this method with Gradient

Descent optimization (Elith et al. 2008), commonly used to solve linear regression prob-

lems by finding a local minimum of the linear regression loss function (Bishop 2006).

Similarly, let gt xð Þ ¼
Pt�1

i¼0

fi xð Þ ¼ gt�1 xð Þ þ ft xð Þ be the regression tree trained at iteration t,

L[yi,g(xi)] be the loss function, and N be the number of observations, at each gradient

boosting iteration, the algorithm finds a regression tree ft, which moves gt towards the

negative gradient direction -qL/qg by g (step-size) amount. Hence, ft is chosen to be

ft ¼ argmin
f

PN

i¼1

oL yi;g xið Þ½ �
og xið Þ � f ðxiÞ

n o2

and the algorithm sets gt?1 = gt ? gft. Since for

regression problems with sum-squared loss function qL/qg = yi - g(xi), ft can be written

as follows:

ft ¼ argmin
f

XN

i¼1

½yi � g xið Þ � f ðxiÞ�2:
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GBRT is considered as one of the most effective and popular models for prediction (Cai

et al. 2016). However, as opposed to linear regression or simple decision trees, which are

easy to interpret, GBRT-based regression trees are more difficult to interpret, being a

collection of many regression trees.

Classification models

Unlike regression tasks, in which the output variable is continuous, the output of

classification tasks is one of a finite number of discrete categories. A classification task

can be defined as follows: Given a training set comprising N observations of variable

X, written X : (X1,…, XN)T, where Xi is a vector of D features (x1,…,xD), together

with corresponding observations of the values of a target variable t : (t1,…, tN)T,

where ti may take one of |C| discrete values [C1, C2,.., C|C|], our goal is to use the

training set to train a model that correctly predicts the class of some new observation

X’. There are many types of classification models, including decision trees (Mitchell

1997, pp. 52–59), support vector machines (SVM) (Liu 2011, pp. 109–116), logistic

regression (Mitchell 1997, pp. 205–207), and Bayesian procedures (Mitchell 1997,

pp. 154–164).

In this study, a particular classification algorithm, called boosted trees classifiers (BTC),

is used. This algorithm is an extension of GBRT, discussed above, to classification

problems (Mease et al. 2007). That is, instead of iteratively improving a regression tree

model, a decision tree classifier is iteratively improved, by combining base-decision tree

classifiers using the gradient boosting technique.

Development of ML models

Platform

For the data analysis and model development, graphLab create of the Turi2 machine

learning platform was used. GraphLab create is a python-based ML framework, which

enables the development and deployment of intelligent applications and services. It

includes libraries for data transformation and manipulation, as well as scalable ML toolkits

for creating, evaluating, and visualizing ML models. It is built to handle large volumes of

data (terabytes) efficiently and quickly.

Selection of ML models

For the development of the irrigation recommendation prediction model, different types of

ML algorithms were examined: linear regression, regression trees, and classification

algorithms. To select the particular algorithms for use in this study, a basic comparison

process was carried out: First the integrated dataset was divided into training (70%) and

test (30%) sets; Second, different ML algorithms were applied (with their default settings)

on the training set to train different ML models; Finally, the performance of the resulting

models were examined on the test-set and compared to one another.

For regression trees, the following models were considered: Decision Tree Regression,

Random Forest Regression, and GBRT. The best model among these, in terms of RSME,

2 https://turi.com.
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was GBRT. Linear regression was selected as well due to its high interpretability and

prevalence in the literature. For classification, the following classification models were

compared: logistic classifier, decision tree classifier, random forest cassifier, and BTC. The

best classier among these, in terms of classification accuracy, was BTC.

Thus, three ML models were developed: Linear regression, BTC, and GBRT. Each of

these models was developed on eight different subsets of the feature-set in order to find the

best model. Using the entire set of features to develop a single model may lead to over-

fitting (Mitchell 1997, p. 67) and to models that are more difficult to explain. In addition,

because of correlations among many of the features, it was necessary to search for the best

subset of features, as described in the following section.

