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Abstract Coffee leaf rust (CLR) caused by the fungus Hemileia vastarix is a devastating

disease in almost all coffee producing countries and remote sensing approaches have the

potential to monitor the disease. This study evaluated the potential of Sentinel-2 band

settings for discriminating CLR infection levels at leaf levels. Field spectra were resampled

to the band settings of the Sentinel-2, and evaluated using the random forest (RF) and

partial least squares discriminant analysis (PLS-DA) algorithms with and without variable

optimization. Using all variables, Sentinel-2 Multispectral Imager (MSI)-derived vegeta-

tion indices achieved higher overall accuracy of 76.2% when compared to 69.8% obtained

using raw spectral bands. Using the RF out-of-bag (OOB) scores, 4 spectral bands and 7

vegetation indices were identified as important variables in CLR discrimination. Using the

PLS-DA Variable Importance in Projection (VIP) score, 3 Sentinel-2 spectral bands (B4,

B6 and B5) and 5 vegetation indices were found to be important variables. Use of the

identified variables improved the CLR discrimination accuracies to 79.4 and 82.5% for

spectral bands and indices respectively when discriminated with the RF. Discrimination

accuracy slightly increased through variable optimization for PLS-DA using spectral bands

(63.5%) and vegetation indices (71.4%). Overall, this study showed the potential of the

Sentinel 2 MSI band settings for CLR discrimination as part of crop condition assessment.

Nevertheless further studies are required under field conditions.
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Introduction

Coffee is one of the most important commodities in international agricultural trade, with an

annual value of over ninety billion U.S dollars and employs about half a billion people in

its value chain (Honorato Júnior et al. 2015). The main actors in coffee production are

individual farmers, cooperatives and corporate farmers in over 70, mainly developing,

countries (Baker et al. 2001). In these countries, coffee contributes significantly to foreign

exchange earnings as an important export commodity (Gresser and Tickell 2002). Among

the major challenges for the global coffee industry are pests of economic significance such

as the coffee white stem borer (Monochamus leuconotus (Pascoe)), coffee leaf minor

(Leucoptera meyricki (Ghesquiére)) and antestia bug (Antestiopsis orbitalis (Kirk)), and

major diseases such as coffee leaf rust caused by Hemileia vastatrix (B & Br), Fusarium

bark disease caused by Fusarium lateritium (Nees) var. longum (Wollenw.) and coffee

berry disease caused by Colletorichum kahawae (Waller & Bridge) (Brown 2008; Che-

mura et al. 2015; Kutywayo et al. 2013). Coffee leaf rust (CLR), caused by the fungus

Hemileia vastatrix, is the most destructive disease and threat to coffee production the

world-over (Cressey 2013; Ghini et al. 2011).

CLR is most severe on Coffea arabica, which accounts for about 70% of the world

coffee production and supply (Dinesh et al. 2011). CLR is regarded among the most

potentially devastating of all foliar plant diseases (Suresh et al. 2012). The basidiomycete

H. vastatrix is an obligate biotrophic fungus that is found in almost all coffee producing

countries and capable of long distance dispersal (Brown and Hovmøller 2002). The col-

onization of living plant tissue results in small chlorotic spots which quickly become

fruiting structures (uredia) rupturing the epidermal layer and releasing the uredospores

(Avelino et al. 2012; Haddad et al. 2009; Silva et al. 2006). The abaxial yellow to orange

uredia of H. vastatrix, which may be called rusty, grow and may coalesce. Unlike other

fungal plant diseases, CLR is not necrotic and its symptoms appear only on the underside

of the leaves (Belan et al. 2015, Honorato Júnior et al. 2015). In the absence of early

detection and proper management, CLR results in up to 50% loss of leaves and 70% yield

reduction in coffee through premature leaf drop, dieback and debilitation of trees, which

will eventually lead to death of coffee plants (Avelino et al. 2004).

Current CLR disease monitoring methods rely on occasional field surveys by teams of

specially trained and experienced personnel. However, besides being the largely adopted

approach, particularly in resource limited areas, the technique is strenuous especially for

large coffee plantations and is subjective. Remote sensing therefore, offers timely and

spatially explicit objective assessment of plant condition throughout the growing season

(Sankaran et al. 2010). The urgent adoption of these technologies is perceived to increase

crop productivity through the provision of accurate, targeted and up-to-date crop infor-

mation, as well as reduce costs of disease control and environmental contamination

associated with excessive pesticide applications (Barbedo 2013; Laudien et al. 2004). The

success of potential crop protection methods is highly dependent on early disease

detection.

Previous work demonstrates that remote sensing approaches can be reliably used in the

detection of plant diseases in many crops. For instance, Huang et al. (2007) demonstrated

that the photochemical reflectance index (PRI) developed from field hyperspectral remote

sensing data can be applied to detect and quantify yellow rust in winter wheat (r2 = 0.91).

They concluded that this provided a basis for development of proximal sensing approaches,

and after scale and field operational issues are factored in, for airborne or spaceborne-based
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monitoring of yellow rust in winter wheat. In addition, Mahlein et al. (2013) developed

specific spectral disease indices (SDIs) for the detection and discrimination of healthy

sugar beet leaves from those infected with Cercospora leaf spot, sugar beet rust and

powdery mildew and achieved high accuracy and sensitivity of over 85%. It is therefore

clear from these studies that species-specific disease indices derived from hyperspectral

bands located in the narrow contiguous parts of the red-edge and NIR regions have the

strength and capability to significantly enhance crop disease detection, identification and

monitoring. Reflectance in these regions is able to identify changes in internal leaf

structure, content and processes that affect absorption of radiation and thus reveal physi-

ological stress in plants caused by the disease or other stress (Coops et al. 2003; Eitel et al.

