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Abstract A procedure for estimating the number of mature apples in orchard images

captured at night-time with artificial illumination was developed and its potential for esti-

mating yield was investigated. The procedure was tested using four datasets totaling more

than 800 images taken with cameras positioned at three heights. The procedure for detecting

apples was based on the observation that the light distribution on apples follows a simple

pattern in which the perceived light intensity decreases with the distance from a local

maximum due to specular reflection. Accordingly, apple detection was achieved by

detecting concentric circles (or parts of circles) in binary images obtained via threshold

operations. For each dataset, after calibration of the procedure using 12 images, the estimates

of the number of apples were within a few percent of the number of apples counted by visual

inspection. Yield estimations were obtained via multi-linear models that used between two

and six images per tree. The results obtained using all three cameras were only slightly better

than those obtained using only two cameras. Using images from only one side of the tree did

not worsen the results significantly. Overall, the yield estimated by the best models was

within �10 % of the actual yield. However, the standard deviation of the yield estimation

errors corresponded to *26–37 % of the average tree yield, indicating that improvements

are still needed in order to achieve accurate yield estimation at the single-tree level.

Keywords Artificial vision � Image analysis � Fruit detection

Introduction

Estimation of the expected yield is still a major challenge in orchards. Such information

would be valuable to growers and companies that provide harvesting and post-harvesting

services as it would help them manage equipment and labor force more effectively. To
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date, yield estimation is based on visual inspection of a limited number of trees by the

grower, which is both time consuming and prone to errors. At first glance, it may seem that

this task could be easily automated using computer vision. However, the unstructured and

cluttered environment of the tree canopy makes this task very challenging, especially when

the fruits are featureless and with a color similar to that of the canopy. Jiménez et al.

(2000), Kapach et al. (2012) and Gongal et al. (2015) compiled reviews on the general

topic of fruit detection and location in tree images, although Kapach et al. (2012) focused

on vision-based fruit location for harvesting robots, which imposes additional constraints

on the system (such as computing efficiency and accurate location). These review papers

also discussed the pros and cons of the various types of imaging system (e.g. color,

depth/time-of-flight, hyperspectral, thermal imaging). Standard color cameras offer obvi-

ous advantages in terms of cost and ease of operation, and a large number of studies have

focused on the use of such cameras (e.g. Pla et al. 1993; Zhao et al. 2005; Kurtulmus et al.

2011; Zhou et al. 2012; Silwal et al. 2014). However, the images captured with such

cameras are very sensitive to the illumination conditions (e.g. Linker et al. 2012; Payne

et al. 2013). Night-time imaging using artificial illumination minimizes this issue and may

constitute an advantageous alternative (e.g. Sites and Delwiche 1988; Payne et al. 2014;

Cohen et al. 2014; Linker and Kelman 2015). The recent studies of Cohen et al. (2014) and

Linker and Kelman (2015), which focused on the detection of green mature apples in

night-time images, reported encouraging results with a strong linear relationship between

the number of objects identified as apples and the number of apples counted by visual

inspection of the images. However, as mentioned by Wang et al. (2012), the performance

of vision-based yield estimation depends on two factors: (1) how accurately apples are

detected by the image processing procedure and (2) how accurately the number of apples

visible in the tree image(s) correlates with yield. This second factor was not investigated in

the studies of Cohen et al. (2014) and Linker and Kelman (2015). Vision-based estimation

of green apple yields has been reported by Wang et al. (2012), who used night-time color

images, and Stajnko et al. (2004), who used day-time thermal images. Both studies

reported R2 values between the estimated and actual number of fruit per tree in the range

0.8–0.9. However, these studies were conducted with small trees characterized by low fruit

loads and a sparse canopy: Although Wang et al. (2012) did not provide detailed results at

the tree level, it can be inferred from the results that the average tree yield was *35

apples; Stajnko et al. (2004) reported yields ranging from 50 to 120 apples per trees. While

such ‘‘small trees/high planting density’’ orchards are increasingly popular in Europe and

the US, Israeli growers still favor older and larger trees, mostly due to Jewish Laws which

prevent consuming the harvest of the first 3 years after planting. As a result, Israeli mature

orchards such as the one used in the present study have a much higher fruit load (target

yield of *300–350 fruit per tree). The trees are also much larger and the canopy is very

dense (Fig. 1). The dense canopy makes the detection of fruit especially challenging and

the significant depth of the canopy means that a lower percentage of the overall fruit is

visible to the camera.

