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Abstract Examination of seed germination rate is of great importance for growers early in

the season to determine the necessity for replanting their fields. The objective of this study

was to explore the potential of using unmanned aircraft system (UAS)-based visible-band

images to monitor and quantify the cotton germination process. A light-weight UAS

platform was used, which carried a consumer-grade red, green, and blue camera stabilized

by a built-in gimbal system. In order to obtain ultrahigh image resolution during the

germination stage, the UAS platform was flown at an altitude of approximately 15–20 m

above ground. By applying the structure-from-motion (SfM) algorithm, the images were

rectified and orthographically mosaicked with a ground sampling distance of approxi-

mately 6–9 mm/pixel. A novel solution was then developed for calculating the average

plant size and the number of germinated cotton plants according to the leaf polygons

extracted from the orthomosaic images. By using the estimated number of germinated

cotton plants, the plant density and the cumulative germination rate can also be estimated

in a straightforward manner using field-specific parameters. An assessment of the proposed

solution was conducted by comparing the estimated number of the germinated cotton

plants against ground observation data collected from six cotton row segments. The results

demonstrated that the average estimation accuracy achieved 88.6% in terms of identifying

the number of the germinated cotton plants. The accuracy may be further improved if

images with near infrared band are employed.
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Introduction

Seed germination is the most significant stage for stand establishment, and includes

complex interactions such as water absorption, membrane reorganization, metabolic

restructuring, and cell expansion (Hake et al. 1990). During seed germination, it is of great

importance for the growers to be able to monitor the germination and stand establishment

processes as early as possible so they can determine the need to replant their fields in a

timely manner, if plant density is not adequate.

Studies on cotton germination have been extensively conducted in controlled laboratory

environment. Most studies in the past focused on quantifying seed germination rates by

varying soil temperature to find out (1) the optimal temperature range for germination, and

(2) the germination temperature tolerance range. Research shows that soil temperatures

below 20 �C tend to slow germination rates (Lehman 1925; Krzyzanowski and Delouche

2011) while optimum germination happens at temperatures above 20 �C to around 34 �C

(Toole and Drumond 1924; Lehman 1925; Camp and Walker 1927; Arndt 1945; Cole and

Wheeler 1974).

Outside of the controlled laboratory environment, airborne and satellite remote sensing

has been widely acknowledged as an effective technology to assess crop growth status.

Commercial satellite imagery vendors can provide well-tuned products over large spatial

and temporal scales; however, spatial and temporal resolutions from satellite imagery are

often inadequate, especially during crop germination and emergence stages. Airborne

remote sensing, on the other hand, is capable of improving observation resolutions in a

more flexible manner.

Until recently, extensive agricultural studies have used multirotor and fixed-wing

unmanned aircraft system (UAS) platforms to carry various types of miniaturized sensors

to effectively perform crop monitoring tasks under a variety of circumstances (Gevaert

et al. 2015; Rasmussen et al. 2013; Zhang and Kovacs 2012). It has been demonstrated that

UAS platforms offer a unique opportunity to develop a variety of precision agriculture

applications with the focus on assessing crop growth, vegetation and health status (Berni

et al. 2009; Honkavaara et al. 2013; Li et al. 2012; López-Granados et al. 2016). The

versatility and flexibility of UAS platforms allow convenient and cost-effective access to

customized spatial, temporal, and even spectral resolutions (Colomina and Molina 2014).

Nevertheless, after an exhaustive literature review, there is no previous study that aimed at

investigating the use of UAS photogrammetry as a tool for crop germination assessment.

The objective of this work was to introduce a novel solution for monitoring and

quantifying the cotton germination process based on ultrahigh-resolution red, green, and

blue (RGB) imagery obtained from a low-cost UAS platform. The main contributions of

this study are twofold. First, this work pioneered a comprehensive methodology and

workflow to investigate the potential of quantifying cotton germination using a UAS

platform. Low-altitude UAS imagery with a high revisit frequency enables us to perform

reliable assessments based on a large number of small-size seedling samples with adequate

temporal and spatial resolutions. Second, this research was carried out in the field instead

of a laboratory environment. As stated above, previously published germination research
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papers focused on controlled environments; whereas, this study lifted the environment

restriction and assessed the proposed solution by comparing against more than two

thousand ground observation samples.