2011). These detected changes are associated with changes in the quality and quantity of

chlorophyll and chemical properties of the affected leaves, when compared to their pre-

vious stress-free condition or unstressed counterparts (Carter and Knapp 2001; Mutanga

and Skidmore 2007). Many of these specific wavebands were previously only available in

hyperspectral sensors, which are known to have many challenges, such as high costs, high

dimensionality and above all poor spatial coverage. So far, there are no prospects that there

will be global coverage of affordable hyperspectral data in the near future at sufficient

temporal resolution (Rulinda et al. 2012). This therefore means that there is need to shift

towards harnessing the opportunities provided by the new generation of multispectral

imaging sensors.

New generation multispectral space-borne earth observation instruments, such as

WorldView-2, RapidEye and the recently-launched Sentinel-2 multispectral imager have

incorporated narrow wavebands including those in the red-edge position that were not

available in predecessor sensors (i.e. Landsat series, MODIS, SPOT, ASTER etc.). These

technological advancements therefore provide an opportunity for timely landscape or farm-

based assessment of crop condition (i.e. health status and yield estimation). Unlike the

hyperspectral sensors, multispectral sensors have a huge swath-width and are currently

available at low or no costs for many developing countries where coffee is produced. There

has been a lot of interest in the Sentinel 2 multispectral imager (MSI) data in terms of its

potential to advance multispectral remote sensing applications (Clevers and Gitelson

2013). This is because it is freely available with relatively high resolution, as well as

strategically positioned bands, which makes it useful for many applications, including

vegetation characterization and mapping (Hedley et al. 2012; Hill 2013; Vincini et al.

2014). The recently-launched Sentinel 2 multispectral satellite capitalizes on the tech-

nology and the vast experience acquired with SPOT and Landsat series data over the past

decades. Sentinel 2 multispectral imager which is a polar orbiting, super-spectral high

resolution imaging mission (Frampton et al. 2013; Hansen and Loveland 2012), has a huge

swath-width of about 290 km with thirteen unique spectral bands. These spectral bands

range from the visible and near infrared (VNIR) to the shortwave infrared (SWIR) regions

of the spectrum. Of these thirteen bands, four are provided at 10 m spatial resolution, six

bands at 20 m spatial resolution and three bands at 60 m spatial resolution (Table 1)

(Clevers and Gitelson 2013; D’Odorico et al. 2013; Hill 2013). Most importantly, the

sensor provides data about the earth’s surface every five days under cloud-free conditions,

and typically every 15–30 days in cloudy areas, making it attractive for temporal feature

analysis (Hedley et al. 2012).

One of the most attractive features of the Sentinel 2 multispectral imager is that it

incorporates three new bands in the red-edge region, which are centered at 705, 740 and

783 nm specifically designed for vegetation characterization and quantification (Frampton

et al. 2013; Hedley et al. 2012). Because of these advanced sensor characteristics, Sentinel-2
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multispectral imager is therefore hypothesized to be capable of providing timely data for the

generation of high-level operational products. These include the generation of spatially

explicit estimation and monitoring of important plant biophysical variables, (i.e. chloro-

phyll, LAI and leaf water content and crop health) in addition to producing generic land-

cover, land-change detection and crop disease maps. The practical application of the

Sentinel 2 sensor in coffee and other plantation crops may, however, be limited. This is

because the effect of disease infection are not only confused by soil background effect as

influenced by age but also by other confounding factors such as co-infection with other

diseases, nutrient deficiency issues, water stress among many others. This therefore means

that what the sensor detects may not necessarily be the effect of the crop disease but

something else. It therefore becomes of paramount importance to determine the possibility

of separating disease levels using the Sentinel 2 sensor in the absence of other potential

stressors. The aim of this work was therefore to evaluate the potential of the Sentinel-2

multispectral imager-derived band settings and vegetation indices in discriminating coffee

leaf rust infection levels using the random forest (RF) and partial least squares discriminant

analysis (PLS-DA) algorithms at leaf level.

Materials and methods

Study area and experimental setup

The study was carried out at Coffee Research Institute, Chipinge, Zimbabwe (32�37.5230E,
20�12.4740S and altitude 1100 m above sea level). The climate in Chipinge is subtropical

with two distinct seasons: the dry season and the wet season. Average total annual rainfall

is 1800 mm of which 80% falls in 5 months from November to March. The mean daily

maximum temperature is 20 �C and mean daily minimum temperature is 14 �C. Coffee

Table 1 Specifications of the Sentinel-2 Multispectral Instrument (MSI) band settings showing center
wavelengths, band width and spatial resolution

Spectral band Center wavelength (nm) Band width (nm) Spatial resolution (m)

B1 443 20 60

B2 490 65 10

B3 560 35 10

B4 665 30 10

B5 705 15 20

B6 740 15 20

B7 783 20 20

B8 842 115 10

B8a 865 20 20

B9 945 20 60

B10 1380 30 60

B11 1610 90 20

B12 2190 180 20

The bold bands were excluded from the analysis
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seeds (variety Yellow Catuai) were pre-germinated on damp sand covered with Hessian in

October 2013. Pre-germination was done because it quickly brings the coffee seed to the

stage of radicle emergence (i.e. when the root tip breaks through the parchment casing) due

to the artificial medium. This technique is easier to manage and also results in relatively

same aged seedlings as germination is erratic and varied under natural media (Logan and

Biscoe 1987). All the plantlets that had reached two true leaf stage were transplanted into

black polythene pots (290 mm height 9 135 mm diameter giving a volume of 4150 cm3).

