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Abstract Till date, the remote sensing research on crop nutrient monitoring has focused

mainly on biomass and nitrogen (N) estimation and only a few attempts had been made to

characterize and monitor macronutrients other than N. Field experiments were undertaken

to study the remote detection of macronutrient status of rice using hyperspectral remote

sensing. The variability in soil available N, phosphorus (P) and sulphur (S) and their

content in plants were created using artificial fertility gradient design. The leaf and canopy

hyperspectral reflectance was captured from variable macronutrient status vegetation.

Linear correlation analysis between the spectral reflectance and plant nutrient status

revealed significantly (p\ 0.05) higher correlation coefficient at 670, 700, 730, 1090,

1260, 1460 nm for the nutrient under study. Published and proposed vegetation indices

(VIs) were tested for canopy N, P and S prediction. The results of the investigation
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revealed that, published VIs (NDVI hyper and NDVI broadbands) could retrieve canopy N

with higher accuracy, but not P and S. The predictability of the visible and short wave

infrared based VI NRI1510 ((R1510 - R660)/(R1510 ? R660)) was the highest (r = 0.81,

p\ 0.01) for predicting N. Based on the outcomes of linear correlation analysis new VIs

were proposed for remote detection of P and S. Proposed VI P_670_1260 ((R1260 - R670)/

(R1260 ? R670)) retrieved canopy P status with higher prediction accuracy (r = 0.67,

p\ 0.01), whereas significantly higher canopy S prediction (r = 0.58, p\ 0.01) was

obtained using VI S_670_1090 ((R1090 - R670)/(R1090 ? R670)). The proposed spectral

algorithms could be used for real time and site-specific N, P and S management in rice.

Nutrient specific wavelengths, identified in the present investigation, could be used for

developing relatively low-cost sensors of hand-held instruments to monitor N, P and S

status of rice plant.

Keywords Hyperspectral remote sensing � Nitrogen � Oryza sativa L. � Phosphorus �
Spectroradiometer � Sulphur

Introduction

Rice is one of the most important staple foods for two third population of the world. In

India, rice crop productivity is lower (3.65 t ha-1) when compared to the world’s average

productivity (4.52 t ha-1) (FAOSTAT, 2015). The causes of lower yield of rice in context

of the present investigation are imbalanced use of fertilizers and the emerging nutrient

deficiencies. The Indian agriculture is operating at net negative nutrient balance with the

estimated net negative nitrogen (N), phosphorus (P) and potassium (K) (NPK) balance

from net sown area being 69 kg ha-1 (16 kg N ha-1 year-1 ? 11 kg P ha-1

year-1 ? 42 kg K ha-1 year-1) (Tandon 2004). There are 23, 14 and 5 countries in Africa

with net NPK balance with worse than -60 kg ha-1 year-1, between -30 and

-60 kg ha-1 year-1 and better than -30 kg ha-1 year-1, respectively (Henao and Baa-

nate 1999). Whereas the negative N, P and K balance globally was estimated as 18.7, 5.1

and 38.8 kg ha-1 year-1, respectively (Tan et al. 2005). Studies on nutrient balance in

different countries, viz. sub-Saharan Africa, Africa, China, Ghana, Kenya, Mali was shown

to have a negative balance for N (-12 to -8 kg ha-1 year-1), P (-4.5 to 0 kg ha-1

year-1) and K (-62 to -15 kg ha-1 year-1) (FAO 2003; Sheldrick et al. 2003; Stoorvogel

and Smaling 1990). While the reasons for negative nutrient balance are use of imbalanced

fertilizers and unavailability of an adequate amount of fertilizers, there remains a focus on

more production of fertilizers. Furthermore, producing more quantity with same or less

amount of fertilizers would be a sustainable strategy to tackle this problem. The major

outcome of the negative nutrient balance is emerging nutrient deficiencies in different crop

plants and reduced yield. Under such circumstances, one of the pragmatic options is to

improve the nutrient use efficiency and this compels adoption efficient techniques and

machineries. Traditional methods for detecting and monitoring essential nutrients in plants

needs detailed sampling, time and expensive laboratory chemical analyses; this is neither

economically viable nor environmentally acceptable on a large scale (for instance indi-

vidual farmer’s field). Moreover, several physical processes already disrupt by nutrient

stress, by the time the plant nutrient deficiency symptoms become clearly visible (Zhao

et al. 2003). The net negative nutrient balances could be addressed by producing more with
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lesser input. The crop plant nutrient demand and supply could be achieved by adopting

remote sensing based real time methods with large area nutrient detection in plants.

Consequently timely detection or forewarning of nutrient stress could help avoid defi-

ciencies and yield loss in plants.

Difference in colouration and production of different chemical compounds due to

deficiency or sufficiency of N, P, K and S in plants alters spectral reflectance pattern of the

leaves or canopy. The different absorption bands corresponding to the structure or mole-

cules reviewed from literature could be paired as: 460 and 670 nm—chlorophyll a and b,

530 nm—carotenoids, (Osborne et al. 1993; Zur et al. 2000) and 1500 nm—N–H bond

(Curran 1989). This makes nutritional monitoring of crop plants using remote sensing

possible. A characteristic absorption feature of disulfide bond is present in the visible (VIS)

region (500–600 nm). Thus monitoring the variability of N, P and S in plants using the

above-mentioned features is an important component of precision agriculture. Precision

agriculture is one of the top ten revolutions in agriculture (Crookston 2006; Mulla 2013).

Precision agriculture involves better management of farm inputs, say fertilizer nutrients

(Crookston 2006; Mulla 2013). On the contrary, conventional management deals with

uniform application of fertilizer nutrients. Using precision agriculture a field can be

divided into management zones receiving customized management inputs based on

varying soil types, landscape position and management history (Mulla 2013). In context of

precision farming, quantitative information on plant nutrient concentration is very

important to plan strategic application of fertilizers (Stroppiana et al. 2009). But, this

requires cost and time-effective methods to identify and evaluate crop conditions to rec-

ommend suitable measures (Ryu et al. 2009). Moreover, precision agriculture needs to

provide information on spatial variation and since temporal variation might not be

achieved on real time (Steven 2004). To confront the current pressure of optimizing

agricultural production and lower input use efficiency, agricultural industry is adopting

information technology as a new tool (Pimstein et al. 2011). Crop stress monitoring is one

of the important utilities of remote sensing (Prabhakar et al. 2011). It has a great potential

because it enables wide area, non-destructive and real time acquisition of information on

crop plant condition (Inoue 2003). There are a number of methods proposed for in situ and

non-destructive estimation of plant nutritional status like leaf colour chart and chlorophyll

meters, but these methods focus on the individual leaves and thus pose difficulty in

reflecting a population nutritional status (Feng et al. 2008). In contrast, the hyperspectral

reflectance collected from canopy has the capacity to detect representative population

nutrition status rather than individual leaf or plant (Feng et al. 2008). Processing of

hyperspectral remote sensing data can be categorized into three groups (1) Narrow band or

hyperspectral vegetation indices (VIs) (2) multivariate data analysis (Inoue and Penuelas

2001) and (3) hyperspectral data as a base for wide band VIs. Different statistical

approaches employed for radiometric data processing to characterize the plant macronu-

trient status have been given in Table 1 chronologically. From Table 1, it is evident that

the monitoring of macronutrient status in different crops using remote sensing approaches

is possible, however, very little information for rice crop (except N) is available. Owing to

the importance of N, P and S in bringing better rice yield and quality, very little attention

has been given to their remote detection using remote sensing. This emphasizes a need to

develop robust and more specific algorithms for prediction of P and S status in rice crop.