The objective of the present study was 2-fold. First, to develop and test a novel pro-

cedure for detecting and locating apples in night-time orchard images. Second, to deter-

mine whether tree yield could be inferred from such images. Special emphasis was

attached to using calibration sets with as few images/trees as possible since the user needs

to provide ground-truth information for these images/trees. The present work should be

viewed as an extension of previous works of Linker and co-authors dealing with fruit

location and yield estimation: Linker et al. (2012) suggested an approach based on color

and texture analysis, which was initially applied to day-time images and later to night-time
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images (Cohen et al. 2014). Linker and Kelman (2015) used light distribution around local

maxima to locate apple in night-time images. These two approaches were compared by

Linker et al. (2015), who also reported for the first time preliminary results relative to yield

estimation. Besides presenting a novel approach for locating apples, which is somewhat

similar to the one described by Linker and Kelman (2015) but simpler to calibrate and

implement, this paper investigates more thoroughly the possibility of using night-time

images covering only part of a tree for estimating tree yield.

Materials and methods

Datasets

The work was conducted with four datasets of images captured in ‘‘Golden Delicious’’

orchards at the Matityahu Research Station in Northern Israel in 2013, 2014 and 2015. The

imaging system and the 2013 dataset (156 images of 26 trees) have been previously

described in Linker and Kelman (2015). The same imaging system was used to capture

images on July 17, 2014, August 5, 2014, and August 13, 2015. In 2014, images were

captured from both sides of the trees (258 images of 43 trees, same trees on both nights)

while in 2015 images were captured only from one side of the trees (156 images of 52

trees). In all 3 years, each tree was picked individually at the end of the season to provide

ground-truth yield data but, due to a technical mistake, the yield of three trees was not

recorded properly in 2013. In all three datasets, the number of fruit visible in each image

was determined by visual inspection.

Algorithm

Concept

The development of the image analysis procedure was based on the observation that since

apples are basically spherical objects with uniform texture, in night-time images captured

with artificial illumination, the light distribution on apples is expected to follow a simple

pattern in which the perceived light intensity decreases with the distance from a local

maximum due to specular reflection. Figure 2a–c shows that this is indeed the case for

Fig. 1 Typical images of the orchards in which the present study was conducted
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ideal ‘‘fully visible’’ apples. In particular, the binary image displayed in Fig. 2c (which was

obtained by applying simple thresholds to Fig. 2b) shows that pixels with similar inten-

sities form rings. Furthermore, Fig. 2d–f show that even when an apple is partially

occluded, the light distribution on the region of the apple surface which is visible follows a

similar circular pattern. In other words, if one considers a set of pixels which have a similar

intensity, the ‘‘apple pixels’’ will form part of a ring. Figure 2c and f also shows that the

rings corresponding to different intensities are (approximately) concentric. Accordingly,

the procedure described below is based on identifying rings (not necessarily complete) and

estimating their centers. Apples are detected where a sufficient number of concentric rings

are found.

Detailed description of the procedure

The flowchart of the procedure is presented in Fig. 3. The original color image was

converted into a gray-scale image according to

I ¼ 0:2989 � Rþ 0:5870 � Gþ 0:1140 � B ð1Þ

where I denotes the gray level and R, G and B denote the original values of the Red, Green

and Blue channels, respectively.