Materials and methods

Study area

The 85 m 9 54 m study area was established at the Texas A&M AgriLife Research and

Extension Center (27� 46.9480 N, 97� 33.6050 W) at Corpus Christi, TX, as shown in Fig. 1.

The blue paddle in the left subfigure indicates the geolocation of the study area in relation

to the city of Corpus Christi, Texas, and the test field details are revealed in the right

subfigure. A total of 35 cotton varieties were planted at a rate of 13.3 seeds/m in the test

field on April 1, 2015. The test field was separated into seven 10.67 m-long segments, in

north–south direction. Each segment consisted of 56 rows spaced at 0.96 m. Each variety

plot consisted of two consecutive rows in each segment. As shown in Fig. 1, each variety

was replicated four times as indicated by different colors. Border plots delineated with

translucent cerulean color depict filler rows in each segment and were excluded from

analysis in this study. In the test field discussed in this paper, cotton emergence was

observed on April 6, 2015, and the cotton was harvested on August 17, 2015. It is worth

noting that the background orthographic image of the test field used in Fig. 1 was gen-

erated from UAS images taken on June 26, 2015.

Data collection

Imagery collection from UAS platform

Operating a light-weight UAS is as simple as pushing a button on the smartphone after

planning the flight mission. The UAS platform for this research was a Phantom 2

Vision? multirotor copter (DJI, Shenzhen, Guangdong, China). A DJI Phantom Vision

Fig. 1 Test field at the Texas A&M AgriLife Research and Extension Center in Corpus Christi, TX
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FC200 RGB camera was mounted on the UAS platform. With robust UAS gimbal support,

stabilized nadir camera observation to the field was enabled. Some key features of the

images taken by the camera are provided in Table 1. Common camera settings, such as

white balance, ISO sensitivity, and exposure time, were kept on automatic or default mode

to minimize experiment complexity.

During the cotton germination stage, UAS images were acquired on a per day basis

starting from April 7, 2015 [i.e. 6 days after planting (DAP)] and ending on April 12, 2015

(i.e. 11 DAP). Due to non-technical reasons, the image data were not properly collected on

April 8, 2015 (i.e. 7 DAP) and therefore were excluded from subsequent analysis. The

UAS was flown at an altitude of 15–20 m above ground in order to achieve favorable

image ground sampling distance (GSD) for clearly observing germination of small-size

cotton cotyledons and leaves. An average horizontal speed of 1 m/s was configured and the

camera snapped a shot once the UAS traveled 1 m horizontally to obtain sufficient along-

track and across-track overlaps for generating orthomosaic images of the whole test field.

The flight time for each experiment was about 20 min to cover the whole test field. The

images for each flight experiment were captured around local noon so as to optimize the

homogeneity of light intensity and reflectance for a fair assessment for all datasets. Table 2

shows the number of images captured, GSD of the orthomosaic image as well as the flight

altitude above ground for each day during the germination stage.

Routine flight experiments were conducted on a weekly or biweekly basis afterwards

until early harvest stage, depending on the local weather conditions. A complete-cycle

analysis of cotton growth modeling and assessment for the same test field has been pub-

lished earlier by Chu et al. (2016).

Ground control points

Four ground control points (GCPs) were established at corners of the test field to geo-

reference the orthomosaic images. They ensured that the orthomosaic images have a

unified geodetic scale under the same coordinate system. The GCPs were surveyed using

an Altus APS-3 receiver (Altus Positioning Systems, Torrance, CA, USA) with the Texas

Department of Transportation (TxDOT) virtual reference station (VRS) positioning solu-

tion that can offer a positioning accuracy up to a few centimeters. Table 3 lists the

coordinates of the four GCPs installed at the corners of the test field under the World

Geodetic System 1984 (WGS-84).