Feature selection

In ML, feature selection is the process of selecting a subset of the relevant features (i.e. the

variables listed in Table 1) for use in model construction. For feature selection, the cor-

relation between each pair of variables was first estimated. As could be expected, corre-

lations among the different meteorological features were very high (for example, weekly

averages and preceding-day averages were correlated for each of the measures, with

correlation values exceeding 0.85), as were the correlations among sensor-related features

(e.g. the correlations between saturation/drought durations and soil moisture levels were

higher than 0.7). By contrast, the correlations between sensor- and meteorology-related

features were relatively low (lower than 0.1). Thus, three groups of optional variables were

defined: (1) IPPD weather (including average temperature, radiation, and humidity mea-

sured on the day preceding irrigation planning); (2) weather forecast (predicted tempera-

ture, radiation, and humidity for the following week); and (3) saturation/drought durations

over the preceding week. Because each of these three variable groups could be either

included or not in the feature set, eight (23) feature subsets were defined, as shown in

Table 2. Of the variables listed in Table 1, those that are not listed in Table 2 were

included in all subsets. Each of the three ML models mentioned above was developed for

each of the eight feature-subsets.

Model evaluation measurements

In the next section, the resulting models are presented and their ability to predict irrigation

quantities (i.e. their ability to recommend a suitable irrigation plan) is evaluated. For the

evaluation of regression models (linear regression and GBRT), successful predictions were

defined as those in which the predicted value was not more than 0.2 mm below or above

the actual value. To use classification (BTC), the dependent variable has to be categorical.

The continuous irrigation variable was therefore binned into five classes, described in

Table 3, which best captured the variance in this variable. These classes were then used as

the predicted variable in BTC models. Successful prediction were defined as those in which

classification was made to the correct irrigation class.
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Results

Linear regression

Linear regression was used with the eight datasets defined in Table 2. Each dataset was

randomly divided into training and test sets, such that the training set contained 70% of the

samples. Table 4 summarizes the performance of the eight linear regression models,

showing for each the RSME, maximal error, maximal deviation rate (error/true value), and

rate of successful predictions (those within a 0.2 mm deviation), in total and for each plot.

As can be seen in Table 4, Set 2 achieved the best results in terms of RSME (although

RSME values for other models were quite similar), and Set 6 achieved the highest overall

success rate (although a value of 52.3% success is considered relatively low). Table A1

(Appendix) presents the learned coefficients of the model developed for Set 2, which had

the lowest RSME.

Due to the relatively low success rates of the simple linear regression models, regression

models that aimed at capturing non-linear relationships between the independent variables

and the dependent variable were also developed. For example, when plotting irrigation

amounts against the temperature measured on the day preceding irrigation planning

(Fig. 3), it can be seen that a square root function (Hx) may better describe the relationship

between irrigation and IPPD temperature. As another example, when plotting irrigation

Table 2 Feature sets for which ML models were developed

Feature
set

Drought (state_1)/
saturation (state_2)
duration

Weather forecast (humidity, solar
radiation, temperature)

Weather measured on the
preceding day (humidity,
solar radiation, temperature)

Feature
names

shallow_state_1,
shallow_state_2,
deep_state_1,
deep_state_2

Prediction_Avg_of_Humidity,
Prediction_Avg_of_Radiation,

Prediction_Avg_of_Air_Temperature

Temp_IPPD, Hum_IPPD,
Radiation_IPPD

1 4 4 4

2 4 4

3 4 4

4 4

5 4 4

6 4

7 4

8

Table 3 Irrigation classes
Class Irrigation (mm)

1 Less than 1.5

2 1.5–2.0

3 2.0–2.5

4 2.5–3.0

5 More than 3.0
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amounts against the week number, as shown in Fig. 4, it is easy to see that a quadratic

function (x2) would be more suitable to describe the relationship.