The substrate in the polythene pots was made of virgin soil, sand and local compost at the

ratio of 2:1:1. Compound S (6 N: 17P205: 6K20) was mixed thoroughly with potting soil at

a rate of 3 kg m-3 of the soil-sand-compost mixture to achieve about 10 g per pot. All

other routine nursery management activities related to irrigation and pest control were done

according to the Coffee Handbook (Logan and Biscoe 1987). The seedlings were left to

grow under a nursery shade (70%) until they were 6 months old (May 2014) and over 120

polythene pots were transferred to a greenhouse for further management and treatment

application. After two months of acclimatization to the greenhouse conditions, CLR dis-

ease inoculations were done.

Coffee leaf rust inoculation

Eight months old coffee seedlings were inoculated with coffee leaf rust in a greenhouse for

the study. This age was selected because it is the minimum recommended age for trans-

planting coffee seedlings into the field (Logan and Biscoe 1987). The average number of

leaves at time of inoculation was 12 (6 fully grown leaf pairs excluding the apex bud) while

the average height of the plants was 232 mm. For the inoculation, CLR spores were

collected from naturally infected coffee plants from a coffee field that is maintained at the

station as disease reservoir in June 2015. The spores from the infected leaves were scraped

into petri dishes, using a razor blade. These spores were then used to make a spore

suspension of 8 9 106 spores/ml, using sterile deionized water as counted by a hemocy-

tometer. Inoculation of spores was done by brushing the spore suspension on the underside

of leaves, using pen brushes. The inoculated plants were incubated for 72 h in dark

incubation chambers with *100% relative humidity.

After three days in the incubation chamber, seedlings were removed, and laid on

benches to allow for the leaves to show disease symptoms. Eighty plants were inoculated in

two batches of 40 each in a space of two weeks. The first inoculation was done with 40

plants and the success of the inoculation was evaluated after one week with the success-

fully inoculated plants separated while those that did not succeed had the inoculation

repeated. Twenty-one days after the first inoculation, coffee plants were scored and

grouped with the help of a plant pathologist, into severely infected, moderately infected

and healthy seedlings (no inoculation) based on diseased area. Three weeks was used

because it was considered sufficient for the H. vastarix to complete its life cycle and for the

lesions to mature. The reason for varying the inoculation period was to achieve a gradient

in CLR levels. The gradient was required because the detection is important for assessing

potential for early detection which can allow for effective control. Leaves showing other

signs of infection apart from CLR were excluded. Reflectance from 21 coffee plants was

measured for each level of infection (healthy, moderate CLR and severely infected level

(n = 63, Table 2). Only 21 samples were used for each class because of the poor success

rate of inoculation associated with CLR under controlled conditions and this was the

minimum number of samples that produced a balanced number of samples for all groups.

The distribution of area diseased for moderate and severe leaf samples are shown in Fig. 1.
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Table 2 Description of levels of CLR infection levels, sample images and number of samples used in the
study

Disease levels Sample
picture

Description of class

Healthy (n = 21) Healthy leaves from plants that were left non-inoculated

Moderate
infection
(n = 21)

Infected leaves with early or sparse spores of CLR visible of the
underside of the leaves. Estimated covered area less than 10% of the
leaf area

Severe infection
(n = 21)

Severely infected leaves with typical CLR yellowing on the underside
of leaves. Covered area more than 10% of the leaf area

Fig. 1 Box plots of percent diseased area of leaves for the three levels as measured on the day of
reflectance measurements
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Reflectance measurements and resampling

Reflectance was measured using an Apogee VIS–NIR spectrometer (Apogee Instruments,

Inc., Logan, UT, USA) with an effective spectral range of 400–900 nm and a spectral

resolution of 0.5 nm. Each reading consisted of an average of three spectral scans, taken at

150 mm above the coffee leaf of interest at 30� field of view, allowing measurement from a

leaf spot with a radius of 20 mm. This resulted in 1257 mm2 to be measured on each coffee

leaf. A white polytetrafluoroethylene (PTFE) reflectance standard was used as a reference.

Reflectance by wavelength was calculated as the ratio of scene reflectance to the reflec-

tance of the standard. A moving Savitzky–Golay filter with a frame-size of 3 data points

and a 2nd order polynomial were employed to smooth the spectra (Savitzky and Golay

1964) and the reflectance was averaged to 5 nm to reduce dimensionality.

The collected reflectance measurements were resampled to simulate the Sentinel-2

satellite sensor’s reflectance (Table 1). The resampling of the field spectra was done in

ENVI 4.7 software (Exelis Visual Information Solutions, Boulder, CO, USA). The

resampling method used applies a Gaussian model with a Full Width at Half-Maximum

(FWHM) equal to the band spacing provided. The technique uses the field spectral data

from the spectrometer and resamples it to the spectral width of the sensor being simulated.

Only seven Sentinel-2 MSI land management bands were used, because the other bands

were considered unnecessary for plant biophysical studies, had a higher spatial resolution

for application in coffee or were outside the range of the spectro-radiometer used in this

study.