Following this conversion, a binary image was obtained by simple thresholding oper-

ation, keeping only the pixels with intensity between smin and smin þ 10. The purpose of

this operation was to extract all the pixels within a given intensity range, The Circle Hough

Transform (CHT) (in its phase-coding formulation developed by Atherton and Kerbyson

(1999)) was used to detect circles within a given radius range in this binary image. The

CHT returns not only the estimated center and radius of each circle but also the so-called

‘‘accumulator value’’ associated with each circle. This accumulator value is a measure of

the certainty of the circle detection. The results (centers, radii and accumulator values)

were stored in a dynamic stack and the procedure was repeated after incrementing the

threshold s until the maximum value smax was reached. The stack containing all the

detections was then scanned recursively and centers which were within Dmax pixels of each

other were united, i.e. considered to correspond to concentric circles. Finally, the score

(mean accumulator value) associated with each set of concentric circles was calculated:

Si ¼

Pn

k¼1

Ai;k

ni
ð2Þ

where Ai;k is the value of the accumulator of the kth circle included in the ith set of

concentric circles and ni is the number of circles in this set. The sets of concentric circles

containing a sufficient number of circles and having a high enough score were considered

to correspond to apple objects.

cFig. 2 Two typical sub-images. Frames a and d show original sub-images (300 by 300 pixels and 500 by
500 pixels, respectively). Frames b and e show gray-level versions of frames a and d. Frames c and f show
binary images obtained by applying the thresholding operation B i; jð Þ ¼ s1 � I i; jð Þ� s1þð
10js2 � I i; jð Þ� s2 þ 10Þ. In frame c the inner and outer rings on apples correspond to s1 ¼ 170 and
s2 ¼ 200, respectively. In frame f the inner and outer rings on the apple correspond to s1 ¼ 120 and s2 ¼
170, respectively. In both cases the results obtained with additional values of s, which led to additional
concentric circles on the apples, are not shown for clarity
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Calibration

The whole procedure required four kinds of parameters:

• The minimum and maximum values (smin and smax) for the iterative thresholding

operation

• The search for circles using CHT required a radius range and a minimum value of the

accumulator for circle detection.

• Uniting circles required a value for Dmax, the maximum distance between centers for

considering circles as concentric

• Apple detection required a minimum value for the score of concentric circles. Rather

than considering a single parameter, the required score was related to the number of

concentric circles as follows:

Apple detected if Si � h nið Þ
Apple rejected if Si\h nið Þ ð3Þ

where Si is the score associated with the ith set of concentric circles, ni is the number of

concentric circles in this set and h nð Þ is the minimum score required.

The values of smin and smax can be readily set by inspecting the dynamic range of the

images. For the datasets used in this study, such inspection led to selecting smin ¼ 100 and

smax ¼ 200.

With respect to the CHT analysis, preliminary analysis with five images led to per-

forming CHT with two radius ranges with different accumulator thresholds, and combining

the results

• Radius range 10–30 pixels, accumulator threshold a1
• Radius range 31–60 pixels, accumulator threshold a2

In order to reduce the computation burden, the parameters a1 and a2 were restricted to

values ranging from 0.02 to 0.20 at 0.03 increments (7 values), leading to 49 possible

combinations of a1; a2ð Þ. The range for the accumulator threshold was based on the

accumulator values observed for typical situations, such as shown in Fig. 2. For instance,

the accumulator values for the ‘‘apple’’ inner and outer rings shown in Figs. 2c and f were

in the range 0.16–0.20 and 0.08–0.10, respectively.

Calibration of the parameters was performed using a genetic algorithm with the fol-

lowing parameters: Uniform cross-over function, cross-over fraction: 0.8, migration factor:

0.2, parent selection by stochastic universal sampling, mutation using Gaussian distribu-

tion, population size: 20, number of generations: 30. The procedure was calibrated sepa-

rately for each dataset. In each case, 12 images were selected randomly and the genetic

algorithm was used to determine the set of parameters which led to the highest coefficient

of correlation (R2) between the number of detections and the actual number of apples.