Therefore, for each numeric feature x in the dataset, four new features were added: Hx,

x2, x3, and x4. The corresponding eight feature subsets were defined as before, but each

subset was extended with the polynomial features. The linear regression algorithm was

applied on each subset, resulting in eight new polynomial regression models. The per-

formance measures of these models are summarized in Table 5.

Adding polynomial features improved the ability of the models to predict irrigation

levels. The model for Set 5 (no drought/saturation data) achieved the lowest RSME value

(0.38), which was superior to the lowest RSME value achieved without polynomial fea-

tures (0.47 for Set 2). The highest total success rate with polynomial features was 62.8%,

compared to 52.3% without them, and the smallest maximal error without polynomial

features was 2.02, compared to 2.32 without them. While adding polynomial features

improved the prediction ability of the models to some extent, it had the negative

Table 4 Performance of the simple linear regression models for the different datasets

Measure Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8

RSME 0.467 0.466 0.479 0.485 0.469 0.469 0.481 0.487

Maximal error 2.362 2.355 2.372 2.400 2.331 2.320 2.340 2.340

Maximal deviation
rate

131.2% 134.1% 166.8% 179.0% 136.8% 140.1% 172.7% 187.8%

Success rate—total 49.5% 50.5% 48.2% 45.0% 50.9% 52.3% 50.9% 45.9%

Success rate—1999
seeds

46.4% 42.9% 28.6% 28.6% 50.0% 42.9% 35.7% 28.6%

Success rate—1999
clones

49.2% 50.8% 45.8% 49.2% 52.5% 54.2% 49.2% 49.2%

Success rate—2002 44.0% 45.3% 44.0% 40.0% 42.7% 46.7% 48.0% 45.3%

Success rate—2004
east

58.9% 60.7% 66.1% 55.4% 60.7% 62.5% 64.3% 51.8%

The best values for each measure are highlighted in bold

Fig. 3 Irrigation against temperature measured on IPPD
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implication of increasing the complexity of the model due to the addition of features (e.g.

the model for Set 5 had 63 features).

LASSO (least absolute shrinkage and selection operator), a method that performs both

feature selection and regularization to enhance both the prediction accuracy and inter-

pretability of the regression model (Zou 2006), was employed to eliminate variables. Its

use, however, did not improve the performance of any of the models in terms of RSME and

success rate.

Gradient boosted regression trees

Eight GBRT models were trained on the eight feature-sets (Set1–Set8), defined in Table 2.

Each dataset was randomly divided into training and test sets, such that the training set

contained 70% of the samples. Each model comprised a sequence of decision tree models.

An example of one such tree appears in Fig. 5, which depicts one sub-tree of a collection of

50 trees that were learned for Set 2. The performance measures of GBRT models are

summarized in Table 6.

Table 5 Performance measures of the polynomial regression models

Measure Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8

RSME 0.380 0.406 0.394 0.413 0.376 0.402 0.393 0.409

Maximal error 2.102 2.191 2.021 2.148 2.113 2.198 2.065 2.158

Maximal deviation rate 54.0% 48.6% 64.8% 60.2% 58.9% 51.5% 58.8% 58.1%

Success rate—total 60.6% 59.6% 56.0% 53.7% 62.8% 61.0% 60.1% 55.0%

Success rate—1999 seeds 57.1% 57.1% 50.0% 46.4% 67.9% 64.3% 57.1% 42.9%

Success rate—1999 clones 69.5% 64.4% 64.4% 61.0% 66.1% 59.3% 67.8% 59.3%

Success rate—2002 56.0% 53.3% 50.7% 49.3% 60.0% 58.7% 56.0% 54.7%

Success rate—2004 east 58.9% 64.3% 57.1% 55.4% 60.7% 64.3% 58.9% 57.1%

The best values for each measure are highlighted in bold

Fig. 4 Irrigation against week number
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Compared to the linear regression models, GBRT models achieved considerably better

results: the model for Set 1 achieved the lowest RSME (0.11), and the models for Set 1 and

Set 5 achieved the best success rate (92.7%). In other words, GBRT models were able

predict the correct irrigation levels in 92.7% of the cases. The model for Set 1 also

achieved the lowest maximal error, 0.64, with a maximal deviation rate of 21.5%. Set 2,

which included no previous-day weather features, and Set 4, which included no weather

forecast features, had the lowest success rates.

