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Abstract Automation of disease detection and monitoring can facilitate targeted and

timely disease control, which can lead to increased yield, improved crop quality and

reduction in the quantity of applied pesticides. Further advantages are reduced production

costs, reduced exposure to pesticides for farm workers and inspectors and increased sus-

tainability. Symptoms are unique for each disease and crop, and each plant may suffer from

multiple threats. Thus, a dedicated integrated disease-detection system and algorithms are

required. The development of such a robotic detection system for two major threats of bell

pepper plants: powdery mildew (PM) and Tomato spotted wilt virus (TSWV), is presented.

Detection algorithms were developed based on principal component analysis using RGB

and multispectral NIR-R-G sensors. High accuracy was obtained for pixel classification as

diseased or healthy, for both diseases, using RGB imagery (PM: 95%, TSWV: 90%). NIR-

R-G multispectral imagery yielded low classification accuracy (PM: 80%, TSWV: 61%).

Accordingly, the final sensing apparatus was composed of a RGB sensor and a single-laser-

beam distance sensor. A relatively fast cycle time (average 26.7 s per plant) operation

cycle for detection of the two diseases was developed and tested. The cycle time was

mainly influenced by sub-tasks requiring motion of the manipulator. Among these tasks,

the most demanding were the determination of the required detection position and ori-

entation. The time for task completion may be reduced by increasing the robotic work

volume and by improving the algorithm for determining position and orientation.
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Introduction

Markets for specialty crops are becoming increasingly challenging and demanding,

threatening the long-term viability of crop growers (Lee et al. 2010). Greenhouses offer a

controlled environment that can support optimal growth conditions and maximize yield.

However, these conditions also favor the growth of many other organisms, such as weeds,

insects, bacteria, fungi and viruses, which cause and transmit plant diseases. The impact of

plant diseases on yield can be devastating and can lead to large potential annual losses for

world food production (Oerke and Dehne 2004). To facilitate attaining production potential

and to prevent significant yield losses, periodic and repetitive disease detection and

monitoring during the plant’s entire life cycle is essential (Pernezny et al. 2003; Elad et al.

2007). Disease containment along with a reduction in applied pesticides can only be

achieved through early disease detection and identification of its foci. Improvements in

both production quantity and quality, along with increased greenhouse productivity and

sustainability, can be achieved through improvement of disease-detection procedures.

Today, in commercial greenhouses, disease detection is conducted manually by expert

inspectors. As this relies on workforce availability and cost, the sampling resolution and

rate are low, with about 20 arbitrary locations sampled per hectare (ha) in a fixed pattern

where each plot is revisited every 7–10 days. The inspector walks about 20 km per day

covering about 8 ha. Therefore, a designated inspector is required for every 70–80 ha of

greenhouse. These limitations can lead to late detection and inability to contain a disease.

As a precaution, even when symptoms are far below the thresholds that mandate pesticide

application, repeated high doses of pesticide are often applied. Although disease distri-

bution is typically centered in distinct locations, when a disease is identified pesticides are

applied uniformly throughout the greenhouse. This leads to surplus use of pesticides, which

not only increases costs but can also have a major environmental impact.

Automation of disease detection can alleviate these difficulties, leading to yield

improvement along with a significant reduction in pesticide use (Franke and Menz 2007;

Franke et al. 2009; Bock et al. 2010). In addition to reduced production costs, this will also

lead to reduced exposure to pesticides for farm workers and inspectors, and increased

sustainability (Hillnhuetter and Mahlein 2008). Plant diseases can affect various optical

foliage characteristics and therefore, disease detection can be based on different spectral

ranges (Lee et al. 2010). Disease detection based on image processing of foliage light

reflection has been applied to many different diseases and cultivars (for reviews see Lee

et al. 2010; Patil and Kumar 2011; Barbedo and Garcia 2013; Pujari et al. 2015). Methods

based on fluorescence (Wetterich et al. 2016) or thermography (Oerke et al. 2011) can also

be used for disease detection and have been extensively studied, but they are less relevant

for a robotic detection system operating in the field due to cost, payload weight or required

setup. Mobile robotic manipulators with various sensing capabilities offer an automation

solution that is suitable for disease detection in greenhouses. However, comprehensive

research on the development of such integrated robotic disease-detection systems for

greenhouses is sparse, probably because the preliminary challenge of developing robust

disease detection algorithms is still an open research question. Aerial platforms (West and
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Kimber 2015) and ground mobile robotic platforms with fixed sensor configurations