Vegetation indices

Seventeen spectral ratio-based vegetation indices were computed and applied in evaluating

transformation of spectral bands of the Sentinel-2 MSI sensor characteristics ability to

discriminate the different CLR infection levels (Table 3). These vegetation indices were

selected based on their reported ability to discriminate different vegetation characteristics

and conditions from remotely sensed data (Eitel et al. 2006). The three red edge bands

contained in Sentinel-2 MSI were used to generate vegetation indices that were indexed

according to the particular red edge band used (B5, B6 and B7).

Modelling approaches

Two machine learning algorithms, the random forest (RF) and partial least squares-dis-

criminant analysis (PLS-DA), were used to model CLR from both spectral bands and

vegetation indices. These two classifiers were selected for the modelling task because they

have been proved to be more robust and effective for vegetation condition discrimination

in other studies when compared to most supervised parametric and machine learning

algorithms (de Almeida et al. 2013; Lebedev et al. 2014; Nitze and Schulthess 2012; Rogan

et al. 2008). These two methods also have in-built variable optimization, making them

more attractive for approaches requiring selection of variables as in this study (Li et al.

2016; Pal 2005). In addition, it was required that the methods selected for the task be robust

for relatively small sample sizes and compatible with cross-validation for accuracy

assessment given the difficulties in getting large sample sizes for CLR.
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Random forest algorithm

The RF is an ensemble algorithm developed by Breiman (2001). The classification version

of RF that was developed by Breiman and Cutler (2007) together with its in-built variable

optimization was used in this analysis. The random forest employs an iterative bagging

operation where a number of trees (ntree) are independently built using a random subset of

samples from the training samples. Each tree is then independently grown to a maximum

size based on a bootstrap sample of about two-thirds the training dataset. Each node is then

split using the best, among a subset of input variables (mtry) (Chemura and Mutanga 2016;

Ghimire et al. 2012). The random forests ensemble classifies the data that are not in the

trees as out-of-bag (OOB) data, and by averaging the OOB error rates from all trees, the RF

algorithm gives an error rate called the OOB classification error for each input variable

Table 3 Selected vegetation indices (VIs) evaluated in the study, showing their formula, bands used and
source

Name Formula Sentinel-2
Bands

Source

Normalized Difference Vegetation Index NDVI ¼ qNIR�qR
qNIRþqR

B8, B4 Rouse et al. (1973)

Simple Ratio SR ¼ qNIR
qR

B8, B4 Baret and Guyot
(1991)

Green Chlorophyll Index GCI ¼ qNIR
qGREEN

� �
� 1 B8, B3 Gitelson et al. (2005)

Green Normalized Difference Vegetation
Index

GNDVI ¼ qNIR�qGREEN
qNIRþqGREEN

B8, B3 Gitelson et al. (1996)

Renormalized Normalized Difference
Vegetation Index

RNDVI ¼ qNIR�qREDffiffiffiffiffiffiffiffiffiffiffiffiffi
qNIRþqR

p B8, B4 Gitelson and Merzlyak
(1994)

Normalized Difference Red edge Index NDVI:RE1 ¼ qNIR�qRE1
qNIRþqRE1

B8, B5 Gitelson and Merzlyak
(1994)

NDVI:RE2 ¼ qNIR�qRE2
qNIRþqRE2

B8, B6 Gitelson and Merzlyak
(1994)

NDVI:RE3 ¼ qNIR�qRE3
qNIRþqRE3

B8, B7 Gitelson and Merzlyak
(1994)

Simplified Canopy Chlorophyll Content
Index

SCCCI1 ¼ NDVI:RE1
NDVI

B8, B4, B5 Barnes et al. (2000)

SCCCI2 ¼ NDVI:RE2
NDVI

B8, B4, B6 Barnes et al. (2000)

SCCCI3 ¼ NDVI:RE3
NDVI

B8, B4, B7 Barnes et al. (2000)

Red-edge Chlorophyll Index CIRE1 ¼ qNIR
qRE1

� �
� 1 B8, B5 Gitelson et al. (2005)

CIRE2 ¼ qNIR
qRE2

� �
� 1 B8, B6 Gitelson et al. (2005)

CIRE3 ¼ qNIR
qRE3

� �
� 1 B8, B7 Gitelson et al. (2005)

Normalized Red Edge Difference Index NREDI1 ¼ qRE3�qRE1
qRE3þqRE1

B7, B5 Gitelson and Merzlyak
(1994)

NREDI2 ¼ qRE3�qRE2
qRE3þqRE2

B7, B6 Gitelson and Merzlyak
(1994)

NREDI2 ¼ qRE2�qRE1
qRE2þqRE1

B6, B5 Gitelson and Merzlyak
(1994)

866 Precision Agric (2017) 18:859–881

123



(Breiman 2001; Lebedev et al. 2014). The default number of trees (501) and the square root

of the number of variables for mtry were used as RF settings in the randomForest library

(Liaw et al. 2009) in R (R Core Team, 2013).

PLS-DA algorithm

In addition to the RF approach, partial least squares discriminant analysis (PLS-DA)

algorithm was used in CLR discrimination using Sentinel-2 MSI sensor-derived variables.