Table 6 Performance measures of GBRT models

Measure Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8

RSME 0.113 0.150 0.139 0.165 0.116 0.138 0.149 0.129

Maximal error 0.645 0.768 0.765 0.985 0.675 0.673 0.870 0.693

Maximal deviation rate 21.5% 26.1% 21.4% 26.0% 22.5% 21.7% 31.3% 23.2%

Success rate—total 92.7% 88.1% 90.8% 91.3% 92.2% 92.7% 90.8% 90.4%

Success rate—1999 seeds 85.7% 82.1% 89.3% 82.1% 89.3% 85.7% 85.7% 85.7%

Success rate—1999 clones 93.2% 89.8% 89.8% 93.2% 89.8% 93.2% 89.8% 91.5%

Success rate—2002 96.0% 92.0% 94.7% 94.7% 94.7% 92.0% 94.7% 92.0%

Success rate—2004 east 91.1% 83.9% 87.5% 89.3% 92.9% 96.4% 89.3% 89.3%

The best values for each measure are highlighted in bold

Fig. 5 An exemplary decision tree model, which was part of a GBRT model
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Boosted trees classifier

The BTC, provided by GraphLab Create, was used with the different feature sets. Again,

the training set included 70% of the samples, which were randomly selected. Each of the

resulting models comprised a collection of trees that were learned on the basis of the

corresponding set of features. Five classes were defined, corresponding to the five irri-

gation classes in Table 3.

Table 7 summarizes the performance measures of the different classification models.

The table includes measures that are different from those of the regression models: ac-

curacy—the number of correct predictions out of the total number of predictions; preci-

sion—the average percentage of correctly classified items for all classes; recall—the

average percentage of items classified as x out of the actual x items; F1-Score—a score

that combines recall and precision, such that F1 ¼ 2�precision�recall
precisionþrecall

; and the precision and

recall of each class separately (rate of correctly classified items).

The results show that the model for Set 1 (based on the entire feature-set) outperformed

the other models in almost all performance measures.

Table 8 presents the performance of the classifier for this set, by showing the distri-

bution of predicted labels against actual labels (confusion matrix).

Figure 6 depicts the average success rates of GBRT and BTC models in each week. In

can be seen in this figure that between weeks 34 and 40, there was a period of five weeks in

which the success rate dropped for both models. The agronomist confirmed that the land

was deliberately and forcefully dried during that period, because the Jojoba fruits were

being collected around that time by combines that were unable to operate efficiently unless

the soil was dry.

The success rate values of linear regression (polynomial), GBRT and BTC models for

each feature-set (Set 1–Set 8) are summarized in Fig. 7. The best success rates among the

BTC models (95% for Set 1) and among the GBRT models (92.7% for both Set 1 and Set

6) were significantly higher than the best success rate among the linear regression models

(62.8% for ‘Set 5’).

Discussion

Comparing the results for the three ML techniques reveals that the non-parametric tech-

niques, GBRT and BTC, achieve significantly better performance measures than linear

regression, even after the inclusion of polynomial features as predicting variables. While it

may be more difficult to interpret the non-parametric techniques, they are found in this

study to be better for predicting irrigation.

In general, tree-based models perform better than linear regression models when the

relationship between the independent variables and the dependent variable is non-linear

and non-monotonic. Therefore, it can be assumed that GBRT models would outperform

linear regression models in predicting the recommended irrigation amounts of other crops,

for which these amounts are affected by similar independent variables.