(Moshou et al. 2011; Pilli et al. 2014) have been tested for disease detection in open field

crops. However, both solutions have inherent shortcomings in greenhouses. The maneu-

verability and flight duration of aerial systems within greenhouses is limited, and navi-

gation and location cannot rely on GPS sensors since the construction can cause

unpredictable errors, eliminating their main outdoor advantage. In greenhouses, position

and orientation adaptation can significantly improve detection, especially early detection

when symptoms are typically centered in distinct locations. However, for a fixed sensor

configuration, position and orientation adaptation is not possible. Moreover, in fixed-

configuration systems, a need for multiple disease detection can lead to a requirement for

multiple detection positions and orientations, which tends to increase system complexity

and cost, and hinder maneuverability. Therefore, a robotic disease-detection system for

greenhouse pepper plants was developed based on the concept of a mobile robotic

manipulator (Schor et al. 2015, 2016) which offers the required maneuverability and

flexibility. To the best of the authors’ knowledge, disease-detection systems based on a

mobile robotic manipulator for specialty crops in greenhouses have not been previously

developed.

Bell pepper (Capsicum annuum) is a high-value specialty crop grown mostly in

greenhouses for fresh markets. It is cultivated worldwide and used as a food ingredient,

spice and ingredient in medicine. The powdery mildew (PM) and the Tomato spotted wilt

(TSWV) are two common threats of greenhouse-grown pepper plants (Pernezny et al.

2003; Kenyon et al. 2014). The PM fungi and the TSWV (a virus, causal organism) were

selected due to their high disease severity in fruits and plants which significantly decreases

fruit quality (Moury and Verdin 2012; Kenyon et al. 2014). As the characteristics of the

diseases differ with respect to visible symptoms and outbreak regions, detection of these

two threats during a single pass of a robotic system is challenging. The current research is

the first to develop a robotic system for disease detection in greenhouse pepper plants

(Schor et al. 2015). Monitoring of several diseases of pepper plants using a single moni-

toring system based on machine vision, and image-processing algorithms for TSWV and

PM detection have not been previously reported.

TSWV is transmitted by at least eight species of thrips (Thysanoptera: Thripidae) (e.g.,

the western flower thrips Frankliniella occidentalis) (Pernezny et al. 2003) in a persistent

and propagative manner (Fereres and Raccah 2015). Since 2004, TSWV isolates have

overcome the resistance gene Tsw in pepper and the resistance gene Sw-5 in tomato,

making it difficult to manage (Margaria et al. 2004; Aramburu et al. 2010). In addition,

TSWV infects a wide range of host plants from different botanical families and is therefore

considered a major threat in many vegetable crops, e.g., tomato, tobacco, lettuce, pepper,

papaya, eggplant, green beans, artichokes, broad beans and celery (Moury and Verdin

2012). Over 1 000 plant species experience severe losses due to the virus (Rosella et al.

1996). In pepper plants, TSWV causes a range of symptoms: sudden yellowing, mild

mottling, mosaicking and browning of young leaves on the upper part of the plant, later

become necrotic. Occasionally, ring-shaped spots appear on both leaves and fruit. TSWV

causes heavy crop losses since fruit formed after infection display large necrotic streaks

and spots, while younger fruit may develop necrotic symptoms (Avila et al. 2006). Early

detection of TSWV in pepper plants is crucial, as it overcame plant resistance only recently

(Crescenzi et al. 2013). Currently, there is no treatment for TSWV in pepper plants, and

thus infected plants must be eradicated as soon as possible in order to prevent the sec-

ondary spread of the disease by the thrips vector. TSWV detection has used serology-based

methods, e.g., enzyme-linked immunosorbent assay or by molecular based amplification
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RT-PCR which is capable of providing an efficient diagnostic 14-21 days post-inoculation

(Avila et al. 2006; Crescenzi et al. 2013). Such methods require leaves from the ‘suspected

plants’ prior to the diagnostic assay. An additional disadvantage of these methods is that

the selection of samples for testing has a critical influence on method reliability due to

uneven distribution of TSWV in a greenhouse.