PLS-DA is the classification version of PLS regression and is a powerful multivariate

supervised pattern recognition method that uses a training routine to assign class mem-

bership to variables based on their known statistical parameters projected into latent

variables (Wang et al. 2011). The produced eigenvectors from spectral bands and vege-

tation indices explain the variance within the input data and their correlation with response

variables. The PLS-DA method is performed by a PLS regression against a dummy matrix

Y that indicates class membership (Li et al. 2016). A regression analysis is then conducted

to establish the PLS regression model between categorical variable Y and calibration

matrix of explanatory variable, X. The PLS-DA model can be represented as:

X ¼ TPT þ E ð1Þ

Y ¼ UQT þ F ð2Þ

where X represents the matrix of spectral data and vegetation indices, T is a factor score

matrix, P is the X loadings, E is the residual or a noise term, Y is a matrix of the categorical

variable, U is the scores for Y, Q is the Y loadings, and F is the residuals (de Almeida et al.

2013; Wang et al. 2011).

The PLS-DA algorithm has been used with spectral data because it has many advan-

tages over the linear discriminant analysis (LDA) approach. These include noise reduction,

showing the probability of a sample belonging to the class being modelled and the

selection of variables (Li et al. 2016). The latter is particularly attractive for this study

because it is important to determine the important variables that are explaining the dis-

crimination outcome in order to get a mechanistic understanding for interpretation of the

variables. It is very important in PLS-DA to determine the appropriate number of com-

ponents for the model to avoid overfitting and this was done using cross-validation (Wang

et al. 2011). The appropriate number of components was identified as 2 for spectral and 3

for vegetation indices and these were used accordingly. The PLS-DA approach was

implemented using the mixOmics library (Cao et al. 2015) in R (R Core Team, 2013).

Variable optimization

It was found imperative to test the performance of the most important variables as

determined by the two algorithms (RF and PLS-DA). The variables considered important

for CLR discrimination were then used for discrimination excluding all other variables.

The RF and PLS-DA algorithms have different internal approaches for variable opti-

mization and these were employed accordingly to Sentinel-2 MSI-derived spectral bands

and vegetation indices.
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RF and PLS-DA variable optimization

The RF variable importance measure was used to select bands and vegetation indices that

were used in CLR discrimination. The RF algorithm assesses the importance of each input

variable to the outcome by comparing how much the OOB error increases when a variable

is removed, while all others are left unchanged (Breiman and Cutler 2007; Gislason et al.

2004). This way, the RF ranks the variables according to the mean decrease in error when

that variable is included in the modelling and those variables with higher mean decreases

in error are the most important variables for the modelling and should therefore be

retained.

Similarly, the PLS-DA was used in variable optimization through the Variable

Importance in Projection (VIP) scores produced in the discrimination. The VIP is a

quantitative estimate of the discriminatory power of each individual variable used in the

model and as such can be used to interpret the outcome in relation to the input variables.

The VIP is a weighted sum of squares of the PLS loadings that takes into account the

amount of explained Y-variance of each component. The weights are a function of the

reduction of the sums of squares across the number of PLS components. A variable with a

VIP Score greater than 1 is considered important in the model while those with VIP scores

less than 1 are less important, and are candidates for exclusion from the model (de Almeida

et al. 2013). To obtain the importance of the jth variable (VIPj) the following formula is

used:

VIPj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPF
f¼1 w

2
jf � SSYf � J

SSYt � F

s
ð3Þ

where wjf is the PLS weight value of the jth variable and the fth component, SSYf is the

sum of squares of the dependent variable that was obtained from the discriminant model

with f (f = 1,2,…,F) components, J is the number of spectral bands or vegetation indices

being used, SSYt is the total sum of squares of the dependent variable, and F is the number

of PLS components being assessed (de Almeida et al. 2013).

Accuracy assessment

In order to assess the performance of CLR discrimination, k-fold cross validation with 10

folds was used since the sample number was relatively small (n = 63) for sub-setting the

data into training and test data. A confusion matrix, defined as a table that describes the

performance of a discriminating model on a set of test data for which the true values are

known, was used to evaluate the overall accuracy of the RF and PLS-DA discrimination of

CLR infection levels (i.e. healthy, moderate and severe CLR infection. Overall accuracy,

Kappa (k) and related class user’s and producer’s accuracies were calculated to evaluate

the performance of Sentinel-2 MSI derived spectral bands and vegetation indices in dis-

criminating CLR, using the RF and PLS-DA algorithms. The effect of variable opti-

mization on discrimination accuracy was determined by the McNemar’s test (Foody 2004)

of confusion matrices of discrimination with all variables versus discrimination with

optimized variables.
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Results

Spectral resampling

Figure 2 shows the mean reflectance of Sentinel-2 MSI bands for healthy coffee leaves,

and leaves with moderate and severe CLR infection. As expected with vegetation, the

results show that coffee leaf reflectance was higher in the NIR region of the spectrum when

compared to the visible spectral region. Healthy leaves produced higher reflectance in B3

(green) and the least in two of the three Sentinel-2 MSI red edge bands (B5 and B6) where

the severely CLR infected leaves produced the highest reflectance. The reflectance of the

severely infected CLR was least in the red-edge 3 band (B7) and the NIR band (B8).