The present investigation was aimed (1) to analyze the relationships of leaf and canopy

N–P–S concentrations with their respective hyperspectral reflectance to identify N–P–S

responsive wavelength(s) and (2) to identify the VIs with the better predictive capacity for

N–P–S in rice.
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Materials and methods

Details of the experimental site

A test field at the research farm of the Indian Agricultural Research Institute, New Delhi,

India (28.4�N, 77.1�E and 250 m above the mean sea level) was selected. The soil of the

experimental field was taxonomically categorized under Typic Haplusteps (Old alluvium),

predominant in illitic type clay mineral and sandy loam in texture. The soil of the

experimental field was characterized for electro-chemical and soil available nutrients

before start of the experiment. The soil of the experimental field had 166 kg ha-1 alkaline

permanganate oxidizable N (Subbiah and Asija 1956), 14 kg ha-1 0.5 N sodium bicar-

bonate-extractable P (Olsen et al. 1954), 146 kg ha-1 neutral N ammonium acetate

exchangeable K (Hanway and Heidel 1952), 22 kg ha-1 0.15% CaCl2 extractable-S

(Williams and Steinbergs 1959), 0.43% organic carbon (Walkley and Black 1934), pH 8.0

and electrical conductivity 0.43 dS m-1 in 1:2.5 soil to water suspension ratio (Jackson

1973) before start of the experiments. Diphenyl triamine pentaacetic acid (DTPA)—ex-

tractable micronutrients (Lindsay and Norvell 1978)—Fe, Mn, Zn and Cu were present in

sufficiency range of availability. So, no additional micronutrient application was made.
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Fig. 1 Month wise mean
a rainfall and b maximum and
minimum temperature of
11 years from 2002 to 2012 and
years of experimentation i.e.
2010 and 2011 at IARI
experimental farm, New Delhi,
India
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The month wise mean (from 2002 to 2012) of the maximum and minimum temperature and

rainfall are presented as Fig. 1.

Induction of fertility gradient prior to test crop experiment

Creating nutrient variability in the experimental plots and the plants is a major pre-

requisite for studying the hyperspectral reflectance pattern from vegetation. In order to

achieve this artificial fertility gradient was created before the test crop experiments fol-

lowing inductive methodology by Ramamoorthy et al. (1967). The design developed by

All India Coordinated Research Project on Soil Test Crop Response, Indian Council of

Agricultural Research was adopted to conduct the study. The field was divided into three

equal rectangular strips and fertilizer N, P and S were applied as N0P0S0 (strip I), N1/2P1/

2S1/2 (strip II) and N1P1S1 (strip III) where N1P1S1 represents 400, 300 and 150 kg ha-1 of

N, P2O5 and S, respectively (Fig. 2). The soil fertility gradient with respect to farmyard

Fig. 2 Layout for creating fertility gradient in the experimental field. Where, N0P0S0, N1/2P1/2S1/2 and
N1P1S1 represent no, medium and high dose of fertilizer NPS applied to strip I, strip II and strip III,
respectively, N1P1S1 represents 400, 300, 150 kg ha-1 of N, P2O5 and S, respectively
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manure (FYM) was developed by applying FYM @ 0, 5 and 10 t ha-1 in three strips

across the fertilizer strips. A preliminary exhaustive fodder maize crop (variety: African

tall) was grown to stabilize soil fertility during summer 2010 and it was then harvested as a

fodder. The major aim of inducing the fertility gradient was to create significant variability

with respect to the soil available N, P and S prior to test crop experimentation. The results

of the fertility gradient experiment are furnished in Fig. 4 as descriptive statistics of soil

available N, P and S. In general, the mean values of alkaline KMnO4–N, Olsen’s-P and

0.15% CaCl2 extractable-S were observed as strip III[ strip II[ strip I. A higher gradient

of 43, 81 and 92% for KMnO4–N, Olsen’s-P and 0.15% CaCl2 extractable-S was observed

in strip III over strip I. Fertility gradient built up among strip was expected because strip III

was highly fertilized strip compared to strip I which received no fertilizer nutrients. The

range of the alkaline KMnO4–N, Olsen’s-P and 0.15% CaCl2 extractable-S during both the

years of the experimentation was 132–232 kg ha-1 (Deficient), 11.0–32.3 kg ha-1 (Defi-

cient to Sufficient) and 16.4–40.9 kg ha-1 (Deficient to Sufficient), respectively (Fig. 3).

Within strip fertility gradient built up was also noticed by across strip FYM application.

Within strip variations in fertility is conspicuous from the values of coefficient of variation

(CV), the order was as P[S[N during both the years of experimentation (Fig. 3). The

results of the fertility gradient methodology indicated the development of an adequate

variability with respect to soil available N, P and S before start of test crop

experimentation.

Test crop experimentation

After ensuring the development of fertility gradient, nine distinctly different fertility blocks

(three within each strip) were obtained. Total of 24 treatments (eight within each block

containing one untreated control) were assigned, randomized and replicated thrice making

the total of 72 plots. The size of individual plot was 14.26 m2 (6.2 9 2.3 m2). The

experiment was laid out in ‘fractional factorial randomized block design’ (Fig. 4). The

treatments consisted of various selected combinations of four levels of nitrogen (0, 70, 140

and 210 kg N ha-1), phosphorus (0, 30, 60 and 90 kg P2O5 ha
-1) and sulphur (0, 15, 30

and 45 kg S ha-1) and three levels of FYM (0, 5 and 10 t FYM ha-1). Treatments were

randomized in each of the three strips in such a way that all the 24 (21 treated ? 3

untreated control) treatments were present in all three strips in either direction (Fig. 3).

