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Abstract Methods are available to predict nitrogen needs of winter wheat based on plant

sensing, but adoption rates by producers are low. Current algorithms that provide nitrogen

recommendations based on plant sensing implicitly assume that parameters are estimated

without error. A Bayesian updating method was developed that can incorporate precision

plant sensing information and is simple enough that it could be computed on-the-go. The

method can consider producers prior information and can account for parameter uncertainty.

Bayesian updating gives higher nitrogen recommendations than plant sensing recommen-

dations using a plug-in method. These recommendations increase net returns over the pre-

vious recommendations, but not enough to make plant sensing profitable in this scenario.

Keywords Bayesian updating � Nitrogen response � Stochastic plateau � Winter wheat

Introduction

Large expenditure has been directed to research and development of using plant sensing

(PS) technology to select how much fertilizer to apply. While adoption has been

increasing, adoption rates by producers are still low for most precision agriculture
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technologies and especially the PS technology considered here (Erickson and Widmar

2015; Schimmelpfennig and Ebel 2016; Boyer et al. 2016). Presumably, few producers

have adopted PS because it does not unambiguously pay to do so.

With respect to nitrogen (N) fertilizer application, the economic feasibility of PS hinges

on the capability of the technology to either (1) increase yields by recommending more N,

or (2) retain yields while recommending less N. Increasing yields by applying more N is an

unlikely strategy for PS technology, as producers already apply more N than necessary1 in

most years (El-Hout and Blackmer 1990; Babcock 1992; Rajsic and Weersink 2008). Thus,

economic feasibility hinges on PS technology retaining yields while recommending less N

than would be applied without the technology.

The study focused on the Raun et al. (2002, 2005) precision sensing system that used PS

of hard red winter wheat ((Triticum aestivum L.) in February to determine recommended

levels of topdress N. Previous research has indicated that the Raun et al. PS system lowered

input costs by recommending less N than farmer practice; however, it did not retain yield

levels (Biermacher et al. 2009; Boyer et al. 2011). The yield loss from the PS system-

recommended N could be due to an implicit assumption of zero prediction error, which is

unlikely since weather after sensing affects potential yields. Note that yield losses with

current commercial versions are not as large since the formulas have been adjusted to apply

more nitrogen. This is a heuristic way of doing what the Bayesian model does. The PS

systems evaluated here can be used on an entire field or for each plot within a field if using

a variable rate system. As efforts expand in using big data for precision agriculture pur-

poses, the Bayesian approach used here can serve as a general approach in a variety of

applications.

Information not directly used by a PS system is the information a producer has about a

given field. Producers sometimes intuitively apply a little more than the recommendation if

it is less than their current practice or a little less if the recommendation is more, but they

are not using an optimal Bayesian approach. A producer does not possess perfect infor-

mation about the functional relationship of expected yield and N. For example, Rodriguez

and Bullock (2015) argue that the traditional recommendation of quantity of N per yield

goal does not match actual yield functions, so if experiment station recommendations are

inaccurate then producer estimates are also likely inaccurate. A Bayesian approach allows

a producer to combine optical sensing information with prior objective—or subjective—

information to decrease the error associated with the calculation of profit-maximizing N.

Bayesian approaches have been used to determine the economic value of weather

information to agricultural producers (Doll 1971; Baquet et al. 1976; Byerlee and

Anderson 1982; Marshall et al. 1996), project agricultural yield (Krause 2008) and

determine returns of using soil sample information (Pautsch et al. 1999). However, no

research has shown how Bayesian updating can improve profit-maximizing N recom-

mendations from a PS system.

In this study, Bayesian methods are used to combine prior information with PS infor-

mation. Fertilizer costs account for more than 30% of operating costs (Huang et al. 2009)

and a PS system can reduce this cost. Furthermore, advancement in PS profit-maximizing

N recommendations may increase the adoption rate of precision agriculture. Moreover,

increased adoption of PS would decrease N application levels and consequently reduce

negative environmental externalities associated with excess N application.

1 Note that this practice is an expected profit maximizing strategy since in some years, the nitrogen will be
needed. The marginal revenue of applying nitrogen in years that it is needed is roughly 6–10 times its
marginal cost and thus it pays to apply nitrogen that is only needed once every 6–10 years.
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Materials and methods

The Bayesian approach

The Bayesian approach combines the producer’s prior estimate of the production function

with new information from sensing.