These results conform to previous results by Hedley et al. (2013), who showed that

random forest models (similar to GBRT and BTC, these are ensembles of decision trees)

achieved superior predictions of soil moisture and water table depth than linear regression

models. The results received in this study also conform to results by Andriyas and McKee

(2013), who used different tree-based models for predicting a farmer’s decision of whether
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to irrigate or not, and showed that tree-based models were suitable for prediction farmer’s

decisions of whether to irrigate or not with above 97% success rates for all decision tree

models used.

While BTC models achieve slightly better results than GBRT models (95 compared to

92.7%, respectively), GBRT models are recommended for predicting irrigation amounts

because of their ability to provide accurate values (BTC models can only classify into

classes).

Table 8 Confusion matrix of the
model for Set 1

Predicted
Target label

1 2 3 4 5

1 52 1 0 0 0

2 0 40 1 0 0

3 0 0 40 1 0

4 0 2 5 55 0

5 0 0 1 0 20

Fig. 6 Average success rate of GBRT and BTC models per week

Fig. 7 Success rate of different models
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Reflecting on the results of GBRT models, it is interesting to see that while Set 1

achieved the best results in general (minimal RSME of 0.113, maximal error of 0.645, and

success rate of 92.7%), Set 5, which included no saturation/drought data, achieved almost

as good results (RSME of 0.116 and maximal error of 0.675). The same is true for the

polynomial linear regression, where Set 5 achieved the best RSME. These findings raise

questions about the importance of incorporating drought/saturation data in the model.

When examining success rates, it is also interesting to see that Set 6, with included neither

drought/saturation data nor IPPD weather data, achieved success rates that were similar to

those of Set 1 (92.7%).

Questions on the importance of the different variables become even more interesting

when considering the results for particular plots. For example, it can be seen in Table 6 that

for plot ‘2004 east’, which is organic, Set 6 achieved the best prediction success rate. Set 1

achieved the best results for plot ‘2002’, and Sets 3 and 5 achieved the best results for plot

‘1999 seeds’. These findings imply that a contingency approach, by which different fea-

ture-sets are used for different plots, may prove to be the most valuable.

Examining the success rates of GBRT and BTC models for Set 1 along the weeks of the

year (Fig. 6) reveals that while both models achieved 100% accuracy in most weeks (more

than 40 weeks of the year), there were a few occasional weeks, in which the accuracy of

one of the models dropped. This finding suggests that it is beneficial to consider the results

of both models when deciding on irrigation. When the results of one model contradict

those of the other, it is worthwhile to involve an agronomist in resolving the discrepancies.

In addition, there was a period of time (5 weeks starting at the end of August) in which the

accuracy of both models dropped to 50–80% due to deliberate and forceful soil drying, as

noted above. It is expected that if data are collected over a longer period of time, this

deliberate drying will be taken into account by the models.

The high prediction success rates of GBRT and BTC models (93 and 95%, respectively)

suggest that they indeed can serve to facilitate and even automate irrigation decisions. The

agronomist can use the models developed in this study instead of analyzing data from

different plots and subplots, including weather data and forecasts, on a weekly basis. With

time, as more data samples are collected, the prediction errors are expected to decrease and

the models are expected to produce decisions that are identical to those of the agronomist.

For the agronomist to be able to effectively use these models for irrigation planning, they

should be incorporated in a DSS that receives inputs from the uMANAGE system and from

the meteorological services, that processes the inputs to fit the dataset structure described in

Table 1 (this could be done on a daily basis—every day an observation that represents data

of the previous seven days is added to the dataset), and that uses the models to predict the

required irrigation quantities for the latest observation. Such a DSS would enable to increase

the frequency of irrigation decisions so that decisions are based on more recent and accurate

data and are able, for example, to better handle unexpected changes of weather.