Fertilizer N was applied in three equal splits one basally and two top dressings at tillering

and panicle initiation and P and S was applied before transplanting. Test crop aromatic
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different strips before start of the experiments in year 2010 and 2011. The black continuous and dotted line
represents the maximum and minimum values of the respective parameters, respectively. The error bars
represents the standard deviation (kg ha-1) whereas the values inside the bars are coefficient of variation
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hybrid rice ‘Pusa Rice Hybrid-10’ (PRH-10) was grown as a component of hybrid rice–

wheat cropping system during wet seasons of 2010 and 2011 on the same site of the

previous fertility gradient experiment. ‘PRH-10’ is world’s first aromatic rice hybrid

developed by Indian Agricultural Research Institute, New Delhi, India. The experimental

field was ploughed by tractor-drawn disc harrow which was then levelled once using laser

leveller before start of the experiment in 2010. The levelled field was puddled twice using

tractor-drawn puddler in standing water in both the years. Seedlings were transplanted in

first week of July 2010 and second week of July 2011 at a spacing of 20 cm 9 15 cm in

6.2 m 9 2.3 m size plots. Basal dose of N were applied in four equal splits at basal,

tillering, panicle initiation and flowering stages of rice. Basal doses of P and S were applied

before transplanting in all the plots in both the years. Twenty two days old two seedlings

per hill were transplanted in standing water after puddling. Standing water of 5 cm was

Fig. 4 Layout for the test crop experiment. Where (1) N0, N1, N2 and N3 means 0, 60, 120 and 180 kg N
ha-1, respectively, (2) P0, P1, P2 and P3 means 0, 30, 60, 90 kg P2O5 ha

-1, respectively and (3) S S0, S1, S2
and S3 means 0, 15, 30, 45 kg S ha-1, respectively. Three different blocks of eight treatments A, B and C
were randomized in three different strip
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maintained throughout the growing season in all the plots. Dikes were sufficiently high and

compacted enough to prevent seepage, overflow of water and transfer of nutrients into and

from adjacent plots. Weed management and plant protection measures were followed

uniformly in all the plots as and when required. Crop was harvested in second week of

October in 2010 and third week of October in 2011.

Radiometric observations

The hyperspectral reflectance of the rice crop canopy at the panicle initiation stage was

recorded with handheld Analytical Spectral Devices (ASD) Fieldspec 3 spectroradiometer

over 350–2500 nm wavelength range with 25� field of view. Spectral resolution of the

spectroradiometer was 3 nm in the VIS and 8 nm in the NIR range of the spectrum. The

resultant data was processed using ViewSpecPro software to produce values at each

nanometer interval. Canopy reflectance was recorded between 11:00 a.m. to 1:00 p.m. local

time under cloudless condition. The spectroradiometer was allowed to warm up for 30 min

before recording the actual observations. Optimization of the instrument was done peri-

odically using a standard white reference panel (Spectralon Labsphere Inc., North Sutton,

NH, USA). After every capturing spectral signature of 12 plots, referencing using the white

reference panel was done, which was as well done before starting the next capture in case

of occurrence of the unclear sky or cloudy situation. The spectroradiometer was set to

average the five captures, thus five spectral signatures per unit treatment were captured.

Leaving two border rows out of observation, five spectral signatures—four at the corner

and one at centre were obtained in each of the treatment. The spectral reflectance was

recorded at a uniform height of 1 m above the canopy to maintain uniform canopy cov-

erage under the each observation throughout the plots. The flag leaf samples were picked

and transported in the paper bags. The flag leaf is the youngest leaf of rice plant from

which the panicle emerges. A total of 25 flag leaves were collected per treatment and

grouped in five samples. Before capturing the spectral signature, the samples were washed

with distilled water and dried using blotting paper to avoid spectral interference due to

moisture. An average of five leaf spectral signatures from one composite sample per plot

was considered as a representative spectral signature. The leaf spectral signature was

obtained from the middle of the picked flag leaves. Since the rice leaves were too narrow to

cover the opening of contact probe of the spectroradiometer, more than one representative

leaf samples were chosen and spread on a white surface and reflectance was recorded so

that only reflectance from leaf will be recorded. The flag leaf reflectance was recorded

using a contact probe of the same instrument in a Hyperspectral Laboratory (dark room).

This exercise was done in the dark condition to avoid any spectral interference due to stray

light while capturing the spectral signature. The aim of capturing the flag leaf reflectance

was to get pure spectral signature to identify the nutrient sensitive wavelengths in some

selected section of the energy spectrum, which would otherwise not be possible using

canopy spectral signatures. A total of 144 leaf and 144 canopy spectral signatures (72

during each year of experimentation) were captured. One representative spectral signature

(average of five) for canopy and leaf per treatment was considered for the statistical

analysis. Atmospheric water absorption spectral regions (1350–1450 and 1750–1980 nm)

and the spectral reflectance data from 350 to 400 nm were omitted to avoid distortion of

the signals (Yi et al. 2007).
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Plant sampling and chemical analysis

The leaf and whole plant samples were collected separately from each plot spectral data

collection (0.5 m 9 0.5 m) at the panicle initiation stage for determination of dry biomass

and nutrient concentration on dry weight basis. The plant samples were collected imme-

diately after recording the spectral reflectance data. The samples were then oven dried

(60 ± 2 �C) till the constant weight was attained and ground for further chemical analysis.

The samples were digested in di-acid mixture (HNO3:HClO4 = 9:4 v/v) for the chemical

analysis of phosphorus and sulphur (Jackson 1973). The total P concentration in the digest

was determined spectrophotometrically using vanado-molybdate phosphoric acid yellow

colour method (Jackson 1973). Total S in the digest was determined spectrophotometri-

cally by developing turbidity using BaCl2 (Tabatabai and Bremer 1970). Total N con-

centration in the leaf and plant samples were analysed by modified micro Kjeldahls’

method (Yoshida et al. 1976). The macronutrient variability in the leaf and canopy was

characterized by standard deviation and coefficient of variation (CV, expressed as a per-

centage) (Standard deviation/Mean 9 100) (%).

Data analysis

Analysis of spectral data

The raw digital numbers (DN) values recorded using the spectroradiometer were converted

to the spectral reflectance values using the ASD ViewSpecPro software. The data was

analyzed for effect of variable N, P and S status of plants on the spectral reflectance

response at leaf and canopy level. The objective was to identify regions of the spectrum

where the reflectance is most sensitive to variable N, P and S status of the leaves and

canopy. In order to identify the significant and nutrient-sensitive wavelengths, correlation

coefficients at 5% of the level of confidence for leaf as well as canopy reflectance were

computed. Specific wavelengths showing significant positive or negative correlation were

selected for developing newer spectral algorithms.