Comparison with other approaches

The 2013 dataset has been previously used in the studies of Cohen et al. (2014) and Linker

and Kelman (2015) who used color-and-texture analysis (described in Linker et al. 2012)

and spatial light distribution, respectively. These two approaches were applied to the July

2014 dataset. Since the datasets of 2013 and July 2014 were similar in terms of apple size

(apple radius approx. 60 pixels), the procedure used by Linker and Kelman (2015) was

applied ‘‘as-is’’, i.e. without recalibration. The procedure of Cohen et al. (2014) had to be
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Fig. 3 Flowchart of the
procedure for apple detection.
CHT Circular Hough Transform
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recalibrated. This was achieved using the same 12 calibration images as above, in which

close to 350 apples were labeled manually. A genetic algorithm was used to determine the

set of parameters which led to the highest coefficient of correlation (R2) between the

number of detections and the actual number of apples.

Yield estimation

Various regression models for estimating tree yield using the information extracted from

the images were developed. As detailed in Linker and Kelman (2015), the imaging system

captured three images at fixed heights. In 2013 and 2014, images were captured from both

sides of the tree while in 2015 images were captured only from one side. Different yield

models were investigated, based on different sets of images: Images from all heights (from

one side only or both sides); bottom and middle images only (from one side only or both

sides); middle and top images only (from one side only or both sides); and bottom and top

images only (from one side only or both sides). The general form of the models based on

images from both tree sides was

Yk ¼ a B1;k þ B2;k

� �
þ b M1;k þM2;k

� �
þ cðT1;k þ T2;kÞ þ k ð4Þ

where Bi;k, Mi;k and Ti;k are the number of detections in the bottom, middle and top image

of the side i of the kth tree, respectively. Similarly, the general form of the models based on

images of one side only was

Yk ¼ aB1;k þ bM1;k þ cT1;k þ k ð5Þ

In both cases, the coefficients corresponding to images not used in the model were set to 0.

Altogether eight types of models were developed for the 2013 and 2014 datasets, and four

types of models for the 2015 dataset. Due to the small size of the 2013 dataset, it was not

possible to split this dataset into two distinct calibration and validation sub-sets. Therefore

models were created using all the available data and the objective was merely to establish

the feasibility of developing such models. For the 2014 and 2015 datasets, calibration of

the models was performed using the images of 20 trees selected randomly and the

remaining trees were used to validate the models. The sensitivity of the results to the

choice of the calibration trees was investigated by repeating the procedure ten times using

different calibration trees. This Monte-Carlo cross-validation approach was preferred over

the more common k-fold cross-validation approach since k-fold cross-validation with

k = 10 would have resulted in relatively large calibration sets (47 trees) while one of the

objectives of this study was to rely on as few calibration trees as possible. In addition, the

Monte-Carlo approach made it possible to use the same number of calibration trees for

both years despite the different sizes of the datasets.

Results

Estimation of the number of apples in images

Preliminary analysis with eight of the calibration images (two from each dataset, selected

randomly) indicated that most apples were associated with at least three concentric circles,

which led to considering the following score threshold h nð Þ:
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h nð Þ ¼

h1 n ¼ 1

h2 n ¼ 2

h3 n ¼ 3

h4 n� 4

8
>><

>>:
ð6Þ

The corresponding procedure required calibration of six parameters:

Dmax;K; h1; h2; h3; h4ð Þ, where K denotes the identifier of the a1; a2ð Þ combination (integer

variable). The results of the calibration are presented in Table 1. For all four datasets, a

correlation coefficient higher than 0.90 was obtained between the number of detections and

the actual number of apples according to the manual count. However, the relationship

between the two varied between the datasets. Also, the fitted values of most of the

parameters varied between dataset, with the noticeable exception of a1 and a2(the accu-

mulator thresholds of the CHT procedure). Increasing the size of h(i.e. considering dif-

ferent score thresholds for 4, 5, or more circles) improved the results only marginally

(details not shown).