Table 1 Key features of the
images taken by the DJI Phantom
Vision FC200 RGB camera

Image features

Array 4608 9 3456 pixels

Sensor size 6.17 mm 9 4.55 mm

Focal length 5.0 mm

White balance Auto

Exposure time 1/1250

ISO sensitivity 100

Bits per sample 8

Image format JPEG
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Ground germination data collection

While most industry-level germination equipment, such as germinator and seed container,

is mainly utilized for laboratory analytics, this UAS-based research, however, strived for

monitoring cotton germination process at the open field. As a cost- and time-effective

alternative, a Samsung Galaxy Note 3 smartphone (Samsung, Suwon, South Korea) was

employed to collect in situ germination data by recording videos along the cotton row

segments. Ground germination data was collected on April 12, 2015 (i.e. 11 DAP). To

record a live video along a selected cotton row, the smartphone was held at a height of

0.5 m above ground. The ground data collector meanwhile walked slowly along the row

with an average moving speed of 0.6 m/s. After evaluating the ground-based workload and

complexity, three entire rows (i.e. tenth, 20th, and 30th rows) were selected for video

collection out of 56 total cotton rows (including filler rows). As the length of each row

segment was 10.67 m in average, a total of 6 9 3 9 10.67 = 192.06 m-long cotton rows

were sampled as ground-collected germination data. The number of cotton plants for each

selected row was manually counted by playing back the video in the laboratory. A total of

2077 cotton plant samples were ground truthed from these three selected rows. Compared

with previous works which primarily focused on laboratory germination analytics, this

study has extensively enlarged the number of ground truthed germination samples used for

assessment. Figure 2 shows an example of a frame of the live video that was used to count

the total number of germinated cotton plants.

Meteorological data collection

Temperature has a strong influence on cotton seed germination rate and therefore a

meteorological station was installed on the northwest corner of the test field to measure air

temperature, relative humidity as well as soil temperature. Table 4 shows the meteoro-

logical data of the test field during the germination stage. Air temperature ranged from 21.8

Table 2 Summary of UAS flight experiments during the germination stage (i.e. April 7–12, 2015)

DAPa Number of images GSD of the orthomosaic
image (mm/pixel)

Flight altitude above
ground (m)

6 159 8.86 20

8 225 8.90 20

9 155 8.91 20

10 180 6.58 15

11 187 6.31 15

a Image data were not properly collected on April 8, 2015 (i.e. 7 DAP)

Table 3 The geodetic coordi-
nates of the GCPs under the
WGS-84 coordinate system

GCP No. Latitude (�) Longitude (�) Height (m)

1 27.781689 -97.560620 -11.08

2 27.781699 -97.560067 -11.13

3 27.782471 -97.560075 -10.96

4 27.782466 -97.560629 -11.00
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to 24.8 �C while soil temperature at 25.4 mm depth ranged from 23.3 to 27.2 �C. Relative

humidity was greater than 85% throughout the period studied (Table 4).

Data processing

Figure 3 shows the diagram of the data processing procedure of the proposed germination

analysis solution. There are four main steps:

Fig. 2 Example of a video frame
used for counting the number of
germinated cotton plants

Table 4 Meteorological data measured at the test field during the germination stage

DAP Relative
humidity (%)

Air temp.
(�C)

Soil temp.
(�C)a

Soil temp.
(�C)b

Daily heat
unitc

Cumulative heat units
after planting

6 85.1 24.4 26.7 25.8 18.4 90.6

8 86.4 24.8 27.2 26.7 18.4 127.6

9 100 21.9 23.8 24.3 11.3 138.8

10 99.6 21.8 23.3 23.3 12.1 150.9

11 91.1 23.5 25.1 24.6 14.1 164.9

Average 92.4 23.3 25.2 24.9 14.9 –

a Soil temperature at the depth of 25.4 mm
b Soil temperature at the depth of 76.2 mm
c Degree days base 60F (DD60)’s heat unit with the threshold temperature of 60F (15.6 �C)
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1) geo-referencing and mosaicking raw images taken from the UAS platform to create

orthomosaic images for the whole test field,

2) classifying the orthomosaic images into two categories: cotton leaves and non-leaf

objects,

3) generating the cotton leaf polygons based on the classified orthomosaic images, and

4) removing noise and counting the number of germinated cotton plants according to the

number and size of the leaf polygons.