PM, caused by the fungus Leveillula taurica, is a serious threat to a very wide range of

hosts, including tomato and pepper. The list of affected plants extends to more than 1 000

plant species (Zheng et al. 2013). Economic losses and specifically, yield losses of

2–4 kg m-2, were reported for greenhouse pepper in British Columbia in 2002 due to

heavy PM epidemics (Cerkauskas and Buonassisi 2003). Studies conducted in greenhouses

and fields have shown that leaves infected with PM shed prematurely, resulting in reduced

photosynthetic area, inhibition of fruit development, reduction in the number of flowers per

plant and increased sunburn damage to exposed fruit (Elad et al. 2007). Pernezny et al.

(2003) described the visible symptoms of PM in pepper plants as yellow–brown spots with

whitish powdery mycelium, which typically appear first on the underside of older and

lower leaves. Image-based detection algorithms have been developed for PM in wheat

(Franke and Menz 2007), sugar beet (Rumpf et al. 2010; Mahlein et al. 2013) and

grapevine (Bélanger et al. 2008; Oberti et al. 2014) using UV (Bélanger et al. 2008) and

multispectral reflectance (Franke and Menz 2007; Oberti et al. 2014). Bélanger et al.

(2008) measured UV-induced fluorescence to detect and quantify PM infection symptoms

on grapevine leaves by investigating different emission/excitation wavelength combina-

tions. They found that the ratios between blue and green fluorescence intensity in healthy

and diseased areas of leaves are significantly different starting 3 days after infection.

However, the developed UV-based detection method requires complex fluorescence

excitation, complicating its implementation outside the laboratory. The potential of mul-

tispectral remote sensing for PM detection in wheat was presented by Franke and Menz

(2007), who achieved a maximum classification accuracy of 88%. Oberti et al. (2014)

investigated how the camera orientation can affect the sensitivity of PM detection in

grapevine leaves using multispectral imaging. Overall results indicated that detection

sensitivity generally increases with increasing angle of view, peaking for images acquired

at 60�.
The robotic disease-detection system described herein was developed in a holistic

manner, that is, system architecture, operation cycle and detection algorithms were

developed in an integrated manner. It has been shown that early integration and testing of

perception requirements can lead to improved system design and operation, in environ-

ments with taxing perception requirements (e.g., the agricultural environment) (Eizicovits

et al. 2016). The current paper presents the development of the disease-detection apparatus

and its integration into the robotic system’s operation cycle.

Methodology

System design

The system includes three main components: a robotic manipulator, a custom-made end

effector, and a sensory apparatus (Fig. 1). The sensory apparatus is comprised of a RGB

camera (LifeCam NX-6000 WebCam, Microsoft, Redmond, WA, USA) with a resolution

of 1600 9 1200 pixels, a NIR-R-G multispectral camera (ADC Lite, 520–920 nm,
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equivalent to TM2, TM3 and TM4, Tetracam, Chatsworth, CA, USA) with a resolution of

2048 9 1536 pixels, and a single-laser-beam distance sensor (DT35, SICK, Waldkirch,

Germany). The sensor devices are mounted on the end effector, which is attached to a six

degrees-of-freedom manipulator (MH5L, Motoman, Yaskawa, Eschborn, Germany). Parts

of the end effector were fabricated using a 3D printing system (Trio, CubeX, Rock Hill,

SC, USA). These parts were designed to align the sensor devices in parallel, making them

coaxial with the manipulator’s tool center point (TCP). To simplify the initial development

stages and as there are platforms capable of autonomously driving through greenhouse isles

(e.g., Van Henten et al. 2002), the robotic arm was placed near a conveyor belt carrying

pots with plants simulating the movement of the system in a greenhouse plot. The

manipulator will be mounted on a mobile platform at a later stage during field-testing.