The results of the calibration are also presented graphically in the left frames of Fig. 4. For

each dataset, the calibratedmodelwas used to estimate the number of apples in all the images,

leading to the results presented in the Fig. 4e–h and Table 2. Overall, the error between the

actual and estimated number of apples in the images corresponded to less than 1 % of the

actual number of apples for three of the datasets and 6 % for the last dataset. There was no

consistent relationship between the type of image (i.e. camera position) and the estimation

error. Although the standard deviations of the estimation errors appear to be much higher in

2014 and 2015, this is partly due to the fact that the number of apples per image was much

lower in 2013: on average 43 apples per image in 2013, compared to 69, 75 and 77 apples per

image in the dataset of July 2014, August 2014 and 2015, respectively.

Although the main objective of this study was to obtain a high correlation between the

number of objects detected and the actual number of apples, it was still of interest to

estimate the accuracy of the procedure by considering the number of false positive and

missed detections. These were evaluated for the calibration images and 12 additional

images chosen randomly. The results are summarized in Table 3. There was a large dif-

ference between the results obtained for the 2013 dataset and the other datasets. For the

2013 dataset, the number of false positive was 1–2 % and the number of missed detections

was around 10 % while, for the other datasets, the number of false positive was around 7 %

and the number of missed detections was around 33 %. Since the same imaging system

was used on all years and the images were captured at a similar developmental stage, these

large differences appear to be related to the number of fruit visible in the images, which, as

noted above, was much lower in 2013.

Table 1 Results of the calibration procedure

Dataset Fitted parameter value R2 Ratio between number
of apples and detections

a1 a2 h1 h2 h3 h4 Dmax

2013 0.14 0.05 0.865 0.970 0.145 0.042 0.487 0.99 1.09

July 2014 0.14 0.05 0.668 0.746 0.331 0.083 0.915 0.91 1.44

Aug 2014 0.14 0.05 0.334 0.243 0.121 0.055 0.624 0.98 1.27

2015 0.14 0.05 0.845 0.583 0.271 0.064 0.638 0.93 1.44
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Yield estimation

As mentioned above, multi-linear models were calibrated for each dataset using images

from two or three cameras, either from only one side or from both sides of the row. The

Fig. 4 Left frames: Relationship between the number of objects detected and the actual number of apples in
the 12 calibration images of the datasets of 2013, July 2014, August 2014 and 2015, respectively. Right
frames: Actual Versus estimated number of apples in each image of the datasets of 2013, July 2014, August
2014 and 2015, respectively. The symbols indicate the camera position
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results for the dataset of 2013 are presented in Table 4. The standard deviation of the yield

estimation error ranged from 78 to 105 fruit/tree, which corresponds to *20–27 % of the

average tree yield (390 fruit/tree). The best results were obtained when using either all

three cameras or only the middle and top cameras. Using images from only one side did not

affect the results dramatically.

The results for the dataset of July 2014 are presented in Tables 5 and 6. As mentioned

above, for each type of model, ten models were calibrated using different subs-sets of the

data. The results in Tables 5 and 6 correspond only to the 23 trees not used to calibrate the

respective model. Overall, as with the 2013 dataset, very similar results were obtained

using images from only one side or both sides of the row (comparison between corre-

sponding columns in Tables 5 and 6). The results obtained using all three cameras were

only slightly better than those obtained using only either the bottom and top or the middle

Table 2 Results of the apple detection procedure

Images Dataset

2013 (156
images)

July 2014
(258 images)

Aug 2014
(258 images)

2015 (156
images)