Orthomosaic image generation

The raw images were loaded in and processed by the Pix4Dmapper Pro (Pix4D SA, 1015

Lausanne, Switzerland) software after acquisition. The software applies the scale-invariant

feature transform (SIFT) (Lowe 2004), or similar descriptor algorithm, to find key points

and match a large number of images. The matching process geometrically determines the

projection of a pair of matched points in different images representing the same 3D object.

The software then utilizes the photogrammetric structure-from-motion (SfM) algorithm

(Hartley and Zisserman 2004) to access high-resolution 3D first-surface-return point cloud

and 2D orthomosaic image by stitching together common features between overlapping

images.

A 3D first-surface-return point cloud model is usually used to estimate plant height

(Bendig et al. 2015; Chu et al. 2016; Zarco-Tejada et al. 2014) or 3D plantation dimen-

sionality (Dı́az-Varela et al. 2015; Gatziolis et al. 2015; Torres-Sánchez et al. 2015), while

a georeferenced 2D orthomosaic image provides a uniform scale and geometrically cor-

rected view over the entire test field, facilitating applications such as crop disease and

damage detection (Di Gennaro et al. 2016; Garcia-Ruiz et al. 2013; Yang and Hoffmann

2015). In this study, 3D plant point clouds were excluded from analysis due to the

ignorable height of cotton seedlings compared with surrounding soil, and 2D orthomosaic

images were primarily used for monitoring the germination process.

Cotton leaf classification

In order to monitor and quantify the germination process, cotton leaves were first identified

and extracted from the orthomosaic images. In each orthomosaic image of the test field, all

objects were classified into two categories: leaf and non-leaf objects. After manually

training a few samples on each category, an interactive supervised maximum likelihood

Fig. 3 Diagram of the proposed cotton germination analysis solution using RGB images obtained from the
light-weight UAS platform
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classifier (Settle and Briggs 1987) was used for classifying the leaf and non-leaf objects in

the ArcMap 10.3.1 (Esri, Redlands, CA, USA) software. Figure 4(a) shows an example of

the classification results. In Fig. 4(a), green polygons indicate objects classified as cotton

leaves. However, as seen in the rectangular areas inside the magnifier window, weeds in

between two adjacent rows were also identified as cotton plants. Discriminating between

weeds and cotton leaves by color is difficult as they both had green leaves in RGB images.

Furthermore, at times some small cotton cotyledons were also classified as non-leaf objects

because their color was similar to the dry plant residues on the field as shown in the circled

area inside the magnifier window in Fig. 4(a).

Leaf polygon generation

In this step plants classified as cotton leaves were converted into a map layer of polygons

using the ArcMap 10.3.1 software. The shape of the leaf polygon varied depending on (1)

the size of the cotton leaves of a single plant, and (2) the number of plants in a cluster

where leaves of the neighboring cotton plants were overlapped. In this study, the following

geometric properties of each polygon were calculated:

– area of the polygon, and

– 2D coordinates of the centroid of the polygon.

The polygon areas were used to estimate the total number of germinated cotton plants,

while the 2D coordinates of the centroids of the polygons were used to remove the weeds

Fig. 4 Example of the cotton leaf classification and leaf polygon generation
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growing between planted cotton rows. As discussed above, there were other plants such as

weeds growing between planted cotton rows. During this step, an off-the-line filter was

designed to examine whether the centroid point of a polygon area classified as leaves was

crossed by a cotton row line. The filter removed any plants that appeared off the cotton

rows, while retaining plants roughly located on a cotton row line. Any weeds germinating

along the cotton rows were considered as ‘miscounted’ cotton plants.