Prior information

Consider a risk neutral producer who maximizes expected profit with a choice set that is

reduced to an N decision. The objective function for a producer can be represented by

max
N

EðpjN; I0Þ ¼ max
N

pEðYÞ � rN

s:t:EðYÞ ¼
Z

YðN;HÞf ðHjI0ÞdH
ð1Þ

where E pjN; I0ð Þ is expected profit, p and r are known output price and N cost, and E(Y) is

expected yield as a function of N, represented by N, prior information set I0 and the

functional relationship of expected yield and N with the parameter vector H.

Previous research has generally favored plateau-type models over polynomial functions.

The linear stochastic plateau of Tembo et al. (2008) was used since it was developed to

match the production function assumed with Raun et al.’s (2005) precision nitrogen sys-

tem. Tembo et al.’s stochastic plateau model has been used in many previous studies to

estimate yield response to N (Tumusiime et al. 2011; Boyer et al. 2013; Ouédraogo et al.

2016) and can be expressed as

Yit ¼ min b0 þ b1Nit; lP þ vtð Þ þ st þ eit ð2Þ

where Yit is the observed yield of location i in year t, Nit is the level of N applied,

vt �Nð0; r2vÞ is the plateau year random effect, st �Nð0; r2sÞ is the year random effect,

eit �Nð0; r2e Þ is a random error term and b0, b1 and lP (mean plateau yield) are parameters

to be estimated. The stochastic variables (vt, st, eit) are assumed to be independent. With a

stochastic plateau function, the expected profit maximizing solution is to equate the

marginal expected revenue and the marginal cost. If the revenue from applying nitrogen

when it is needed is six times its marginal cost, then the expected profit maximizing

solution is to apply nitrogen up to the point that it is only needed in one year out of six. The

Raun et al. (2002, 2005) PS system measures yield with no nitrogen (b0 ? st) and the

plateau level of yield using a nitrogen-rich strip (lP ? vt ? st). By reducing the uncer-

tainty about the yield response to nitrogen, the system can reduce the average amount of

nitrogen used.

Equation (2) was estimated using historical data to represent prior beliefs. In practice,

the parameters would need to be calibrated based on the producer’s expected yield and

expected optimal level of nitrogen, as well as historical information for the field or region.

Since historical data were available here, an objective prior was used.

New information

Many PS systems are available that vary by sensor type and nitrogen response index

(Alchanatis et al. 2005; Begiebing et al. 2007; Ehlert et al. 2004; Havránková et al. 2007).
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The N fertilizer optimization algorithm (NFOA) developed by Raun et al. (2002) and

updated by Raun et al. (2005) has been produced commercially under the name

GreenSeeker� (Trimble, Sunnyvale, CA, USA), which uses an optical sensor and gives a

recommended level of N based on mid-season growth. The PS algorithm used here cor-

responds closely2 to that of GreenSeeker�. Initial versions applied a different amount of N

to each square meter, but the current commercial version is a $495 hand-held sensor and

gives one recommended rate for each field.

The Raun et al. (2002, 2005) NFOA procedure can be separated into three processes: (1)

estimate potential yield if no additional mid-season N is applied; (2) estimate maximum

potential yield if additional mid-season N is applied; and (3) calculate the required addi-

tional mid-season N to reach maximum potential yield given an exogenously estimated

slope. Note that if there is no error, the first and second processes of NFOA define the

intercept and plateau of a plateau model, but NFOA does not provide information similar

to the slope (b1). Also, note that producers could also be asked to provide subjective

estimates of their yield goal and the amount of nitrogen to reach that yield goal, which

could be used to derive the same parameters in Eq. (2).

Processes one and two of NFOA are achieved by applying a non-yield-limiting amount

of N to a narrow strip in the field before planting—also referred to as an N-rich strip.

Between Feekes (Large 1954) growth stages 4 and 6, optical reflective measurements

(ORM) were used to calculate a normalized difference vegetation index (NDVI) that

measured the total biomass at the time of measurement. NDVI was divided by the number

of growing degree days to arrive at an in-season estimated grain yield (INSEY). Raun et al.