As discussed in the ‘‘ Introduction’’ sect., the literature includes various models for

irrigation decision support. While many of the existing models support farmers’ decisions

by providing the farmer with simple water balance models (e.g. based on the Penman–

Monteith equation) subjected to capacity constraints and by allowing the farmer to sim-

ulate different irrigation alternatives and assess their implications, the models developed in

this study follow a different approach—they capture the actual decision-making process of

the farmer. This approach has been used for example by Labbé et al. (2000), who modeled

the decision making process of farmers for limited water allocation and irrigation

scheduling for corn, based on surveys of farmers and based on monitoring their irrigation

practices during a period of two years.
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Instead of manually modeling the decision making process of farmers by surveying

them and observing their behavior, in this study, ML was used to automatically learn their

decision-making process from past irrigation decisions. The development of ML-based

models requires considerably less effort than manually modeling the decision-making

process, without compromising prediction accuracy. In fact, the GBRT models provided

even better results in terms of average prediction error (the GBRT model for Set 1 achieved

an RSME of 0.113 mm, which reflected an average error rate of 5.3%—less than an error

rate of 6.7% achieved by Labbé et al. 2000). This study also advances the literature by

taking into account farmer considerations that are plot-specific, suggesting that plot-

specific data allows for plot-specific decisions. As noted above, a similar approach to ours

was taken by Andriyas and McKee (2013), who used tree-based classification models for

modeling the farmer’s decision of whether or not to irrigate alfalfa, barley, and corn. The

models developed in this study advance the state-of-the-art by predicting irrigation

amounts and not only the binary irrigation decision.

This study demonstrated how in-field sensor data can be used not only for monitoring and

control, but also for developing ML-based prediction models for Jojoba irrigation decisions.

Irrigation prediction is just one area in which in-field sensor data can be used for prediction.

Other areas are yield prediction and disease prediction, which, so far, have been mainly

predicted using remote sensing and image processing. In the future, the development of a

Jojoba yield prediction model is planned, using an approach similar to the one presented in this

paper, but with yield as the target variable. To accomplish that, however, data describing

subplots at a seasonal granularity, along with the yield per subplot, should be collected for at

least ten years. In addition, application of ML techniques may reveal disease-potential situa-

tions and may assist in their prevention. For example, by analyzing in-field sensor data, it was

already discovered that when the air temperature equals to the dew point temperature for

several continuous hours, there is a high chance for fungal infection development in the

following days. Thus, when such situations are identified they are immediately treated with

pesticides to prevent disease development. The last two examples demonstrates the potential

advantages of applying ML on in-field sensor data, together with additional data, for prediction

purposes. As opposed to remote sensors, which can be seen as direct proxies of symptoms (e.g.

plant disease or decrease in yield), soil and plant sensors serve as proxies of the actual state of

the plant and soil, and they can reflect the causes for symptoms at real time. Consequently,

models that are based on such data can predict diseases or yield decrease at earlier stages.

Conclusions

The objective of this study was to develop a model that captures the agronomist’s irrigation

planning process and that predicts his irrigation recommendations. This objective was

achieved by applying ML on a dataset that integrated data from different sources. The

dataset captured various sensor-based features, weather features, and features describing

plots, in addition to irrigation levels that were determined by the agronomist. Based on this

comprehensive dataset, different irrigation recommendation prediction models were

developed, using three ML approaches: the traditional linear regression and two non-

parametric approaches, GBRT and BTC. The models were trained against eight different

feature subsets (as described in Table 2).

The results showed that non-parametric models, namely GBRT and BTC models, were

more accurate in predicting irrigation decisions than linear regression models, with success
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rates of 93 and 95%, respectively. In addition, GBRT and BTC models, compared to linear

regression, required fewer transformations to capture non-linear relations among variables.

The models they provided, however, were more difficult to interpret, as they included fifty

decision trees.