Sensory apparatus

Both RGB and multispectral NIR-R-G sensors are readily available (such as Canon,

Microsoft WebCam, Tetracam, which are considered low-cost off-the-shelf products) and

can be integrated with a robotic manipulator; RGB sensors are typically less expensive.

Multispectral NIR-R-G sensors are commonly applied to disease detection as many dis-

eases are characterized by changes in reflectance properties in this range of bandwidths. To

determine the required sensory apparatus, the ability of each sensor to correctly classify

pixels as diseased or healthy, for PM and for TSWV was tested. Two cameras were

compared: an RGB camera (PowerShot SX210 IS, Canon, Melville, NY, USA) with a

resolution of 4320 9 3240 pixels, and a NIR-R-G multispectral camera (ADC Lite, similar

to the one included in robotic sensory apparatus).

PM-detection algorithm

A preliminary analysis of raw pixel values (either R, G, and B or the multispectral NIR, R,

and G channels) did not yield clear separation between healthy and diseased pixels.

Therefore, principal component analysis (PCA) was conducted on the raw pixel values. A

binary classification (healthy or diseased) was determined for each pixel, based on the two

main principal components. Classification thresholds were determined a priori using linear

discriminant analysis (LDA) and quadratic discriminant analysis (QDA). Since prior work

on PM detection identified specific NIR-R-G multispectral indices for grapevine PM

(Oberti et al. 2014), these indices were also computed.

Fig. 1 The robotic detection system
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TSWV-detection algorithm

A preliminary analysis of both raw pixel values and PCA of these values did not yield good

separation for either sensor. Visual examination indicated that for TSWV, the differences

between symptom color and leaf color are small, and leaf veins and disease symptoms have

similar color levels. Therefore, a leaf vein extraction algorithm was implemented. The

algorithm was based on the Savitzky–Golay smoothing and differentiation algorithm

(Savitzky and Golay 1964) followed by application of multilevel image thresholds using

Otsu’s (1979) method and morphological filters (e.g., area open and dilate). Preliminary

analysis confirmed that this stage is required for TSWV and that for PM, it is not. PCA was

conducted after leaf vein removal and a binary classification (healthy or diseased) was

determined for each pixel, based on the two main principal components. Classification

thresholds were determined a priori using LDA and QDA.

System operation cycle

To attain high sampling resolution and large area coverage, detection cycle time should be

minimized. To shorten the cycle time, disease detection is performed during a single pass

of the robot manipulator around the plant. To further shorten operation cycle time, TSWV

detection is done first because currently, there is no cure for TSWV and if detected, the

plant is immediately marked for eradication; detection of PM on that plant is therefore not

required. Each cycle (Fig. 2) starts with a TSWV detection task which, in the case of a

negative result, is followed by a PM detection task. To avoid collision with the plant when

moving from one task to another and when the manipulator moves from the TSWV

detection position and orientation to the PM detection position and orientation, and from

this position and orientation to the next plant, the manipulator moves through an

Plant identification

Take RGB image

Move to 
intermediate point 

Plant 
identified?

Disease detection

Pixel classification   

Position and orientation determination

Perform numerical 
iterative search 

Calculate disease-
detection position

Move to 
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Canopy 
identification
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Fig. 2 Operation cycle

Precision Agric (2017) 18:394–409 399

123



intermediate point ensuring motion outside the plant foliage. The motion planner calculates

a straight path to and from the intermediate point using the manipulator’s kinematic model.

Each detection task includes three subtasks: plant identification, position and orientation

determination and disease detection.