(2002, p. 816) define INSEY as INSEY = NDVI (Feekes 4–6)/days from planting where

growing degree days (GDD)[ 0 [GDD = (Tmin ? Tmax)/2 - 4.4 �C, where Tmin and

Tmax are daily ambient low and high temperatures. McMaster and Wilhelm (1997) dis-

cussed alternative ways of measuring GDD, but that is not an issue that is explored here.

The INSEY where the field-level pre-plant N was applied was used to determine minimum

potential yield, and the INSEY where the non-yield-limiting pre-plant N was applied was

used to determine maximum potential yield.

Raun et al. (2002, 2005) used an exponential functional form for the relationship between

yield and the INSEY. A linear functional form was used here since there is little difference

in the explanatory power of the two functional forms, and the linear functional form allows

an analytical solution for the Bayesian optimization problem. To calculate minimum and

maximum yield potential for a given location and year, the linear model used is

Yit ¼ c0 þ c1INSEYit þ zt þ �it; ð3Þ

where INSEYit is INSEY for location i in year t, zt �Nð0; r2z Þ is the year random effect,

�it �Nð0; r2� Þ is a random error term, and c0 and c1 are parameters to be estimated.

Estimated minimum yield potential, represented by cYP0t; and maximum yield potential,

represented by cYPMit; for location i in year t are found by

cYP0t;¼ ĉ0 þ ĉ1INSEY0t ð4Þ

and

2 The algorithm to apply a different amount to each square meter is adjusted to apply little or no fertilizer to
areas of the field with little plant growth and so it may be more beneficial than the model used here. It also
has a nonlinear yield function rather than a linear function. The commercial algorithm also applies more
nitrogen.
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cYPMt;¼ ĉ0 þ ĉ1INSEYMt ð5Þ

where INSEYOit is an average INSEY where field-level pre-plant N was applied for

location i in year t, INSEYMit is an average INSEY across plots where non-yield-limiting

pre-plant N was applied for location i in year t, and ĉ0it and ĉ1it are the estimated

parameters from Eq. (5). Note that cYP0t is an estimate of (b0 ? st) and cYPMt is an estimate

of (lP ? vt ? st). Bushong et al. (2016) propose using a soil moisture measure as an

additional factor to predict yield potential. The Bayesian procedure will essentially remain

the same regardless of the data used to estimate yield potential.

Data used for estimating parameters

Data from hard red winter wheat experiments conducted on agronomic research stations in

Lahoma and Stillwater, Oklahoma, USA consisting of yields, N applied and the INSEY

from ORM were used to estimate parameters. Observations on N applied and yield were

collected at Lahoma from 1971 to 2012 and Stillwater Oklahoma from 1969 to 2012.

Observations on PS variables were also collected at these locations; however, PS tech-

nology is a relatively recent invention and thus PS data collection did not begin until 1999.

The Stillwater location is missing observations for 2007, 2009 and 2010. Both sites used a

randomized complete block design with four replications. The data used were the average

of these four replications and only observations where 67 kg/ha of P2O5 and 45 kg/ha of

K2O were applied were used here.

The Lahoma site is a Grant silt loam (fine-silty, mixed, thermic Udic Argiustoll), while

the Stillwater site is Kirkland silt loam (fine, mixed, thermic Udertic Paleustoll). Addi-

tional detail about these experiments is available at Oklahoma State University (2016a, b).

Parameters for the prior information (Eq. 2) and new information (Eq. 3) were esti-

mated for every year that both sensing and yield information were available using an out-

of-sample approach, similar to the grouped cross validation approach used by Norwood

et al. (2004). That is, data collected from a given year were excluded when estimating

parameters for that year. In contrast, the average INSEY values (i.e., INSEYOit and

INSEYMit) were calculated for a given year using data only from that year.

Bullock and Mieno (2017) have proposed doing fertilizer experiments in farmers’ fields,

but most producers will not have historical data on nitrogen experiments in their fields. The

priors will need to be calibrated from historical yield data and could vary across the field if

yield monitor data were available. Further research will be needed to extend the Bayesian

approach to commercial applications. Note that a prior that varied across the field would be

more expensive since it would require GPS coordinates.