Figure 4(b) shows an example area of the leaf polygons generated from the leaf clas-

sification results. It also shows that the weeds were filtered out based on their location

relative to the cotton rows. After excluding filler rows as illustrated in Figs. 1, 4(c) displays

16 628 leaf polygons in total in the entire map layer on April 12, 2015 (i.e. 11 DAP).

Germination statistics

The total number of germinated cotton plants was estimated based on the following three

factors:

– the average plant size in terms of leaf area,

– the total number of leaf polygons, and.

– the area of each leaf polygon.

Therefore, three processing steps were introduced in this step:

– noise filtering: among all leaf polygons created in the above subsection, at times there

were some small-size noise polygons generated by fresh plant residues. Inclusion of

these noise polygons can lead to an overestimate of the total number of leaf polygons,

and hence reduce the accuracy of estimating the total number of germinated cotton

plants. In order to exclude those noise polygons induced by fresh plant residues, the

area threshold of a leaf polygon was defined as 4p2 (2p 9 2p) mm2, where p represents

the average GSD of the orthomosaic image. Any polygon with an area less than this

threshold was considered as noise, which was consequently removed from the map

layer of polygons. Again, during this step, most of the weeds were already removed by

clipping out the corresponding polygons outside of the cotton rows.

– estimate of the average plant size: After filtering out the noise and weed polygons, the

average plant size s was estimated with.

sj ¼
Pn

i¼1 ai

n
4p2 � ai �Tj ð1Þ

where Tj indicates the threshold of the maximum size of a single cotton plant for the j-th

DAP, ai represents the area of the i-th single-plant leaf polygon among the complete

number of n. All polygons that met the selection criterion 4p2 B ai B Tj shown in Eq. (1)

were considered as single-plant leaf polygons.

– counting the numbers of leaf polygons that were classified into different categories

based on their sizes. According to the aforementioned discussion, a leaf polygon may

not contain a single plant, but multiple neighboring cotton plants that overlapping

leaves. In order to accurately estimate the total number of germinated cotton plants,

leaf polygons were classified into six categories, which assumes a leaf polygon may

contain one, two, three, four, five or six cotton plants. A leaf polygon that may contain

seven or more cotton plants were not considered in this study. The leaf polygon

classification criteria are listed in Table 5. It is worth noting that, according to Eq. (1),
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the average plant size s expands with DAP, while the leaf polygon classification criteria

remain the same during the germination stage.

According to the above hypothesis in Table 5, the number of total germinated cotton

plants m was then estimated with.

m ¼
X6

k¼1
k�Gk ð2Þ

where Gk is the number of leaf polygons of the k-th category as depicted in Table 5. The

plant density was then estimated with.

d ¼ r � m
L

ð3Þ

where r is the row length per 1/1000 ac (4.21 m), L is the total length of cotton rows

(2996.0 m). The cumulative germination rate g was estimated with.

g ¼ m

A
ð4Þ

where A is the number of total cotton seeds planted in the test field. In this study case,

A = 39 847 as the seed rate was 13.3 seeds/m.

Results

Daily average plant size

The daily average plant size was estimated according to Eq. (1) during the germination

stage. It is an average leaf area of a single cotton plant. The value of this parameter

increased with DAP as a result of the growth of the cotton plants. Table 6 lists the

estimated average plant size s over DAP and its corresponding parameters used for the

estimation. A linear growing trend of the average plant size over the whole test field is

revealed in Fig. 5(a) where R2 = coefficient of determination of the linear regression. The

average plant size s was then used to define the classification threshold of the leaf polygons

as listed in Table 5.