Plant identification

For plant identification, the end effector moves to an initial position and orientation

determined a priori. For TSWV detection, the initial position and orientation is above the

plant (sensor apparatus facing down), whereas for PM detection, it is alongside the plant

(sensor apparatus facing sideways toward the plant). A RGB image is acquired from the

initial position and orientation and the plant canopy is detected using blob analysis and

morphological filters. The center of the plant, i.e., the center of the green blob, is calculated

(Fig. 3). The central area of the plant is defined as a 16 9 16 pixel, bounding square

around the center of the plant.

Position and orientation determination

The position and orientation for disease detection is calculated based on the central area

and the kinematic model of the robot. Since the required TSWV detection position and

orientation may be close to the manipulator singularity point, in which the shoulder and

elbow links of the manipulator are fully aligned and the inverse kinematic equations cannot

be solved analytically in this region, a numerical iterative search is implemented. The

objective of the iterative search is to position the TCP within the central area (Fig. 3a) and

it is executed by fixed roll-and-pitch movements. The direction of the joint movements

(left or right and up or down) is determined according to the concurrent TCP position with

respect to the plant center area. For PM detection, the detection position and orientation

can be computed analytically. The manipulator moves toward the determined detection

position and orientation while using the laser sensor to continuously monitor the distance

to the plant canopy and ensure that a distance of 210–270 mm from the plant foliage is

reached to obtain the required leaf resolution. The distance-control algorithm was devel-

oped under the hypothesis that the closest object to the end effector is the plant, and

Fig. 3 Initial position and orientation as seen from the RGB camera mounted on the robotic arm. a RGB
image with plant center area (black box) and TCP (red dot). b Binary image (Color figure online)
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therefore the laser sensor indeed measures the distance to the plant foliage (either top or

side). Multiple distance measurements are executed since a single measurement may miss

the plant. Once a plant is identified and the camera position and orientation are established,

the disease-detection procedure is initiated.

Disease detection

Detection is performed at leaf level, and therefore before the detection algorithms start, the

leaf is segmented and background noise is removed based on blob analysis and morpho-

logical filters. Several two-stage disease-detection algorithms were implemented using the

two spectral ranges: RGB and multispectral NIR-R-G. In the first stage, each pixel is

classified using PCA as either diseased or healthy (Schor et al. 2015, 2016). In the second

stage, leaf condition is determined based on the ratio of diseased pixels. For TSWV

detection, leaf condition is determined as either healthy or diseased since, even at an early

stage of the disease, the plant is marked for eradication. For PM detection, the leaf is

marked as healthy or with low or medium disease severity to direct the treatment (Schor

et al. 2016).

Experiments

Disease detection experiments

The analysis was conducted using a computer equipped with an Intel Core i7-3632QM

2.2 GHz processor with turbo boost up to 3.2 GHz (CPU) and 8 GB RAM with Windows 8

(64-bit) operating system. The detection algorithms were implemented using Matlab

R2013b (Mathworks, Natick, MA, USA) and statistical analysis was conducted using IBM

SPSS statistics 19 (IBM, Armonk, NY, USA). Pixel classification quality was determined

based on 10 9 2 cross-validation. Results are presented using overall accuracy, which

reflects the ratio of correct classifications (both healthy and diseased):

accuracy ¼ TPþ TN

TPþ FPþ FN þ FN
ð1Þ

where healthy is regarded as positive and diseased is regarded as negative. TP is true

positive and FN is false negative.

Sweet bell pepper plants (Hazera Genetics) were obtained from a commercial nursery

(Hishtil, Ashkelon, Israel) 40–50 days after seeding. The plants were transplanted into 36

pots containing soil and potting medium and were fertigated proportionally with drippers

2–3 times per day with 5:3:8 NPK fertilizer (nitrogen (N), phosphorus (P) and potassium

(K)), allowing for 25–50% drainage. Irrigation water was planned for total N, P and K

concentrations of 120, 30, and 150 mg l-1, respectively; electrical conductivity of water

(EC) was 2.2 dS m-1. Plants were maintained at 20–30 �C in a pest- and disease-free

greenhouse where their healthy status was ascertained visually by plant pathologists (Schor

et al. 2015).