Combining prior and new information with Bayesian updating

As shown in Fig. 1, the prior and new information contain analogous information, with the

exception that new information does not provide an estimate of yield response to N. The

process of using new information to revise prior information is the essence of Bayesian

updating. Figure 2, adapted from Zellner (1971), schematically represents how prior

information is used to estimate a prior density, new information is used to estimate a

likelihood function, and the prior density and likelihood function are combined using

Bayes’ Theorem to get a posterior density.
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The benefit of relatively quick computation is essential for a PS system that has limited

computing power such as an on-the-go system. Therefore, all densities are assumed to be

multivariate normal, which greatly reduces the computational burden.

Prior information (historical yield and N levels), represented by I0, can be used to

estimate the relationship between expected yield and N in Eq. (2) and the vector of

estimated parameters for the prior information is represented by

u0 ¼
b̂0
b̂1
l̂P

0
@

1
A; ð6Þ

with covariance matrix that includes both the random effects and the estimation error:

R0 ¼

var b̂0
� �

cov b̂0; b̂1
� �

cov b̂0; l̂t
� �

cov b̂1; b̂0
� �

var b̂1
� �

cov b̂1; l̂t
� �

cov l̂t; b̂0
� �

cov l̂t; b̂1
� �

var l̂tð Þ þ r̂2v

0
BBB@

1
CCCA: ð7Þ

The prior density then is represented by p0(H) and the prior distribution of H is

N u0;R0ð Þ: In theory, the prior using Bayesian methods should be estimated, but using

classical methods makes little difference.

New information (PS), represented by I, can be used to estimate the minimum and

maximum yield potentials in Eqs. (6) and (7). However, I does not measure yield response

to additional N and, therefore, the vector of estimated parameters for the new information

must be supplemented with the slope estimate. The new data are uninformative with respect

to the slope parameter. Thus, the vector of estimated parameters for the new information is

u ¼
cYPO

b̂1cYPM

0
@

1
A ð8Þ

Fig. 1 Representation of the relationship for parameters of the prior information and new information
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with lower triangular portion of covariance matrix R equal to

var ĉ0ð Þþvar ĉ1ð ÞINSEY2

Oþ2cov ĉ0; ĉ1ð ÞINSEYOþr2� þr2z : :
0 1 :
varðĉ0Þþ INSEYOþ INSEYM

� �
cov ĉ1; ĉ0ð Þþ INSEYO � INSEYM

� �
var ĉ1ð Þþr2z 0 var ĉ0ð Þ

þvar ĉ1ð ÞINSEY2

M þ2cov ĉ0; ĉ1ð ÞINSEYM þr2� þr2z

0
BBB@

1
CCCA

The likelihood function then is represented by p(I|H) and gives that the estimate of H

has distribution N u;Rð Þ. In practice, the infinite variance for the slope parameter is

approximated with a large number to make the calculations tractable.

The posterior vector of estimated parameters is a linear combination of the prior and

likelihood vectors of estimated parameters (u0 and u). More specifically, the prior vector

of estimated parameters is multiplied by the covariance matrix of the likelihood (R) and
added to the product of the likelihood vector of estimated parameters and the prior

covariance matrix (R0). Both terms of the linear combination are normalized by the sum of

the covariance matrices (R0 and R). Thus, the posterior mean vector is a weighted average

of the prior and likelihood mean vectors, and the information with lower variance has a

greater weight. Mathematically defined, the posterior vector of estimated parameters,

derived formally in Duda et al. (2001, pp. 95–97) is

ub ¼ R0 R0 þ
1

n
R

� ��1

uþ 1

n
R R0 þ

1

n
R

� ��1

u0 ð9Þ

with covariance matrix

Rb ¼ R0 R0 þ
1

n
R

� ��1
1

n
R: ð10Þ

Note that (9) and (10) assume that R0 and R are known. The approach used here uses

estimates of R0 and R, which makes the calculation simple enough that it would be

practical to use the formula with on-the-go sensing.

Fig. 2 The process of using new information to revise prior information
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An example of estimated and combined parameters

For illustration, Table 1 shows parameter estimates for the prior density and likelihood

function and the calculation of the posterior density for Stillwater in 2012. The minimum

and maximum yield potential in the posterior mean vector are bounded by the minimum

and maximum yield potential in the prior and likelihood mean vectors. Thus, the posterior

density mean vector is a weighted average of the two sources of information.