CLR Discrimination with all variables

The results from CLR discrimination with all variables (n = 7 for bands and n = 17 for

vegetation indices) are shown in Table 4. When Sentinel-2 MSI seven bands were used

with the PLS-DA, an overall accuracy of 63.5% (k = 0.45) was achieved while this

increased to 69.8% (k = 0.55) from the use of the RF algorithm. The lowest producer and

user’s accuracies were obtained for the moderate CLR class, while the best classified was

the healthy class (RF and PLS-DA producer’s accuracies of 81 and 90.5% and user’s

accuracies of 77.3 and 76.0% respectively). Results indicate spectral confusion in dis-

criminating between the moderate and severe CLR when compared to the discrimination

between healthy and moderate CLR for both algorithms. For example, eight samples in the

moderate class were classified by the PLS-DA as being in the severe CLR rust while seven

in the severe class were classified by the same algorithm to be in the moderate class

Fig. 2 Mean spectral reflectance of CLR infection levels across the Sentinel-2 spectral band settings
obtained from resampling hyperspectral imagery
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(Table 4). These were reduced to five when the discrimination was done using the RF

algorithm.

Higher accuracies in discriminating CLR were achieved by using all vegetation indices

(PLS-DA = 68.3% and RF = 76.2%). Use of Sentinel-2 derived vegetation indices in

CLR discrimination resulted in increases in user and producer accuracies of healthy,

moderate and severe CLR classes, when compared to that obtained from using raw spectral

bands. However, notable misclassifications were observed when vegetation indices were

used between moderate CLR (producer accuracy = 66.7% for RF and 47.6% for PLS-DA)

and severe CLR classes (producer accuracy = 71.4% for RF and 66.7% for PLS-DA). It

was therefore, clear that a significant number of samples in the moderate CLR class were

classified as severe CLR when using all Sentinel-2 spectral bands and vegetation indices in

CLR discrimination (Table 5).

Variable optimization

The results in Fig. 3 illustrate the most important selected model variables (i.e. bands and

vegetation indices) derived using the RF OOB and VIP methods. The RF model identified

four spectral bands (B4, B6, B3, B7) whereas PLSA-DA selected only three (B4, B6 and

B5). Comparatively, both models managed to select two identical variables (i.e. B4 and B6

bands) as the most important variables for discriminating CLR levels (Fig. 3a and 3b).

When the variable optimization was implemented using the seventeen derived vege-

tation indices, only seven were selected as important by RF and most of these were

transformations of Sentinel-2 MSI red edge bands and the NIR (Fig. 3c). The seven

vegetation indices identified as important in CLR discrimination by RF were SCCCI3 (B8,

B7 & B4), RNDVI (B8 & B4), SCCCI2 (B8, B6 & B4), CIRE1 (B8 & B5), CIRE3 (B8 &

B7), NREDI3 (B6 & B5) and GCI (B8 & B3) (Fig. 3d). On the other hand, the PLS-DA

algorithm identified only five vegetation indices (i.e. SCCCI3, CIRE1, RNDVI, NREDI2,

GCI) as having VIP values[1. Of all the variables selected by the two models, only four of

them (vegetation indices) were selected by both the methods (SCCCI3, CIRE1, RNDVI and

GCI).

CLR discrimination with optimized variables

Optimized Sentinel-2 MSI spectral band settings and vegetation indices were applied in

CLR discrimination using RF and PLS-DA algorithms. Table 5 shows the results of CLR

discrimination using optimized variables. The results indicate that there is an improvement

in accuracy of CLR discrimination when optimized variables are used, with the highest

magnitude of change observed in optimized vegetation indices (Table 5). Overall, opti-

mized Sentinel-2 derived vegetation indices achieved the highest overall CLR discrimi-

nation accuracies of 82.5% (k = 0.74) and 71.4% (k = 0.57) using the RF and PLS-DA

algorithms respectively. It can be noted that CLR discrimination accuracies increased by

about 10% for RF algorithm. On the other hand, optimization of Sentinel-2 derived veg-

etation indices reduced the number of parameters from 17 to 5 variables. Optimization

improved the performance of the PLS-DA model in CLR discrimination, particularly in

terms of the producer accuracy of the class severe and all user accuracies.
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Comparison of un-optimized and optimized variables in CLR discrimination

The RF outperformed the PLS-DA in CLR discrimination using Sentinel-2 MSI data with

and without model optimization (Fig. 4). The differences in accuracy due to optimization

were also assessed through McNemar’s test (Table 6), which showed that variable opti-

mization significantly improved the accuracy of CLR discrimination with spectral bands

run through the RF algorithm (v2 = 4.17, p\ 0.05).

Discussion

This study aimed to evaluate the potential of the Sentinel-2 MSI spectral band settings and

vegetation indices in discriminating CLR infection levels as a basis for field disease

monitoring and modelling for precision farming. Two machine-learning algorithms were

applied on un-optimized and optimized Sentinel-2 MSI spectral bands and vegetation

indices. Accurate discrimination of CLR infection levels provides the most required

Fig. 3 Optimization of Sentinel-2 MSI variables for CLR discrimination through a RF-OOB error for
spectral bands b PLS-DA for spectral bands c RF-OOB error for vegetation indices and d PLS-DA VIP for
vegetation indices. The dotted line shows the cut-off point for variables
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knowledge for precise crop diseases monitoring and controlling, especially if high crop

productivity is to be realized.

Spectral resampling

The resampled spectra demonstrated the general response of vegetation to electromagnetic

radiation with lower reflectance in the visible region and higher reflectance in the NIR

regions. This research confirms the general effect of different types of biotic stress on

vegetation reflectance observable by the blue shift in the red-edge region of the spectrum

where infected samples produced higher reflectance, when compared to healthy samples.