Bottom
camera

Number of apples according
to visual inspection

1832 4264 4569 3945

Relative estimation error, % 1.61 -1.25 -4.24 1.43

Std of estimation error, apples 7.31 8.9 10.18 13.75

Middle
camera

Number of apples according
to visual inspection

2605 6551 7404 4490

Relative estimation error, % -2.86 10.39 5.42 11.77

Std of estimation error, apples 6.69 15.25 17.86 14.35

Top
camera

Number of apples according
to visual inspection

2276 7473 7885 5062

Relative estimation error, % 7.4 -6.55 -3.87 5.43

Std of estimation error, apples 6.32 17.76 14.44 13.93

Total Number of apples according
to visual inspection

6713 18288 19798 13497

Relative estimation error, % 0.35 0.79 0.56 6.37

Std of estimation error, apples 6.96 15.39 13.43 14.31

Std standard deviation

Table 3 Rate of false positive and missed detections for the 12 calibration images and 12 additional images

Dataset Calibration images Validation images

False positive, (%) Missed apples, (%) False positive, (%) Missed apples, (%)

2013 2 12 1 8

July 2014 4 35 7 35

Aug 2014 6 31 9 36

2015 3 34 7 31
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and top cameras. The relative error of yield estimation depended on the (random) choice of

the trees used for calibration. However, the estimated yield was almost always within

�10 % of the actual yield. The standard deviation of the yield estimation error of the

models based on all three cameras ranged from 132 to 185 fruit/tree, which corresponds

to *26–37 % of the average tree yield (*500 fruit per tree). The estimation error at the

tree level can be appreciated in Fig. 5 which shows the results of Model 3 based on all

images from both sides of the row.

The results for the dataset of August 2014 and 2015 are presented in Tables 7, 8, 9. As

with the July 2014 dataset, using all three cameras or only the bottom and top cameras

provided the best results, and using images from both sides did not improve the results

appreciably for the August 2014 dataset. Overall, in terms of yield estimation, the results

are slightly worse than those obtained for the July 2014 dataset. Still, the yield estimated by

the large majority of models is within �10 % of the actual yield. In terms of yield

estimation at the level of individual trees, for both datasets, the standard deviation of the

yield estimation error ranged from *26 to 35 % of the average tree yield (*640 fruit per

tree in 2015).

Discussion

The performance of vision-based yield estimation must be judged based on two criteria: (1)

how accurately apples are detected by the image processing algorithm and (2) how

accurately the yield can be estimated using the number of objects detected in the images.

In terms of apple detection, the procedure is far from excellent, with a correct detection

rate ranging from *65 to 85 %. Furthermore, the number of missed apples appears to

depend on the number of apples in the image. Nevertheless, within a given dataset, the

detection rate was very consistent, so that it was possible to use a small number of images

(12) to establish a relationship between the number of detected objects and the actual

number of apples. For each dataset, such a relationship led to an estimate of the total

number of fruit which was within a few percent of the number of fruit counted by visual

inspection. A comparative investigation with the procedures described by Cohen et al.

(2014) and Linker and Kelman (2015) was conducted with the datasets of 2013 and July

2014. Table 10 shows that all three approaches led to similar results. The advantage of the

present approach is its simplicity and the fact that it requires calibration of only a small

number of parameters. Also, by comparison to approaches that includes a supervised

classifier (such as Cohen et al. 2014), the present method does not require time-consuming

labeling of objects in the calibration images.

Table 4 Standard deviation of the yield estimation error using different combinations of images

Model based
on

Standard deviation of yield estimation error (fruit per tree)

All three
cameras

Bottom & middle
cameras only

Bottom & top cameras
only

Middle & top cameras
only

One side
only

78 97 95 80

Two sides 78 86 105 79

Results for 2013 dataset (23 trees)
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Table 5 Mean and standard deviation of the yield estimation error using different combinations of images
captured from both sides of the tree rows

Model All three cameras Bottom & middle
cameras only

Bottom & top
cameras only

Middle & top
cameras only

Actual
yield

Relative
error
yield (%)

Std of
yield
error

Relative
error
yield (%)