Although the GBRT and BTC models developed for the entire feature set (Set 1)

provided the best results, it was shown that the GBRT model for Set 6 had the same

success rate as that for Set 1, possibly indicating that drought/saturation and IPPD weather

data could be excluded from the dataset with little loss in accuracy. In addition, it was

shown that different sets of features achieved the best results for different plots, suggesting

that more fine-grained data can improve decision making by providing the infrastructure

for more fine-grained decisions on irrigation.

The contribution of this study is threefold. First, the study explicates the tacit knowledge

that guides the abstract decision-making process of the agronomist. The resulting model

can serve to automate the irrigation decision-making process. A common approach by

farmers to decide on irrigation amounts is to use the Penman–Monteith equation (Allen

1998), which approximates net evapotranspiration (ET). However, since all the equation

parameters are measured by the meteorological station for the entire land, the agronomist

can calculate a single ET value for all plots, which would lead to a single irrigation

recommendation for all plots. The agronomist of Jojoba Israel combines this ET value in

his irrigation decision process with other measured parameters and plot-related features to

define plot-specific irrigation quantities, resulting in different irrigation quantities for

different subplots. This decision process is now captured by the developed models, which

may increase the efficiency of the agronomist by automating or semi-automating the

irrigation planning process and by obviating the need to analyze plant and soil data, plot by

plot, on a weekly-basis. Modeling the decision-making process of the agronomist enables

to replicate it to additional orchards or to perform it more frequently without additional

effort.

Second, by developing models with different subsets of features, it was possible to

derive insights about the different features and their contribution to the prediction model.

In particular, it was shown that feature sets that included no data on drought/saturation and

IPPD weather performed at least as well as feature sets that included all available data,

calling into question the value of these data for predicting irrigation amounts. Additionally,

it was shown that different feature sets were optimal for different plots, suggesting that it

might be useful to develop unique models for different plots.

Third, this work generated insights on the suitability of different ML models for the

irrigation planning problem, showing that non-parametric models, based on gradient

boosting, achieved much better results than the traditional linear regression.

Altogether, these three contributions represent an approach that can be applied to

additional crops, as well as to additional decision-making processes in agriculture (e.g.

fertilization and pest-control decisions).
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Appendix

Linear regression coefficients. See Table 9.
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Table 9 The coefficients esti-
mated by the simple linear
regression model developed for
Set 2

*** p\ 0.001, ** p\ 0.01, *
p\ 0.05, p\ 0.1; The following
variables were excluded due to
collinearity with other variables:
sub_plot = C, sub_plot = F,
sub_plot = H,
organic_plot = TRUE

Term Coefficient
(standard error)

(Intercept) 6.47E ? 01
(9.55E ? 01)

Plot = P04 -3.39E-01***
(8.64E-02)

Plot = P99I -1.13E-01
(6.87E-02)

Plot = P99Z -5.05E-02
(6.37E-02)

Sub_plot = B -2.49E-02
(7.07E-02)

Sub_plot = D -1.24E-01.
(7.14E-02)

Sub_plot = E -2.92E-02
(9.27E-02)

Sub_plot = G 4.92E-03**
(1.57E-03)

Year -1.39E-02
(1.59E-02)

Week -2.19E-02
(1.84E-02)

Moisture_sensor_deep 3.97E-02.
(2.14E-02)

Moisture_sensor_shallow 2.02E-02
(2.04E-02)

Sallow_state_1 -2.24E-02
(1.67E-02)

Sallow_state_2 -1.25E-02***
(2.76E-03)

Deep_state_1 1.91E-03***
(5.51E-04)

Deep_state_2 1.65E-03
(8.56E-03)

Avg_of_humidity 1.11E-02***
(2.60E-03)

Avg_of_radiation 1.90E-03***
(4.79E-04)

Average_of_air_temperature 5.91E-02***
(9.48E-03)

Prediction_avg_of_humidity -3.39E-01***
(8.64E-02)

Prediction_avg_of_radiation -1.13E-01
(6.87E-02)

Prediction_avg_of_air_temperature -5.05E-02
(6.37E-02)
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