The 36 plants were divided into two subsets positioned in two different greenhouses: 24

plants for PM detection and 12 for TSWV detection. Images of the plants were acquired in

the greenhouses at noon time with the RGB and the NIR-R-G cameras (Fig. 4). Of the 24

plants from the PM subset, 12 were infected with PM 4 months after transplanting. Starting

with the occurrence of the first symptom reported by the plant pathologists (2 days after
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inoculation), images of both sides of 24 selected leaves (12 healthy and 12 diseased), each

from a different plant, were acquired every 3 days over a 17-day period. Three leaves (two

healthy and one diseased) were torn unintentionally during data collection and their images

were discarded. Of the 12 plants from the TSWV subset, six were infected with TSWV

2 weeks after transplanting. Images of the top and sides of the plants were taken daily in

the greenhouse for 15 consecutive days (days 3–17 after inoculation). As the plants were

small during the data-collection period, images of plants rather than leaves were taken. For

both diseases, in addition to disease intensity, the images show pigmentation due to pos-

sible interfering nutritional or physiological disorders.

TSWV and PM symptoms in all images were manually marked by plant pathologists

and each pixel was classified as healthy or diseased by marking polygons of diseased areas

in the images. Leaves were classified as either healthy or diseased and disease severity was

additionally graded as low, medium or high. The pathologists also classified the condition

of each leaf on every recorded day. For PM leaf classification, the pathologists used the

images of both sides of the leaf. TSWV symptoms typically appear at the top of the plant.

Visual inspection by the plant pathologists verified that TSWV symptoms were indeed

undetectable from the side-view images. Therefore, only the images of the top of the plant

were used. Within the calibration images, subset areas were extracted from infected areas

identified by the plant pathologists. Sub-set areas were also extracted from healthy plants.

The number of regions of interest (ROIs) for each class was chosen to obtain a balanced

distribution between healthy and diseased tissue at different stages of disease progression

(Schor et al. 2015). The selected ROIs from the calibration set were used to tune the

disease-detection model and to train the classification parameters.

Operation cycle experiment

System operation cycle time is a critical feature in facilitating system acceptance and its

economic justification. Setting the capacity of a human inspector as the minimal baseline

capacity for the robotic system, a minimum baseline for the required cycle time can be

computed. Indeed, this baseline does not ensure that the system will be economically

feasible or acceptable to the farmers, but it can give a general appreciation of the attained

results. During an 8 h work shift, an expert inspector examines about 160 plants (20 plants

ha-1, 8 ha per day) and walks about 20 km. Mobile robots have been tested navigating in a

greenhouse at speeds of 1.2 m s-1 (González et al. 2009). Taking a conservative average

Fig. 4 Leaves with disease symptoms. PM forms on the underside of leaves: a RGB image and b NIR-R-G
image. TSWV-infected pepper plants: c RGB image and d NIR-R-G image (Schor et al. 2015)
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speed of 1 m s-1, the robot would require 5.56 h to travel a distance of 20 km. This would

leave 2.44 h for examination of 160 plants, which means 55 s per plant.

The system operation cycle time was tested in an indoor laboratory environment. The

plants were positioned on a conveyor belt with black background to simplify plant-iden-

tification and background-removal procedures. In these tests, the plants were stationary

during the detection process. The detection system was controlled by a computer equipped

with an Intel Pentium Dual E2180 2 GHz processor (CPU) and 2 GB RAM with Windows

XP (32-bit) operating system. The algorithms were implemented using Matlab R2009b

(Mathworks). Three plant locations (770, 900 and 1050 mm away from the robotic system

base in the workspace co-ordinates), and three end-effector velocities (5, 15 and 25% of

maximum speed) were tested. Each condition was executed for 10 healthy plants. Overall,

there were 90 runs of the system. Execution time was computed for each sub-task to

determine the most time-consuming sub-task. Cycle time was defined as the sum of all sub-

task times.