Std of
yield
error

Relative
error
yield (%)

Std of
yield
error

Relative
error
yield (%)

Std of
yield
error

1 10678 7 138 7 168 8 139 10 151

2 9858 6 134 18 174 8 135 1 160

3 10712 -8 158 -2 198 -8 165 -8 170

4 10828 2 147 9 180 4 151 5 160

5 11078 1 154 -4 181 0 157 2 167

6 12066 212 132 217 163 213 135 213 146

7 11327 -1 180 0 189 2 175 5 157

8 11895 8 160 10 196 10 164 9 153

9 11742 -3 176 -3 200 -2 169 -2 175

10 10409 0 160 -6 181 0 162 0 164

Results for the July 2014 dataset (43 trees). Each row corresponds to the validation results of a model
calibrated with a different subset of 20 trees. The highest errors for each configuration of the imaging system
are indicated in bold

Table 6 Standard deviation of the yield estimation error using different combinations of images captured
from only one side of the tree rows

Model All three cameras Bottom & middle
cameras only

Bottom & top
cameras only

Middle & top
cameras only

Actual
yield

Relative
error
yield (%)

Std of
yield
error

Relative
error
yield (%)

Std of
yield
error

Relative
error
yield (%)

Std of
yield
error

Relative
error
yield (%)

Std of
yield
error

1 10678 5 164 4 189 5 158 11 149

2 9858 7 146 12 180 8 145 5 165

3 10712 -8 171 -3 193 -7 170 -7 185

4 10828 0 166 5 178 4 159 7 170

5 11078 1 169 -4 175 -1 164 -1 182

6 12066 -10 137 213 162 210 133 211 153

7 11327 -8 181 -2 176 -5 171 -5 172

8 11895 4 185 7 216 4 184 8 185

9 11742 211 168 -9 184 -9 158 -8 175

10 10409 3 153 -1 174 4 147 2 168

Results for the July 2014 dataset (43 trees). Each row corresponds to the validation results of a model
calibrated with a different subset of 20 trees. The highest errors for each configuration of the imaging system
are indicated in bold
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In terms of yield prediction, the results are encouraging but further improvements are

required to reduce the estimation error at the single-tree level. Two factors contribute to the

relatively large errors at the single-tree level: the simplicity of the models used and the

significant overlap between neighboring trees. In terms of modeling, the multi-linear

models used in this work are over-simplistic and more accurate models could probably be

Fig. 5 Actual yield Versus yield estimated using all images from both sides of the row (July 2014 dataset,
Model 3 in Table 5)

Table 7 Mean and standard deviation of the yield estimation error using different combinations of images
captured from both sides of the tree rows

Model All three cameras Bottom & middle
cameras only

Bottom & top
cameras only

Middle & top
cameras only

Actual
yield

Relative
error
yield %

Std of
yield
error

Relative
error
yield %

Std of
yield
error

Relative
error
yield %

Std of
yield
error

Relative
error
yield %

Std of
yield
error

1 10678 10 130 10 141 10 130 14 140

2 9858 9 137 17 157 9 136 7 155

3 10712 -8 171 -5 194 -6 167 -3 179

4 10828 10 159 10 169 10 159 9 173

5 11078 -1 160 -6 181 0 159 -1 173

6 12066 -15 143 -21 160 -13 140 -17 151

7 11327 4 179 2 191 3 177 -2 166

8 11895 7 190 7 195 4 178 8 187

9 11742 -5 156 -4 183 -5 156 -1 165

10 10409 -5 159 -6 165 -5 157 -5 171

Results for the August 2014 dataset (43 trees). Each row corresponds to the validation results of a model
calibrated with a different subset of 20 trees. The highest errors for each configuration of the imaging system
are indicated in bold
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obtained using more flexible, non-linear models such as neural networks. However, such

models would require a much larger dataset for calibration. In its present state, the method

requires that the grower provides the actual yield of 20 trees, which does not seem