Vegetation indices

Published hyperspectral and narrow band VIs reviewed in literature (Table 2) and pro-

posed in the present study were evaluated for their ability to characterize N, P and S status

in rice. Correlation analysis was performed between the leaf and canopy spectral reflec-

tance and plant macronutrient concentration. This was done to identify and select wave-

length(s) and wavebands responsive to variable macronutrient concentration in rice plant.

The pooled dataset from both the years of experimentation (n = 144) had been used for

this purpose. The new spectral algorithms, i.e. VIs were proposed as a normalized con-

figuration of selected wavelengths based on the outcomes of the linear correlation analysis.

The data was divided year wise for development of models. Regressive calibration models

(single and combined-year) of the VIs and nutrient concentration were calibrated using the

calibration dataset (2010, 2011 and 2010/11 dataset). No same samples were used for the

calibration and cross validation in case of the single year model. The cross validation

combinations as—2010 calibration model validated on 2011 dataset, 2011 calibration

model validated on 2010 dataset, combined (2010–2011) calibration model validated on

2010 dataset and combined (2010–2011) calibration model validated on 2011 dataset were
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done and designated as 2010-to-2011 cross validation, 2011-to-2010 cross validation,

combined-to-2010 validation and combined-to-2011 validation, respectively. The ability of

the published and developed VIs to predict nutrient concentration in leaf and canopy was

evaluated. The correlation coefficient (r), root mean square error (RMSE), relative error

(RE) and ratio of performance to the deviation (RPD) were calculated to compare their

prediction accuracy (Herrmann et al. 2010; Pimstein et al. 2011; Ranjan et al. 2012).

The goodness of fit of regressive models was tested based on the RMSE (Eq. 1) of

prediction and RE (Eq. 2) values.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1 Ai� Pið Þ2

n

s

ð1Þ

RE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1 ðAi� PiÞ=Aið Þ2

n

s

� 100 ð2Þ

where, Ai and Pi are the actual and predicted nutrient concentration of ith data point and n

is the number of data points. The RMSE indicates closeness between actual and predicted

values, with lower the RMSE, better the predictability of the model. Relative difference

between actual and predicted values was indicated by RE (Eq. 2), expressed in percentage

terms. Predictions were considered excellent if RE is\10%, good between 10–20%, fair

between 20–30% and poor if it is[ 30% (Jamieson et al. 1991).

A ratio of performance to deviation (RPD) (Eq. 3) indicates appropriateness of pre-

diction. RPD is ratio of standard deviation of validation sample data and standard error of

prediction (SEP) (Eq. 4) (Williams and Norris, 1987)

RPD ¼ SD

SEP
ð3Þ

where,

Table 2 Traditional vegetation indices studied in present study

Vegetation index Formula Reference

Normalized Difference Vegetation Index
(NDVI) large

(R800–900 - R650–700)/(R800–900 ? R650–700) Rouse et al.
(1974)

Normalized Difference Vegetation Index
(NDVI) hyper

(R800 - R680)/(R800 ? R680) Blackburn
(1998)

Green Normalized Difference Vegetation
Index (GNDVI)

(R800–900 - R540–560)/(R800–900 ? R540–560) Gitelson et al.
(1996)

Soil Adjusted Vegetation Index (SAVI) ((R800–900 - R650–700)/
(R800–900 ? R650–700 ? 0.5))(1 ? 0.5)

Huete (1988)

Optimized Soil Adjusted Vegetation
Index (OSAVI)

(1 ? 0.16) (R800–R670)/
(R800 ? R670 ? 0.16)

Rondeaux et al.
(1996)

N_1645_1715 (R1645 - R1715)/(R1645 ? R1715) Pimstein et al.
(2011)

NRI1510 (R1510 - R660)/(R1510 ? R660) Herrmann et al.
(2010)

R reflectance at corresponding subscripted wavelength (nm)

Precision Agric (2017) 18:736–761 747

123



SEP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1ðAi� PiÞ2

n� 1

s

ð4Þ

The RPD value less than 1 indicates irrelevant prediction; between 2 and 3 indicates an

adequate screening method; and greater than 3 indicate satisfactory prediction for ana-

lytical method (Malley et al. 2000).

Statistical analysis

The statistical analysis of the data was done using the Microsoft Excel (Microsoft Cor-

poration, USA) and SAS (Version 9.3) (SAS Institute, 2012).

Results and discussion

Macronutrient concentration variability

At the flag leaf level, P and S concentration were similar during 2010 and 2011. But,

nitrogen concentration in 2011 was 1.19 times that in 2010 (Fig. 5). Improvement in N

uptake during second year experimentation could be due to residual soil N of first year and

owing to the applied N in second year. The CV for macronutrients in flag leaf was C11.7%.

In comparison to flag leaf, higher variability (CV C 15.9%) was observed in canopy

macronutrient concentration. Range of N and P concentrations in canopy were similar

during both the years of experimentation. Whereas, S concentration during 2011 was 1.44

times higher than that in 2010.

Cross-correlation between macronutrient concentrations

For selection of a specific dataset for linear correlation analysis between the hyperspectral

reflectance and macronutrient status, presence of an adequate variability is just not suffi-

cient. It is important to study cross-correlation between these parameters. A specific dataset

showing lower or weaker cross-correlation between macronutrient concentrations should

be selected for this purpose (Pimstein et al. 2011). All the parameters correlated positively

and significantly with each other in cross-correlation results at panicle initiation stage

(Table 3). The correlation between the flag leaf N–P–S concentration was higher than the
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Fig. 5 Variability of a nitrogen (N), b phosphorus (P) and c sulphur (S) concentration (%) in the rice flag
leaf and canopy year 2010 and 2011. The black continuous and dotted line represents the maximum and
minimum values of the respective parameters, respectively. The error bars represents the standard deviation
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748 Precision Agric (2017) 18:736–761

123



canopy N–P–S correlation. The highest correlation was observed between the flag leaf N

and P (r = 0.68–0.69). The canopy N, P and S concentration showed weaker correlation

with each other during 2010 (r B 0.62) and 2011 (r B 0.59) (Table 5). Pimstein et al.

(2011) chose the dataset having N–P–K cross correlation of 0.52–0.65. Mahajan et al.

(2014) considered N–P–S–K dataset with cross-correlation of 0.25–0.57 for linear corre-

lation analyses studies. This suggests suitability of the datasets from both the years of

experimentation for identification of nutrient sensitive wavelengths. To achieve this,

datasets of 2010 and 2011 were pooled together and linear correlation analysis between

nutrient concentration and the hyperspectral reflectance was performed.

Macronutrient concentration and leaf reflectance

In the VIS as well as near infrared (NIR) ranges, values of correlation coefficient were

negative, whereas those were positive in the shortwave infrared (SWIR) region (Fig. 5).