Germination statistical results

By comparing the area of each leaf polygon with the threshold parameters obtained in

Table 5, the number of leaf polygons for each size category Gk was determined. The daily

Table 5 Leaf polygon classifi-
cation criteria

p average GSD

s average plant size

Leaf polygon categories Classification criteria

Category No. Description Minimum (mm2) Maximum (mm2)

1 1 plant 4p2 2s

2 2 plants 2s 3s

3 3 plants 3s 4s

4 4 plants 4s 5s

5 5 plants 5s 6s

6 6 plants 6s –
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total number of germinated cotton plants m was then estimated according to Eq. (2) based

on Gk and the polygon size k. Furthermore, Eqs. (3) and (4), were used to estimate the plant

density d and the cumulative germination rate g. Figure 5(b) shows the cumulative

numbers of germinated cotton plants across DAPs. Figure 5(c) illustrates the time series in

terms of the plant density, which represents a measure of the number of plants per 1/1000

ac. Figure 5(d) depicts the cumulative germination rate over DAP. It is clear that all the

Table 6 The estimated average plant size over DAP and its corresponding parameters used for the
estimation

DAP GSD p (mm/pixel) Threshold of maximum
plant size T (mm2)

Estimated average
plant size s (mm2)

Number of leaf
polygons used n

6 8.9 1200.0 591.6 2514

8 8.9 1600.0 689.8 5405

9 8.9 1800.0 903.9 5774

10 6.6 2000.0 931.2 8106

11 6.3 2200.0 1108.0 10 231

Fig. 5 Time series of cotton germination statistics estimated from the proposed UAS-based imagery
solution over the whole test field. a Daily average plant size; b total number of germinated cotton seeds;
c estimated plant density (measured as the number of plants per 1/1000 ac); d daily cumulative germination
rate
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statistical variables in Fig. 5 fit well with DAP in an increasing linear trend, producing R2

values higher than 0.90. It is worth noting that the discrete values and linear regressions in

Fig. 5(b–d) differ in scale and unit; however, they display the same ascending pattern over

DAP with the same R2 value. This is because, according to Eqs. (3) and (4), proportional

linear relationships exist among Fig. 5(b–d). Table 7 summarizes the statistical details of

the daily average plant size, number of total germinated cotton seeds, plant density, and

cumulative germination rate over the whole test field during the germination stage by using

the proposed estimation solution.

In this study, in addition to the estimated cumulative germination rate obtained from the

open field, results obtained from the laboratory environment were also listed for discussion.

As the average soil temperature (25.4 mm depth) of the test field during the germination

stage was 25.2 �C as listed in Table 4, the laboratory results with soil temperature of 26 �C

were used for comparison (Krzyzanowski and Delouche 2011). Detailed statistical results

are listed in Table 8 where ‘‘days after emergence (DAE)’’ is used as the first column

instead of ‘‘DAP’’ in order to match the terminology used by Krzyzanowski and Delouche

(2011). Specifically, as emergence was first observed on April 6, 2015 in the test field, the

DAE numbers in Table 8 correspond to the DAP numbers in Tables 2, 4, 6 and 7,

respectively. According to Table 8, the cotton seeds germination rate in the controlled

laboratory environment increased much faster than in the open field environment though

the final germination rates were similar. For the laboratory environment, regardless of the

seed type, most cotton seeds germinated within three days under soil temperature of 26 �C,

while the germination process in the open field more or less followed a linear trend in terms

of the average plant size and the number of total germinated seeds as shown in Figs. 5(a,

b). This probably relates to the fact that in the laboratory environment, key biotic and

abiotic factors that affect cotton seed germination and seedling establishment remained

consistent and/or maximum control, which may not always be the case in a field

environment.