The blue shift as indicated by the shift of the slope of stressed plants towards the blue

spectrum is associated with a decline in leaf chlorophyll quantity and composition (Feng

et al. 2016; Ustin et al. 2009) and can be used as an early general indicator of presence of

stressors such as disease infection, allowing for further investigations. This phenomenon

has been reported for plant diseases (Prabhakar et al. 2013), nutrient stress (Mutanga and

Skidmore 2007), pest attacks (Stone et al. 2001) and other physio-chemical plant disorders

(Carter and Knapp 2001).

Fig. 4 Effect of RF and PLS-DA model variable optimization on CLR discrimination accuracies using
Sentinel-2 MSI bands and vegetation indices

Table 6 McNemar’s test for RF and PLS-DA models on reflectance bands and vegetation indices with and
without variable optimization

Parameters f11 f12 f21 f22 Total v2 P value (95%)

RF Bands 44 0 6 13 63 4.17 0.041

RF VIs 48 0 4 11 63 2.25 0.133

PLS-DA Bands 37 3 3 20 63 0.00 1.000

PLS-DA VIs 41 2 4 16 63 0.17 0.683
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Performance of Sentinel-2 spectral bands in CLR discrimination

This study demonstrated the utility and strength of the new generation Sentinel-2 MSI

sensor characteristics in discriminating disease infections in commercial crops such as

coffee- a previously challenging task from broadband multispectral sensor characteristics

(e.g. Landsat series). For example, the results of this study have successful managed to

identify Sentinel-2 MSI’s most important individual spectral bands (i.e. B4, B6 and B5)

related to leaf conditions induced by CLR infection. The results from the RF OOB score

show that the Sentinel-2 RE3 band (B7) provides the most significant variables for CLR

discrimination. This confirms the importance of this region of the spectrum in fungal

disease detection and discrimination in vegetation as reported in previous studies. For

instance, Mahlein et al. (2013) observed that the greatest shift in reflectance of diseased

plants compared to healthy plants occurs in the red edge region of the spectrum. Fur-

thermore, Devadas et al. (2014) achieved a large increase in discrimination of healthy,

nitrogen deficient and yellow rust infected winter wheat by inclusion of the band centered

at 725 nm, indicating the role of the red edge in crop condition assessments.

The finding that the red band (B4) was ranked by both the RF OOB score and the PLS-

DA VIP score as the most significant band was rather surprising as red edge bands were

expected to be more significant. However, this could be because CLR is different from

other diseases and plant stress conditions in that it is not necrotic and also results in

distinctive brownish pustules on the underside of the leaf (Belan et al. 2015; Honorato

Júnior et al. 2015). The reflectance measurements were done on the adaxial leaf side while

the symptoms of the disease are evident on the abaxial leaf side. Therefore, while studies

have generalized the approaches for remote sensing plant diseases, it is clear from this

work that the application of spectral bands and vegetation indices in disease discrimination

could be disease and plant specific, given the observed peculiarities.

Performance of Sentinel-2 vegetation indices in CLR discrimination

The general finding from this study was that the use of spectral vegetation indices derived

from the recently launched Sentinel-2 MSI band settings produced plausible CLR dis-

crimination results, when compared to the use of the sensor’s raw spectral bands. For

instance, the use of the derived vegetation indices yielded higher overall, user and producer

accuracies of CLR levels (i.e. healthy, moderate and severe CLR), when compared to the

use of raw spectral bands as an independent dataset. This observation is in line with

previous findings that concluded that the spectral transformation that occurs in converting

spectral bands to vegetation indices enables more information to be obtained resulting in

better performance from vegetation indices. For examples Dube & Mutanga (2015)

achieved higher model fit in biomass estimation using vegetation indices (R2 = 0.53) than

by spectral bands (R2 = 0.40) with the RF algorithm. Similarly, other studies reported

better performance of vegetation indices than spectral bands in biomass estimation, plant

water content estimation and plant condition assessments (Hill 2013; Wang et al. 2004).

In addition, the better performance of vegetation indices could also be attributed to the

ability of Sentinel-2 MSI band settings derived vegetation indices to deal with confounding

factors, such as reflectance saturation, leaf area, roughness and moisture in the leaf and

canopy that reduce the performance of raw spectral bands. For example, it is known that

narrow band vegetation indices like the ones obtainable from Sentinel-2 MSI sensor set-

tings are capable of reducing the effects of asymptotic saturation common in raw
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reflectance and broadband vegetation indices (Baret and Buis, 2008; Glenn et al. 2008;

Mutanga and Skidmore 2004). This could be because Sentinel-2 MSI derived vegetation

indices are more sensitive to plant biochemical and biophysical properties, as they are a

combination of two or more strategically positioned spectral bands solely designed for

vegetation condition assessment. This clearly shows that the transformations and combi-

nations of the bands that were identified as important for CLR discrimination into vege-

tation indices resulted in better accuracy than expected (Mahlein et al. 2013; Sankaran

et al. 2010).