Higher negative and significant correlation coefficients were observed for the flag leaf N

and S in the VIS and NIR region, respectively. Like VIS, the NIR region showed sig-

nificant correlation with N–P–S concentration. At the flag leaf level, none of the nutrient in

question showed significant correlation with flag leaf reflectance in the SWIR region,

except P in a specific section between 1900–2100 nm. Stronger correlation between P

concentration of wheat and the spectral reflectance at 1400–1500 and 1900–2100 nm

(Pimstein et al. 2011) and 1650–1710 nm (Mahajan et al. 2014) have been reported

recently. This region of the spectrum could be the potential region for developing spectral

algorithms for P monitoring in rice. One of the interesting facts from linear correlation

analysis is that, N and P correlations followed similar pattern over the entire spectral range

suggesting presence of cross-correlation between these two nutrients. The highest S cor-

relation(r = 0.46, p\ 0.05) was observed at slightly higher wavelength (730 nm) than N

and P (700 nm). This result might be helpful to allow better understanding the relations

among S and N and P by their influence on vegetation spectra in the red edge region.

Macronutrient concentration and canopy reflectance

We observe from Fig. 4 that, the whole plant N–P–S concentration correlated significantly

and negatively with canopy spectral reflectance in the VIS region and positively in NIR

region. The correlation of S with the spectral reflectance was negative and significant in

660–680 nm section of the VIS region. Interesting to notice that, the whole plant N and P

Table 3 Cross-correlation
between N, P and S concentration
in flag leaf and canopy at panicle
initiation stage of rice during
2010 and 2011

All the correlation coefficients
are significant at 0.05 level of
significance

Flag leaf Canopy

N (%) P (%) S (%) N (%) P (%) S (%)

2010

N (%) 1.00 1.00

P (%) 0.69 1.00 0.51 1.00

S (%) 0.67 0.54 1.00 0.62 0.52 1.00

2011

N (%) 1.00 1.00

P (%) 0.68 1.00 0.48 1.00

S (%) 0.66 0.50 1.00 0.59 0.53 1.00
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concentration correlated significantly with the spectral reflectance in the SWIR region. But,

the values of correlation coefficient were lower than those observed in the VIS and NIR

region. Sudden drop in the value of correlation coefficient from 1092 nm onwards to

1150 nm was observed for N, P and S but it was more conspicuous for S (Fig. 5). This

could be due to the absorption feature of canopy water content. The correlation coefficient

for N and P were the highest and most significant at 1460 nm in the SWIR region. On the

contrary to leaf reflectance, the pattern of N, P and S correlation with the spectral

reflectance at canopy level was similar over the entire wavelength region. The different

wavelengths selected from linear correlation analysis are linked to the physical properties

as: (1) 670 nm—near to electron transition in chlorophyll a and b (Osborne et al. 1993;

Curran, 1989; Zur et al. 2000) (2) 700 nm—pigments present in the foliage (Ecarnot et al.

2013) (or the cell structure, however specific cause is unknown in the present study) and

(3) 730, 1090, 1092 and 1260 nm—change in cell structure alter the internal scattering at

air-cell water interfaces within the leaves (Thomas and Oerther, 1972) and (4) 1460 nm—

near absorption feature of protein nitrogen (N–H bond) (1510 nm) (Curran 1989; Her-

rmann et al. 2010) (Fig. 6).

Vegetation indices

The dynamic change pattern of the hyperspectral reflectance to variable N–P–S concen-

tration proposes a basis to process radiometric data to construct spectral algorithms for

quantitative retrieval of N–P–S in rice plants. Spectral algorithms for quantitative retrieval

of N in rice are available in recently published literature.

Using the results of linear correlation analysis, new VIs were proposed for P and S

prediction. These indices includes P (670, 1092, 1260 and 1460 nm) and S (670 and

1090 nm) sensitive wavelengths. New VIs proposed are based on the outcomes of corre-

lation analysis between canopy spectral reflectance and the whole plant N–P–S concen-

tration for wide scale applicability at field level. In the SWIR region, N and P correlations

were higher and significant at 1460 nm (r = 0.33, p\ 0.05). These finding are concordant

with those by Pimstein et al. (2011) and could be the potential zone to develop new spectral

Fig. 6 Linear correlation between the flag leaf and canopy N–P–S concentrations and the hyperspectral
reflectance. A dotted line parallel to x-axis represents significance of correlation coefficient at 5% level.
Vertical lines indicated with wavelengths shows the wavelengths with the highest correlation coefficient for
N, P and S
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algorithms to discriminate N and P stress. They reported a significant correlation of N-P-K

concentration with the spectral reflectance at 1450 nm. The highest correlation was

observed for K, which was followed by N and it was lowest for P. Wavelength 1460 nm is

very close to water absorption bands, so the spectral reflectance could be affected by

atmospheric moisture. In the present investigation, wavelength 1460 nm has been used for

proposing new VIs. While using such wavelengths for nutrient stress differentiation,

special care was taken to omit the water absorption bands which would otherwise have led

to erroneous results.

Three new VIs for P (Eq. 4–6) and one for S (Eq. 7) monitoring were proposed in the

present study. All three VIs were proposed as normalized configuration in order to enhance

differences and obtain positive values (Pimstein et al. 2011).

The nomenclature pattern of the VIs was adopted from Pimstein et al. (2011) and

Mahajan et al. (2014) to make the indices self-explanatory.

P 670 1260 ¼ ðR1260� R670Þ
ðR1260þ R670Þ ð5Þ

P 1092 1260 ¼ ðR1092� R1260Þ
ðR1092þ R1260Þ ð6Þ

P 1260 1460 ¼ ðR1260� R1460Þ
ðR1260þ R1460Þ ð7Þ

S 670 1090 ¼ ðR1090� R670Þ
ðR1090þ R670Þ ð8Þ

R, represents the hyperspectral reflectance at the subscripted wavelength.

Nutrient prediction using vegetation indices

To estimate capability and reliability of the VIs to predict nutrient concentration in the

whole plant, model of VIs were developed using one year dataset were cross validated on

another year dataset. Moreover, performance of multi-year model was also tested on the

single year dataset. The model parameters RMSE, RE and RPD were used to test precision

of model and agreement between actual and predicted values of nutrient concentration.

Comparison between RMSE, RE and RPD were made to identify VI to monitor

macronutrient concentration in rice plants.