Performance assessment

In order to validate the performance of the proposed cotton germination solution developed

in this study, the estimated number of cotton plants derived from the UAS-based imagery

was compared with the ground observation data. Figure 6 illustrates where the ground

observation data was collected and how it was segmented for the validation procedure. The

background map layer was from UAS imagery captured on April 9, 2015 (i.e. 8 DAP). The

Table 7 Summary of the daily average plant size, number of total germinated cotton seeds, plant density,
and cumulative germination rate over the whole test field during the germination stage by using the proposed
estimation solution

DAP Estimated average
plant size (mm2)

Total number of
germinated cotton seeds

Plant density (plant
number per 1/1000 ac)

Cumulative
germination rate
(%)

6 591.6 10 122 14.21 25.4

8 689.8 15 850 22.25 39.8

9 903.9 20 372 28.60 51.1

10 931.2 30 865 43.33 77.5

11 1108.0 34 081 47.85 85.5
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three rows (i.e. tenth, 20th and 30th rows from left to right) encompassed by the red

rectangles represent the ground observation video data collected using the Samsung Galaxy

Note 3 smartphone. There were 2077 cotton plant samples observed in a total of 192.06 m

of row.

The performance assessment was divided into six segments. Each segment cropped

10.67 m of the field in length, and therefore examined the estimated number of cotton

plants against the ground observation. In contrast with the background image as shown in

Figs. 1, 6 ignored the seventh segment which consisted of filler (also known as border)

cotton seeds planted on the south-most side of the test field. Table 9 displays the accuracy

comparison between the estimated number of germinated cotton plants in each selected

row segment against the corresponding ground truth. When taking into account all six

segments, the estimation accuracy ranged from 81.0% to 99.5% with an average of 88.6%

in terms of counting germinated cotton plants.

Moreover, it is seen in Table 9 that for most segments (except for segment 1) the

estimated numbers of cotton plants are smaller than the ground observed numbers. One of

the major error sources in the proposed solution stemmed from non-green color reflectance

of some small cotyledons in the RGB images. This directly led to errors in cotton leaf

classification and thus an underestimate of the total number of germinated seeds. To

address this problem, images from a multi-spectral or near-infrared (NIR) camera can be

added to further improve discrimination between plant and non-plant objects in the field.

Summary and discussion

A UAS-based visual-band imagery solution has been developed in this study to monitor

and quantify the cotton germination process. The light-weight UAS platform carried a

consumer-grade RGB camera stabilized by an integrated onboard gimbal system. The

built-in GPS module was used to adjust flight position and speed according to the flight

command information and to write geotags to the images. In order to obtain an ultrahigh

spatial resolution during the germination stage, the UAS platform was flown at an altitude

of approximately 15–20 m above ground. Images were captured at a rate of 1 image/s with

a planned horizontal ground speed of 1m/s to fulfill 70 and 60% overlap between images

along- and across-track, respectively. Consecutive RGB images with 4608 9 3456 pixels

were captured and stored in the onboard SD card with JPEG format. Common camera

settings were kept on automatic or default mode to minimize experiment complexity.

Table 8 Comparison of the cumulative germination rates between the results obtained from the test field
and the laboratory environment (Krzyzanowski and Delouche 2011)

Days after emergence (DAE) Field (%) Lab-H (%)a Lab-M (%)b

1 25.4 67.5 52.5

3 39.8 88.8 71.3

4 51.1 90.0 75.0

5 77.5 91.3 75.0

6 85.5 91.3 75.0

a Lab-H with high quality seeds
b Lab-M with low quality seeds
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The ultrahigh-resolution images can be loaded into available geospatial computing

software (e.g. Pix4Dmapper Pro and Agisoft PhotoScan Professional) to generate 2D

(orthomosaic images) and 3D (point clouds) products according to the SfM algorithm. In

this study case, the orthomosaic images achieved a GSD of 6–9 mm/pixel. Therefore,

during the germination stage cotton plants were identifiable against soil using a supervised

classification strategy, available in remote sensing software (e.g. ArcGIS and ERDAS

IMAGINE). By extracting the leaf polygons from the orthomosaic images, the proposed

solution has demonstrated that UAS-based RGB imagery is capable of assessing quanti-

tatively the number of germinated cotton plants, estimating the plant density, and calcu-

lating the cumulative germination rate during the germination stage. The performance of

the proposed solution was assessed by comparing the ground observation data from 2077

cotton plant samples, and an average accuracy of 88.6% was confirmed.