Results

TSWV detection

A total of 72 RGB images and 72 leaf-matched NIR-R-G multispectral images were

analyzed (36 healthy and 36 infected leaves). Images of infected leaves were taken from

plants with leaves marked as having low and medium severity of TSWV (18 low and 12

medium), 12–17 days after inoculation. Images of healthy leaves were taken from day-

matched leaves. Six images were excluded from each sensor set: three of infected plants

taken 12 days after inoculation where visible symptoms had not yet appeared, and three

taken 14, 15 or 16 days after inoculation which the plant pathologist misdiagnosed.

PCA-based pixel classification of RGB images achieved accuracies of 85.6 and 83.5%

using QDA and LDA, respectively (Fig. 5a). PCA-based pixel classification of NIR-R-G

images achieved accuracies of 60.0 and 61.1% using QDA and LDA, respectively

(Fig. 5b).

PM detection

A total of 45 RGB images and 45 leaf-matched NIR-R-G multispectral images were

analyzed from the PM database (15 healthy leaves and 30 infected leaves each for RGB

and multispectral NIR-R-G). Images of the upper side, which is more visible, of infected

leaves marked as having low or medium severity of PM (11 low and 19 medium) were

analyzed. Images of the underside of leaves were not analyzed since they are not visible to

the robotic disease detection system.

PCA-based pixel classification of RGB images achieved accuracies of 95.2 and 94.8%

using QDA and LDA, respectively (Fig. 6a). PCA-based pixel classification of NIR-R-G

images achieved accuracies of 71.6 and 79.9% using QDA and LDA, respectively

(Fig. 6b).

The spectral indices for the multispectral NIR-R-G sensor suggested by Oberti et al.

(2014) for PM detection in grapevine were examined for a sample of healthy and infected

pixels in pepper plants (Fig. 7). Separation accuracies of 59.0 and 66.3% using QDA and

LDA, respectively, were attained.
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Operation cycle

The system operated continuously throughout the trials. Average cycle time (sub-tasks

detailed in Fig. 8) were 42.9, 26.7 and 24.3 s for end-effector velocities of 5, 15 and 25%,

respectively.

Execution time of all tasks, including manipulator motion, except position and orien-

tation determination for TSWV, decreased considerably when the manipulator speed was

increased from 5 to 15%. The execution time continued to decrease but at a much lower

rate when the manipulator speed was further increased from 15 to 25%. For TSWV

position and orientation determination, execution times were similar at all velocities.

Execution times of the disease detection tasks (which did not include manipulator motion)

were negligible with respect to the execution time of the tasks that included manipulator

motion (TSWV detection: 0.06 s and PM detection: 0.06 s).

Fig. 5 First (PC1) versus second (PC2) principal components of R, G and B variables (a) and NIR, R and G
variables (b) for TSWV-infected and healthy pepper plants. Altogether, 60 000 healthy (green) and 60 000
diseased (red) pixels are displayed. The pink solid lines represent the functions separating the decision
regions (Color figure online)
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Fig. 6 First (PC1) versus second (PC2) principal components of R, G and B variables (a) and NIR, R and G
variables (b) for PM-infected and healthy pepper plants. Altogether, 20 000 healthy (green) and 20 000
diseased (red) pixels are displayed. The pink solid lines represent the functions separating the decision
regions (Color figure online)

Fig. 7 First index (R*G/NIR2) versus second index (R/(R ? G ? NIR)) of NIR, R and G variables for PM-
infected and healthy pepper plants. Altogether, 20 000 healthy (green) and 20 000 diseased (red) pixels are
displayed. The pink solid lines represent the functions separating the decision regions (Color figure online)
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Discussion

For PM, results show that the spectral indices developed for grapevine (Oberti et al. 2014)

are not applicable to bell pepper plants. PM has different symptoms and different pro-

gression characteristics (color, pattern, growth region, etc.) in different species, e.g.,

grapevine and bell pepper plants. This is in line with the need to develop more integrated

crop- and pest-management strategies, as argued by Kenyon et al. (2014).