Prediction of nitrogen

The results of cross-validation of already published and newly proposed VIs models for N

prediction is presented in Table 4. Only four VIs viz. NDVI broadband, NDVI hyper, GNDVI

and NRI1510 among seven tested published VIs could predict N concentration significantly for

2010-to-2011 and 2011-to-2010 cross validation.Accuracy of prediction for single-yearmodel

for these three VIs was found to be r = 0.42–0.62 (p\ 0.01), RMSE = 0.301–0.436%,

RE = 7.82–12.16% and RPD = 2.13–3.01. When single-year model of four newly proposed

VIs were cross-validated on other years data, the model could predict N concentration sig-

nificantly with accuracy of prediction as r = 0.43–0.60 (p\ 0.01), RMSE = 0.332–0.426%,

RE = 9.32–13.46% and RPD = 1.67–2.93. This reflects the higher precision of the already

existing traditional VIs for N monitoring in crops.
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Among all combinations, prediction accuracy of 2010-to-2011 cross-validation of

NRI1510 model was the highest. A significant exponential relationship between NRI1510 and

N concentration was obtained for the 2010 calibration model (Fig. 7a). A close agreement

was observed between actual laboratory analysed and predicted N concentration in 1:1

scatter diagram (Fig. 7b). The accuracy of prediction for the NRI1510 VI model was found

to be r = 0.89 (p\ 0.01), RMSE = 0.212%, RE = 6.12% and RPD = 3.71. These

findings are concordant with those by Herrmann et al. (2010), they formulated SWIR based

VI for monitoring the N status of potato. They found NRI1510 as robust VI with prediction

accuracy R2 = 0.59 (p\ 0.005) and RMSE = 0.421%. The NRI1510 has advantages since

it is directly related to N content (by 1510 nm) and indirectly related to N by chlorophyll

(by 660 nm) while other indices are usually only indirectly related to N.

Recent literature reports different simple ratios, normalized configurations, absolute

reflectance, first and second order derivatives of reflectance, specific narrow-band (two,

three, etc.) VIs in different crops. The popular and traditional VIs were evaluated for rice N

Table 4 Relationship between actual (laboratory analyzed) and predicted (using regressive models of
vegetation indices) rice canopy N content

r RMSE (%) RE (%) RPD

2010-to-2011 cross validation [calibration dataset—2010 (n = 72); validation dataset—2011 (n = 72)]

NDVI broadbands 0.62 (p\ 0.01) 0.301 7.82 3.01

NDVI hyper 0.61 (p\ 0.01) 0.366 9.61 2.21

GNDVI 0.42 (p\ 0.01) 0.432 9.82 2.13

SAVI ns ns ns ns

OSAVI ns ns ns ns

NRI1510 0.81 (p\ 0.01) 0.212 6.12 3.71

N_1645_1715 ns ns ns ns

P_670_1260 0.59 (p\ 0.01) 0.401 10.12 1.96

P_1092_1460 0.49 (p\ 0.01) 0.413 12.37 1.82

P_1260_1460 0.52 (p\ 0.01) 0.391 13.46 1.73

S_670_1090 0.60 (p\ 0.01) 0.332 9.32 2.88

2011-to-2010 cross validation [calibration dataset—2011 (n = 72); validation dataset—2010 (n = 72)]

NDVI broadbands 0.58 (p\ 0.01) 0.412 10.12 2.83

NDVI hyper 0.62 (p\ 0.01) 0.401 11.32 2.31

GNDVI 0.47 (p\ 0.01) 0.436 12.16 2.88

SAVI ns ns ns ns

OSAVI ns ns ns ns

NRI1510 0.71 (p\ 0.01) 0.328 9.74 2.92

N_1645_1715 ns ns ns ns

P_670_1260 0.56 (p\ 0.01) 0.392 11.13 1.96

P_1092_1460 0.43 (p\ 0.01) 0.426 12.01 1.67

P_1260_1460 0.46 (p\ 0.01) 0.419 12.39 2.03

S_670_1090 0.59 (p\ 0.01) 0.397 10.32 2.93

r correlation coefficient, RMSE root means square error of prediction, RE relative error, RPD ratio of
performance to deviation
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prediction in the present study to investigate their P and S predictability along with N. To

make macronutrient prediction simpler, simple VIs were designed using two highly sen-

sitive and nutrient specific wavelengths for each of the nutrients. Such wavelengths can be

used to design handheld tools (like chlorophyll meters) to estimate macronutrient status of

crop plants in real time. Four such VIs for P and one for S prediction were proposed in the

present investigation.

Prediction of phosphorus

Cross-validation results of models of the VIs for P prediction were presented in Table 5.

The 2010-to-2011 cross validation revealed the poor predictive ability of published VIs

except recently published N_1645_1715. Prediction accuracy of this cross-validation using

N_1645_1715 model was r = 0.51 (p\ 0.01), RMSE = 0.031%, RE = 12.73% and

Fig. 7 a Exponential calibration
model of NRI1510 and N
concentration using the dataset
2010 and b actual versus
predicted N canopy concentration
(prediction accuracy as
R2 = 0.80, r = 0.89,
RMSE = 0.212%, RE = 6.12%
and RPD = 3.71) using NRI1510
calibration model 2010 validated
on 2011 dataset
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RPD = 2.78. Although P prediction using NDVI broadbands and NDVI hyper were sta-

tistically significant, it does not provide enough levels of accuracy of prediction (r C 0.33

(p\ 0.01), RMSE C 0.045%, RE C 13.19% and RPD B 2.11). However, it is interesting

to note that, the P characterizing ability of newly proposed P dedicated VIs reached

acceptable levels of accuracies. Relatively lower error in predicting the rice plant P con-

centration was obtained for 2010-to-2011 cross validation of VIs model of three newly

proposed VIs (RMSE B 0.031%, RE B 10.67%, RPD C 2.86). The significantly

(p\ 0.05) highest predictions were observed for P_670_1260 with prediction accuracy as

r = 0.53 (p\ 0.01) RMSE = 0.028%, RE = 10.21% and RPD = 2.99. Though, NRI1510
is a dedicated VI for N monitoring, the research results revealed that the prediction of P

using the VI was significant [r = 0.38 (p\ 0.01), RMSE = 0.041%, RE = 13.01% and

RPD = 1.99].