A benefit of Bayesian updating that should not be overlooked can be seen by comparing

the covariance matrices. Combining the prior and new information decreases the variance

associated with estimating minimum and maximum yield potential.

N recommendations

N recommendations following Tembo et al. (2008) are denoted by Ni
PI, and Bayesian N

recommendations are denoted by Ni
B. Prices were from the United States Department of

Agriculture National Agricultural Statistics Service (NASS 2017a, b). The price of a kg of

urea for the 2013 marketing year was $1.41 and this was used for the cost of N (r) and the

price received for a kg of wheat (p) in the 2013 marketing year was $0.25.

With the Tembo et al. approach, if for example r= pb1ð Þ ¼ 0:2 then, in four out of

5 years, producers would optimally apply more nitrogen than was needed in that year. The

optimal expected yield will be less than the potential plateau yield in 1 year out of five, the

maximum yield would not be reached. A perfect-information PS system would be able to

Table 1 Parameter estimates for stillwater wheat yield (100 kg/ha) in 2012

Parameter Estimate SE

b0 13.30*** 0.85

b1 0.36*** 0.05

lP 19.90*** 1.15

r2v 59.27*** 14.19

r2t 14.67*** 0.89

c0 1.25 2.23

c1 2 620.07*** 274.93

r2z 18.47* 8.93

INSEYOit 0.01 0.00a

INSEYMit 0.01 0.00a

cYPOit
14.59 7.25

cYPMit
18.48 7.24

u0 ¼
13:30
0:36
19:90

0
@

1
A u ¼

14:59
0:36
18:48

0
@

1
A ub ¼

13:61
0:36
19:09

0
@

1
A

R0 ¼
60:00 �0:02 59:91
�0:02 0:00 �0:02
59:91 �0:02 110:74

0
@

1
A R ¼

52:52 0 20:44
0 2:6E6 0

20:44 0 52:52

0
@

1
A Rb ¼

25:25 �0:01 16:08
�0:01 0:00 �0:01
17:01 �0:01 35:18

0
@

1
A

***, **, and * represent 0.01, 0.05, and 0.10 levels of statistical significance, respectively
a Standard deviation, not a standard error
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achieve the plateau yield with an expected nitrogen level of ðlP � b0Þ=b1; but any

imperfect information system will have a lower yield and use more nitrogen. Nevertheless,

the N recommendation for new information is found by assuming that the PS system has no

error:

NNI
i ¼

cYPM � cYPO

b̂1
: ð11Þ

New information recommendations were restricted to be non-negative as the yield was

greater when no N was applied in some years. The approach in (11) is essentially what was

proposed by Raun et al. (2002, 2005). The approach led to too little nitrogen being applied,

so with experience b̂1; which is nitrogen use efficiency, has been reduced so that current

formulas have been heuristically adjusted for the uncertainty. This heuristic adjustment is

not considered here.

Yield and profitability comparisons

A linear plateau was estimated as a yield function with respect to N for both locations and

for each year that both prior and new information were available. The linear plateau is

yi ¼ min d0 þ d1Ni; sð Þ þ xi ð12Þ

where yi is the observed yield of plot i, Ni is level of N applied to plot i, xi �Nð0; r2xÞ is a
random error term, and d0, d1, and s (plateau yield) are parameters to be estimated. The N

recommendations (Ni
PI, Ni

NI, and Ni
B) were then plugged into the estimated linear plateau to

arrive at the estimated yields. Additional to the estimated yields for the N recommenda-

tions, yields were also estimated for a constant application of 73 and 109 kg/ha of N.

Results and discussion

To determine economic feasibility, net returns were calculated for each estimated yield and

corresponding N recommendation. A custom urea application rate of $12/ha based on a

survey by Doye et al. (2014) was used for the application cost.