Overall, this study has demonstrated the performance of the recently-launched Sentinel-

2 MSI sensor characteristics in accurate crop diseases monitoring, especially in data scarce

areas. The observed performance of Sentinel-2 MSI band settings is in line with the results

observed from previous work that associated the good performance with its improved

design that includes the presence of multiple strategically positioned bands i.e. three red

edge bands centered at 703, 740 and 783 nm. Most of these are coupled with relatively

narrow spectral bands (B30 nm width) and available at high spatial resolution (B20 m), all

of which are previously missing components in multispectral sensors, such as Landsat,

SPOT and ASTER (Dangwal et al. 2016; Lanfredi et al. 2015; Rembold et al. 2013;

Rulinda et al. 2012). In addition, Sentinel-2 offers an unprecedented short revisit time for

multispectral sensors (about weekly due to a constellation of two identical satellites). A

combination of these advantages offers opportunities for CLR detection, mapping and

monitoring in both space and time useful for the coffee sector.

CLR discrimination with Sentinel-2 data could inform farm managers and plant phy-

tosanitary regulators with information on occurrence and levels of severity of plant dis-

eases, reducing the subjectivity, costs, spatial singularity and inconveniences associated

with field methods. In addition, the high temporal resolution of Sentinel-2 can provide

opportunities for modelling CLR rate and direction of spread by combining analysis in

both time and space over fields. Therefore, Sentinel-2 MSI has the potential to freely bring

information on plantation crop condition that current multispectral sensor characteristics

could not. These opportunities have to be considered with limits to practical applications of

the technology under field conditions. Factors such as age of the crop for example may

have significant influence on the potential application of aerial or satellite imagery in crop

condition assessments (Chemura and Mutanga 2016).

Effect of variable optimization and algorithm on CLR discrimination

Results have also shown that that variable optimization of RF and PLS-DA algorithms

improves the accuracy of CLR discrimination, when compared to model implementation

without variable selection. For instance, in this study, it has been observed that variable

selection significantly improved CLR discrimination by about 10% for bands and 6% for

vegetation indices when classified with RF. There are many reasons why variable opti-

mization is able to achieve better results that using all available variables. These multi-

spectral sensors have been developed for wide purposes ranging from forestry, agricultural,

water and urban applications (although Sentinel-2 has a bias towards vegetation) and

therefore, just a few parameters may be fit for purpose. In addition, a number of wavebands

maybe correlated or do not represent useful information making optimized variables to

achieve better results when redundant features are removed. The remaining few wavebands

and vegetation indices therefore had important relationships with CLR infection levels and

masking out these superfluous variables that were unnecessarily increasing noise and data

handling challenges in machine learning algorithms improves the accuracy as obtained in
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this study (Pal and Foody 2010; Saeys et al. 2007). Therefore, although the wavebands in

multispectral data have been strategically selected, there remains a need to find the best

model parameters from these bands. This is even despite the fact that the number of

variables was small (7 for spectral bands and 17 for vegetation indices), overfitting is a

known problem in PLS methods (Frampton et al. 2013; Wang et al. 2011) and therefore

selecting a few important variables is expected to improve the performance of the machine

learning methods.

The effect of variable selection/optimization was even more remarkable in the RF

algorithm that is reported to be robust to noise, has an ability to handle non-linear data and

is able to deal with large numbers of variables (Gislason et al. 2004; Mutanga et al. 2012;

Rodriguez-Galiano et al. 2012). These strengths of the RF explain the observed superior

performance of the RF over PLS-DA, making it a better candidate for use in CLR dis-

crimination with recently launched Sentintel-2 MSI data. This is important because in

order to improve effectiveness of remote sensing applications, retrieval algorithms should

be accurate, fast, robust and sufficiently flexible to make use of the Sentinel-2 spectral

bands and vegetation indices. It appears from this study that the RF algorithm is fit for this

purpose with an added advantage of explaining how the output is obtained through ranking

the weights of input variables. The obtained accuracies are good for application but they

could have been better. The misclassification of disease levels could be because of the fact

that the CLR shows disease signs on the abaxial side of the leaf and yet reflectance

measurements are taken on the adaxial with difficulties for discriminating early stages of

infection. In addition, the largest misclassification occurred for moderate and severe CLR

possibly because the disease could be considered moderate when it has already done severe

internal damage resulting in the errors.

Conclusion

The aim of this work was to explore the utility of the Sentinel-2 MSI characteristics in

detecting and discriminating low and advanced levels of coffee leaf rust caused by

Hemileia vastatrix, using two classification algorithms (RF and PLS-DA). Results have

demonstrated the ability of the recently launched Sentinel-2 MSI sensor settings for dis-

criminating CLR infection levels (i.e. healthy, moderate and severe) with high accuracy.

Specifically, this work has demonstrated that Sentinel 2 MSI derived bands and vegetation

indices, computed using spectral information located at the red-edge position, are useful

for disease detection or assessments of crop status. Also, the study has shown that opti-

mized vegetation indices and spectral bands perform better in CLR discrimination when

compared to the use of all variables as an independent dataset. This study therefore

underpins the potential use of Sentinel-2 MSI data settings in crop and vegetation state

assessment that can improve management of croplands and stewardship of the environment

through reduced unnecessary use of crop protection chemical for disease control.
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Saeys, Y., Inza, I., & Larrañaga, P. (2007). A review of feature selection techniques in bioinformatics.
Bioinformatics, 23(19), 2507–2517.

Sankaran, S., Mishra, A., Ehsani, R., & Davis, C. (2010). A review of advanced techniques for detecting
plant diseases. Computers and Electronics in Agriculture, 72, 1–13.

Savitzky, A., & Golay, M. (1964). Smoothing and differentiation of data by simplified least square pro-
cedure. Analytical Chemistry, 36(8), 1627–1638.
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