A high accuracy of pixel classification was obtained for both diseases using RGB

imagery (PM: 95%, TSWV: 86%). In contrast, using NIR-R-G multispectral imagery

resulted in low classification accuracy for both diseases (PM: 80%, TSWV: 61%). Thus,

RGB imagery is clearly superior to NIR-R-G multispectral imagery for the current

application. The results imply that some of the information regarding the diseases is

contained in the blue channel, which does not exist in the multispectral camera. It has been

shown for several diseases of sugar beet leaves that a combination of data from multi-

spectral and RGB sensors can lead to highly accurate classification results (Bauer et al.

2011). However, it is not clear whether this is also the case for pepper plants. According to

the results, a high-resolution RGB camera (e.g. the camera used for constructing the

database) should be integrated into the sensing apparatus. Further tests will determine

whether this camera can be used alone or installed alongside the multispectral camera.

The high pixel classification success using the RGB input indicates that this input can be

used to determine leaf condition with a two-stage classification algorithm. In the first stage,

pixel state is determined as healthy or diseased as described above and, in the second stage,

leaf condition is determined based on the rate of diseased pixels in the leaf (Schor et al.

2016). For TSWV detection, the affected (top) side of the leaf is directly visible to the

camera. Accordingly, for TSWV, PCA-based leaf-condition classification achieved high

accuracy (90%). For PM detection, disease development starts on the underside of the leaf.

Therefore, while detection is indeed possible using the top side of the leaf, for early
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detection, the underside should be exposed. Consequently in the experiment, when only the

upper side of the leaf was used, PM detection accuracy was low (64.3%) (Schor et al.

2016).

Results are very encouraging as the attained cycle time was lower than the calculated

required baseline. However, the experiment was conducted in a simplified laboratory

environment, e.g., the use of a conveyer belt rather than mounting the manipulator on a

mobile platform or the black background used to simplify plant-identification and back-

ground-removal procedures. These made the disease detection task easier, and reduced

cycle time. The greenhouse environment is unstructured and complex, as it includes

obstacles, background noise and varying illumination. Conducting disease detection in

such an environment will require sophisticated algorithms for motion control, path plan-

ning and additional image processing. This, in turn might extend cycle time. However,

results also showed that cycle time can be further reduced in a straightforward manner. For

TSWV detection, execution time does not change with manipulator speed. This indicates

that the execution time is mainly influenced by the iterative numerical search for the

inverse kinematic solution. Using a manipulator with a different work volume, for which

an analytical solution exists for the inverse kinematic equations, could considerably

shorten execution time. Although for PM, the execution time of the position and orien-

tation detection task was shorter than for TSWV, this was the longest sub-task for both

diseases. During position and orientation detection, the robot moves while operating the

laser sensor to determine the distance from the plant. Improving the initial position and

orientation estimation, along with improvements to the control cycle are expected to

reduce the execution time of these tasks. Execution time of tasks that include motion is

reduced when manipulator speed is increased, but this reduction is smaller as speed

becomes higher, due to the manipulator acceleration and motion profile. According to the

results, there is little to be gained by increasing manipulator speed beyond the tested speed

of 25%. Similarly, results show that improving the efficiency of the disease detection

algorithms will not significantly affect the overall execution time.

Conclusions

The current research targeted the development of a robotic disease detection system for

two diseases of greenhouse pepper plants. Results of examining RGB and multispectral

sensors for detection showed that it is important to include an RGB sensor as part of the

disease detection sensor suite. Such a sensor should be added to the sensor apparatus either

instead of, or alongside the multispectral sensor. Inclusion of both sensors should be

carefully scrutinized, as it will increase system cost and will increase end-effector size,

which may mandate a change in path to avoid collisions with the plants.

Investigation of the operation cycle indicated that the cycle time required for economic

justification may be attainable. Results indicated that the structure and size of the

manipulator should be re-examined in view of the position and orientation required for

TSWV detection. Results also indicated that, for the examined system, the main reduction

in cycle time can be expected from improvement of the position and orientation deter-

mination sub-task for both TSWV and PM.
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