To the best of the authors’ knowledge, there is no previous research investigating the

process of crop germination in an open field environment utilizing UAS platforms. The

Fig. 6 Illustration of the ground observation data and segments on the cotton test field
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methodology proposed here opens the door for germination-related research and quite

possibly future precision agriculture applications. Results in this study confirm that UAS

platforms have great potential for precisely monitoring cotton germination, which may

help cotton growers obtain accurate information early in the season for effective and timely

management decisions.

The total hardware cost for this study was approximately $1300 US dollars, and

included platform, camera, gimbal system, and remote controller. A smartphone or laptop

computer was also needed for displaying real-time flight statistics and/or for pre-planning

the flight mission. One can select a more advanced imaging or UAS platform which may

provide refined spatial and/or spectral resolution. The use of geospatial computing software

for image processing, however, requires additional user costs and geomatics knowledge,

thus may limit the rapid adoption of UAS imagery-based tools among crop growers.

Therefore, to achieve specific goals in a timely and cost-effective manner, collaborative

work among crop growers and agricultural solution providers or geospatial computing

scientists would be favorable at this time. A big advantage of UAS-based precision agri-

culture is that agricultural fields extend across large and open-sky areas, and therefore

flight operations are usually under minimized restrictions in terms of safety and privacy

issues that have largely hindered the UAS uses in populated urban areas. The UAS plat-

forms could help scout a disease at an early growth stage or enhance routine management

practices such as irrigation scheduling, fertilization, and pesticide application. Recent study

has discovered that by properly using UAS technology in crop scouting, an estimated $1.3

billion return on investment (ROI) could be reached annually for corn, soybean and wheat

growers nationwide in the United States in terms of increasing crop yields and reducing

input costs (AFBF 2015; USDA 2015).

The use of NIR images is a popular way to further improve RGB observations for

effective crop vegetation monitoring. Although high accuracy results may be achieved,

Table 9 also reveals that the proposed methodology may underestimate the number of the

germinated plants due to new cotyledons’ non-green color reflectance captured by a visual-

band camera lens. In order to further improve the identification performance, an additional

pre-aligned camera with high sensitivity and spatial resolution at the NIR band is rec-

ommended to reduce the probability of errors. As an alternative, by applying filtering

techniques, one can use a single standard RGB camera to access both NIR and color bands

to expand the applicability of this work (Yang and Hoffmann 2015).

Table 9 Accuracy comparison between the estimated number of germinated cotton plants in each selected
row segment against ground truth

Segment Number of estimated
germinated cotton plants

Number of cotton plants obtained
from ground observation

Accuracy (%)

1 407 405 99.5

2 280 317 88.3

3 345 369 93.5

4 304 367 82.8

5 284 329 86.3

6 235 290 81.0

Average 88.6
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Nowadays, in the United States, public agencies or institutions usually need to apply for

the Certificates of Waiver or Authorization (COA) to gain airspace access from the Federal

Aviation Administration (FAA) for UAS operations. The FAA must balance societal and

economic benefits of commercial UAS industry against broader issues of public safety and

national security. Despite regulatory limitations being a major challenge for UAS-based

applications, the FAA has been continuously taking steps to allow for more convenience

and flexibility to industry, government and academic UAS operators for various applica-

tions. For instance, blanket COA has recently allowed UAS operators with section 333

Exemption to conduct flights up to 121.92 m altitude (FAA 2016a). More recently, a new

waiver program under Part 107 has been announced, and it provided a new path for flight

permission as a possibly easier alternative to the section 333 Exemption (FAA 2016b).

With the release of the new regulatory rules, agricultural UAS opportunity for commercial

and institutional uses is expected to be greatly expanded, and approximately 80 percent of

the domestic UAS market is anticipated coming from agriculture and related industries

(Jenkins and Vasigh 2013).
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