N recommendations and net returns for Lahoma and Stillwater are shown in Tables 2

and 3, respectively. On average, in kg/ha, the prior information, new information and

Bayesian N recommendations were 72, 41 and 66 in Lahoma and 61, 34 and 51 in

Stillwater. The average Bayesian N recommendation was not significantly different than

the average prior information N recommendation in Lahoma (F test, p value = 0.14);

however, the N recommendation using the Bayesian approach was less in Stillwater (F test,

p value = 0.03). On average, for both locations, new information N recommendations

were significantly lower than both prior information and Bayesian N recommendations

(F test, p value \ 0.01, for both locations).3 This confirms that the new information,

NFOA, tends to recommend lower levels of N. The new information N recommendation

has more variation than prior information and Bayesian N recommendations. However, this

3 Note that the current commercial implementation of NFOA recognizes that the plug-in approach leads to
under-application of N. To correct this problem, current models use a lower value of b1 in order to get closer
to the optimal level. Since the NFOA assumes no error, no application cost and the b1 is high enough that it
pays to apply nitrogen, the optimal solution with NFOA does not depend on prices.
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result is partly due to new information recommending zero N in some years. A recom-

mendation of zero N has the benefit of saving application costs ($12).

Average net returns in dollars per hectare for prior information, new information and

Bayesian N recommendations were 692, 669 and 691 in Lahoma and 355, 345 and 354 in

Stillwater. Additionally, the net returns for a constant application of 73 and 109 kg/ha of N

were 690 and 716 in Lahoma and 369 and 370 in Stillwater. The only significant difference

in net returns in Lahoma was between the new information N recommendation and 109 kg/

ha of N (F test, p value = 0.03). There were no significant differences in net returns across

N recommendations in Stillwater.

Table 4 shows how changes in the price received for wheat affects net returns for the

various N recommendations. Changes in price received affect the ordering of net returns.

For example, at the low wheat price ($0.13/kg), an N recommendation from new infor-

mation has the highest net return for both Lahoma and Stillwater. However, the only

additional significant difference in net returns found from the sensitivity analysis was

between the new information N recommendation and 109 kg/ha of N at the high price

($0.38/kg) for Stillwater (F test, p value = 0.04).

Franzen et al. (2016) discuss four different plant sensing algorithms and all four of them

are candidates for Bayesian updating. Note that the Bayesian approach could be revised to

have a producer’s prior be optimal N with a level of uncertainty rather than to specify all

the parameters with the prior as is done here. Such a prior would be easier for a producer to

specify and would even further simplify the calculation.

The PS approach is noisy and so treating it as if it had no error worked poorly. The

evaluation is also noisy since production functions were estimated for each year to predict

yield. Note that nitrogen-rich strips in farmer fields are typically larger than experimental

plots and so the noise could be higher here than in actual implementation. The prior

distribution used here is from a regression using data from the same plots that were farmed

in the same way each year. Producers likely have less accurate prior information than that

considered here. So while the approach does not look profitable in this research, it might be

closer to being profitable in actual practice.

Conclusion

This paper established a method of Bayesian updating to combine PS and prior information

about the response to N for a given field. PS technology using a plug-in approach had lower

N recommendations, but had the lowest return due to reduced yield. The Bayesian updating

Table 4 Sensitivity of net returns to a change in wheat price

Price ($/
kg)

Lahoma net returns ($/ha) Stillwater net returns ($/ha)

Prior New Bayes 73 kg of
N

109 kg of
N

Prior New Bayes 73 kg of
N

109 kg of
N

0.38 1 112 1 035 1 102 1 090 1 151 610 545 602 608 633

0.25 692 668 691 691 716 355 345 354 369 370

0.13 289 301 296 292 280 143 145 144 131 107

Average 698 668 697 691 716 369 345 367 369 370

SD 336 300 329 326 356 191 163 187 195 214
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also provided a small reduction in the level of N. Thus, adoption of Bayesian updating

would have social benefits by reducing negative environmental externalities associated

with excess N application, such as runoff into waterways and increased carbon emissions,

without sacrificing net returns. Because an analytical solution is used, it should be feasible

to program the Bayesian solution in a hand-held device such as the current device that is

being marketed. While current commercial algorithms focus on whole-field recommen-

dations, the analytical solution also helps make it feasible to use the Bayesian updating

algorithm in an on-the-go commercial system. The methods used provide a foundation for

using Bayesian updating of parameters of a yield function in a PS system. Future research

could build on this study by examining the differences between Bayesian updating of

parameters to obtain an N recommendation, as done here, and Bayesian updating of N

recommendations derived from separate sources of information.
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