Similar sort of trend was observed for 2011-to-2010 cross validation. Although, P

concentration using traditional VIs NDVI broadbands, NDVI hyper and GNDVI were

Table 5 Relationship between actual (laboratory analyzed) and predicted (using regressive models of
vegetation indices) rice canopy P content

r RMSE (%) RE (%) RPD

2010-to-2011 cross validation [calibration dataset—2010 (n = 72); validation dataset—2011 (n = 72)]

NDVI broadbands 0.31 (p\ 0.05) 0.047 13.87 2.11

NDVI hyper 0.33 (p\ 0.01) 0.045 13.19 1.93

GNDVI ns ns ns ns

SAVI ns ns ns ns

OSAVI ns ns ns ns

NRI1510 0.38 (p\ 0.01) 0.041 13.01 1.99

N_1645_1715 0.51 (p\ 0.01) 0.031 12.73 2.78

P_670_1260 0.53 (p\ 0.01) 0.028 10.21 2.99

P_1092_1460 0.49 (p\ 0.01) 0.030 10.30 2.86

P_1260_1460 0.50 (p\ 0.01) 0.031 10.67 2.94

S_670_1090 0.41 (p\ 0.01) 0.034 11.48 2.52

2011-to-2010 cross validation [calibration dataset—2011 (n = 72); validation dataset—2010 (n = 72)]

NDVI broadbands 0.34 (p\ 0.01) 0.042 12.26 2.17

NDVI hyper 0.36 (p\ 0.01) 0.040 14.21 1.96

GNDVI 0.29 (p\ 0.05) 0.045 13.01 1.63

SAVI ns ns ns ns

OSAVI ns ns ns ns

NRI1510 0.41 (p\ 0.01) 0.030 11.93 2.74

N_1645_1715 0.55 (p\ 0.01) 0.029 10.17 3.01

P_670_1260 0.67 (p\ 0.01) 0.023 9.12 3.68

P_1092_1460 0.63 (p\ 0.01) 0.024 9.66 3.59

P_1260_1460 0.65 (p\ 0.01) 0.026 9.82 3.32

S_670_1090 0.44 (p\ 0.01) 0.027 10.96 2.89

r correlation coefficient, RMSE root means square error of prediction, RE relative error, RPD ratio of
performance to deviation
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statistically significant, but resulted in high errors in predictions (RMSE = 0.040%,

RE = 12.26–14.21% and RPD = 1.63–2.17). When newly proposed P dedicated VIs

P_670_1260, P_1092_1460 and P_1260_1460 models of 2011 were tested on P status of

2010, significantly (p\ 0.05) higher predictions with minimum error (r = 0.63–0.67

(p\ 0.01), RMSE = 0.023–0.029%, RE = 9.12–9.82% and RPD = 3.32–3.68) were

obtained. These predictions correspond to an excellent screening of predictive models of

VIs. Among these three VIs, P_670_1260 was able to predict P concentration in rice more

correctly with higher correlation and relatively lower error. Like the 2010-to-2011 cross

validation, the P prediction accuracy of the NRI1510 was significant with r = 0.41

(p\ 0.01), RMSE = 0.030%, RE = 11.93% and RPD = 2.74. It is noticeable here that,

there is a potential of using the VIS-SWIR based VI, NRI1510, for monitoring P in rice

plants as well. However, the results in the present study might be attributed to the sig-

nificant correlation (r C 0.68 in the flag leaf and r C 0.48 in the canopy, p\ 0.05)

between the N and P in the flag leaf and canopy. It is very interesting to see that, prediction

accuracies of all VIs were found to be significantly improved for 2011-to-2010 cross

validation (Table 5). Improvement in predictive ability of 2011-to-2010 over 2010-to-2011

cross validation may be attributed to higher variability in P concentration in 2011. The P

concentration variability in 2011 was 1.66 times that in 2010, making 2011 dataset more

suitable for developing P prediction models.

The calibration model of 2011 (R2 = 0.71, p\ 0.01) i.e. an exponential relationship

between P_670_1260 and P concentration (Fig. 8a) cross validated on 2010 appeared most

robust in retrieving P concentration in rice plants. A linear response, steep slope and

uniformly scattered values of predicted P concentration against actual and laboratory

analyzed concentration around 1:1 scatter line depicts robustness of P_670_1260 to

quantify plant P status (Fig. 8b). Accurate predictions of single year models of

P_670_1260 are due to the inclusion of wavelengths in the VIS (670 nm) and NIR

(1260 nm) which showed significant correlations with P concentration (Fig. 6). The use of

wavelengths in the VIS and NIR region for P retrieval has been successfully demonstrated

in corn crop (Osborne et al. 2002) and wheat (Ayala-Silva and Beyl 2005) using different

statistical analytical methods. And these reports support the use of VIS–NIR based VI

P_670_1260 for P retrieval in rice. Earlier work reported by Pimstein et al. (2011) on VI

N_1645_1715 based P retrieval in the wheat canopy are in agreement with significant P

prediction in using the same in the present investigation. They reported use of

N_1645_1715 relatively advantageous because wavelengths located out of water absorp-

tion regions and their inclusion in spectral bands of airborne hyperspectral images. Cross-

validation of N_1645_1715 model was found to have acceptable levels of accuracies

(r = 0.51–0.55 (p\ 0.01), RMSE = 0.029–0.036%, RE = 10.02–12.73% and

RPD = 2.78–3.01). So, VI N_1645_1715 can also be used in rice crop to quantify canopy

P in rice as well along with newly proposed VIs. In future, the use of wavelengths in the

SWIR (1645 and 1715 nm), VIS (670 nm) and NIR (1260 nm) can be evaluated to achieve

higher P prediction accuracies in different crops.

Prediction of sulphur

Table 6 shows cross-validation results of models of the traditional VIs as well as newly

proposed VIs. Three VIs (NDVI broadband, NDVI hyper and GNDVI) among six pub-

lished could significantly predict S concentration for 2010-to-2011 cross validation com-

bination. But, the levels of accuracies (r = 0.28–0.31 (p\ 0.01), RMSE = 0.039–0.042%,

RE = 15.18–17.29% and RPD = 1.62–1.98) were not enough and acceptable. The
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strongest results were obtained using a model of S dedicated VI S_670_1090 with pre-

diction accuracy of r = 0.52 (p\ 0.01), RMSE = 0.021%, RE = 10.11% and

RPD = 2.87. For this cross-validation combination, screening VI model of S_670_1090

was satisfactory. The NRI1510 predicted the S concentration with a significant prediction

accuracy of r = 0.48 (p\ 0.01), RMSE = 0.023%, RE = 10.98% and RPD = 2.41, it

was lesser compared to the newly proposed VIs but higher than the published ones. The

positive correlation (r C 0.66 in flag leaf and r C 0.59 in the canopy, p\ 0.05) between N

and S could possibly a reason for significant S prediction using the NRI1510. Similar sort of

trend of cross-validation results was observed for 2011-to-2010 cross validation. The

NDVI broadbands, NDVI hyper and GNDVI showed perdition accuracy of r = 0.33–0.37

(p\ 0.01), RMSE = 0.032–0.037%, RE = 11.27–13.12% and RPD = 1.75. Prediction

accuracy (r = 0.62 (p\ 0.01), RMSE = 0.018%, RE = 9.87% and RPD = 3.17) using

S_670_1090 model was highest among different cross validation combinations. An

Fig. 8 a Exponential calibration
model of P_670_1260 and P
concentration using the dataset
2011 and b actual versus
predicted P canopy concentration
in rice (prediction accuracy as
R2 = 0.69, r = 0.67,
RMSE = 0.023%, RE = 9.12%
and RPD = 3.68) using
P_670_1260 calibration model
2011 validated on 2010 dataset
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exponential relationship between S_670_1090 and S concentration (R2 = 0.84, p\ 0.01)

was the robust among all the calibration models for S (Fig. 9a). The close agreement

between actual and predicted values and their uniform spread along 1:1 scatter line

explains robustness of S_670_1090 model for retrieving S concentration (Fig. 9b). A

possible reason for improvement in S characterizing ability of 2011-to-2010 dataset may

be higher reliability in S concentration in 2011. The CV for S concentration in 2011 dataset

was 1.30 times higher than 2010 dataset. Higher correlation with a relatively lower error

made 2011 model suitable for retrieving S concentration in rice.

It is important to notice a little difference between prediction accuracies using

S_670_1090 and P_670_1260 model for all cross-validation results. If we critically ana-

lyze the structure of both of these VIs then it is clear that they include one common

wavelength 670 nm in the VIS and one for both which lies in the NIR region. Higher

sensitivity of the spectral reflectance at 1090 nm than 1260 nm with S concentration

(Fig. 4) explains comparatively higher prediction accuracy using S_670-1090 model. Lack

of sensitivity of N_1645_1715 for S retrieval is noticeable in Table 6. One major reason

Table 6 Relationship between actual (laboratory analyzed) and predicted (using regressive models of
vegetation indices) rice canopy S content

r RMSE (%) RE (%) RPD

2010-to-2011 cross validation [calibration dataset—2010 (n = 72); validation dataset—2011 (n = 72)]

NDVI broadbands 0.31 (p\ 0.05) 0.042 16.71 1.91

NDVI hyper 0.28 (p\ 0.05) 0.041 15.18 1.78

GNDVI 0.29 (p\ 0.05) 0.039 17.29 1.62

SAVI ns ns ns ns

OSAVI ns ns ns ns

NRI1510 0.48 (p\ 0.01) 0.023 10.98 2.41

N_1645_1715 ns ns ns ns

P_670_1260 0.50 (p\ 0.01) 0.021 10.21 2.54

P_1092_1460 0.33 (p\ 0.01) 0.033 12.36 2.09

P_1260_1460 ns ns ns ns

S_670_1090 0.52 (p\ 0.01) 0.021 10.11 2.87

2011-to-2010 cross validation [calibration dataset—2011 (n = 72); validation dataset—2010 (n = 72)]

NDVI broadbands 0.37 (p\ 0.01) 0.032 11.27 2.01

NDVI hyper 0.33 (p\ 0.01) 0.034 12.68 1.85

GNDVI 0.33 (p\ 0.01) 0.037 13.12 1.72

SAVI ns ns ns ns

OSAVI ns ns ns ns

NRI1510 0.54 (p\ 0.01) 0.028 10.84 2.64

N_1645_1715 ns ns ns ns

P_670_1260 0.58 (p\ 0.01) 0.024 10.07 2.92

P_1092_1460 0.42 (p\ 0.01) 0.037 12.82 2.15

P_1260_1460 ns ns ns ns

S_670_1090 0.62 (p\ 0.01) 0.018 9.87 3.17

r correlation coefficient, RMSE root means square error of prediction, RE relative error, RPD ratio of
performance to deviation
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for obtained results may be insignificant correlation of the spectral reflectance at wave-

lengths 1645 and 1715 nm with S concentration both in lab as well as canopy (Fig. 4). The

probable reasons for obtaining the best results during the cross validations could be higher

variability created in plant N, P and S concentration, proper grouping of observation for the

calibration and validation dataset and selection of appropriate wavelengths specific to the

nutrient concentration.

Considering the complexity and requirement of huge information on number of

wavelengths, spectral algorithms based on few nutrient sensitive wavelengths may prove

useful for remote N, P and S prediction. We envisage that such algorithms could be used

for designing sensors of handheld instruments for macronutrient prediction of canopy (e.g.

chlorophyll meter for relative N estimation). The use of satellite remote sensing applica-

tions is becoming increasingly popular because (1) spectral bandwidth has decreased

dramatically with the advent of hyperspectral remote sensing, (2) variety of spectral

Fig. 9 a Exponential calibration
model of P_670_1090 and P
concentration using the dataset
2011 and b actual versus
predicted S canopy concentration
in rice (prediction accuracy as
R2 = 0.73, r = 0.62,
RMSE = 0.018%, RE = 9.87%
and RPD = 3.17) using
P_670_1090 calibration model
2011 validated on 2010 dataset
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indices have been developed for agricultural applications rather than only the normalized

difference vegetation indices, (3) improvement of spatial resolution of remote sensing

satellites with 100s of meter to sub-meter accuracy (e.g. World View-2 (launched in the

year 2009) with spectral bands—P, B, G, Y, R, red edge and NIR and spatial resolution of

0.5 m) and (4) improved temporal frequency of remote sensing satellites (Mulla 2013).

Retrieval of broadband data using multispectral sensors often loses critical information on

specific narrow bands (Blackburn 1998). Hyperspectral remote sensing acquires images in

many narrows and contiguous spectral bands, thus provides a continuous spectrum for each

pixel, unlike multi-spectral systems that acquires images in few broad spectral bands

(Hansen and Schjoerring 2003). The approach of remote sensing research for crop nutrient

monitoring in future should be towards developing simple algorithms, simple procedure

and simple and cheaper devices with major focus on end users and farmers. This study

elucidates a new knowledge on the P and S monitoring in hybrid rice using remote sensing

as the information on this aspect in rice or other crops is little known. The output of the

present study can be utilized for site specific and real time management of N, P and S in

hybrid rice. To achieve this, the rapidly-expanding availability of the small drone to

capture spectral data of interest (e.g. wavelengths proposed in the study) can be very much

useful.

Conclusions

The results of the study demonstrated that the radiometric data could be used for prediction

and monitoring of N, P and S status in the rice crop at the panicle initiation stage. Linear

correlation analysis of N–P–S concentration with reflectance showed the presence of

significantly sensitive wavelengths in the energy spectrum. Few N–P–S sensitive wave-

lengths—670, 700, 730, 1090, 1260, 1460 nm etc. along the energy spectrum were

observed at the flag leaf and canopy level. The N predictions were significantly (p\ 0.05)

achieved using the VIS and SWIR based VI NRI1510. Out of newly proposed VIs

P_670_1092 and P_670_1260 for P and S_670_1090 for S prediction were found to be

most robust with higher prediction accuracies using their regressive models.
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