Table 8 Mean and standard deviation of the yield estimation error using different combinations of images
captured from only one side of the tree rows

Model All three cameras Bottom & middle
cameras only

Bottom & top
cameras only

Middle & top
cameras only

Actual
yield

Relative
error
yield %

Std of
yield
error

Relative
error
yield %

Std of
yield
error

Relative
error
yield %

Std of
yield
error

Relative
error
yield %

Std of
yield
error

1 10678 6 164 5 175 5 164 13 143

2 9858 9 151 13 174 9 149 7 178

3 10712 -3 170 -3 186 -3 168 1 189

4 10828 9 157 11 162 9 157 8 182

5 11078 -1 159 -4 184 0 153 -4 200

6 12066 -15 135 -19 159 -13 132 -20 158

7 11327 -6 178 -5 172 -7 172 -10 193

8 11895 -1 185 -1 189 -2 175 2 174

9 11742 -20 146 -21 165 -16 149 -13 178

10 10409 2 156 3 170 2 156 1 171

Results for the August 2014 dataset (43 trees). Each row corresponds to the validation results of a model
calibrated with a different subset of 20 trees. The highest errors for each configuration of the imaging system
are indicated in bold

Table 9 Mean and standard deviation of the yield estimation error using different combinations of images
(captured from only one side of the tree rows). Results for the 2015 dataset (32 trees)

Model All three cameras Bottom & middle
cameras only

Bottom & top
cameras only

Middle & top
cameras only

Actual
yield

Relative
error
yield (%)

Std of
yield
error

Relative
error
yield (%)

Std of
yield
error

Relative
error
yield (%)

Std of
yield
error

Relative
error
yield (%)

Std of
yield
error

1 20851 -5 207 -5 210 -9 224 -4 197

2 20970 -3 218 -2 227 -3 219 -6 192

3 19797 14 193 9 170 15 201 12 179

4 20619 -6 191 -6 200 -8 195 -6 191

5 20674 -12 226 -11 218 -11 221 -9 170

6 19787 -9 223 -4 188 -6 219 -7 223

7 20101 -3 198 -3 205 -3 199 -4 176

8 21111 -13 182 -13 190 -13 185 -12 179

9 21050 -4 200 -4 207 -4 203 -9 184

10 19927 2 191 7 195 0 193 0 189

Each row corresponds to the validation results of a model calibrated with a different subset of 20 trees. The
highest errors for each configuration of the imaging system are indicated in bold
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excessive. The use of more flexible models (prone to overfitting) would require that the

grower provides the actual yield for a much larger number of trees, which would not be

realistic. However, the limited performance of the multi-linear models is also probably

partly due to the significant overlap that exists between neighboring trees. While such

overlap is virtually non-existent in images acquired in young orchards with small trees,

such as used by Wang et al. (2012), in mature orchards such overlap is unavoidable and

further work will be required to deal adequately with this issue. Finally, since the images

captured by neighboring cameras overlap, performing registration of the images and

analyzing a single composite image for each side of the tree would probably improve the

results. Due to the three-dimensional architecture of the trees and the lack of clear ‘‘anchor

points’’ for registration (corners, lines, etc.) image registration is far from trivial and was

not attempted in the present study.

Conclusion

Yield estimation using color imaging remains a challenging task. The approach presented

in this work is simple and requires ground truth data for only 20 trees. Although the actual

yield estimation error depended on the choice of the calibration trees, in the present study,

the total yield estimates were almost always within �10 % of the actual yield. However,

the standard deviation of the yield estimation errors corresponded to more than 25 % of the

average tree yield, indicating that improvements are still needed in order to achieve

accurate yield estimation at the single-tree level. Furthermore, the relationship between the

number of visible (or located) apples and tree yield was specific to each dataset, meaning

that in practice the grower would be required to provide ground-truth data for the cali-

bration trees. For practical applications, unless one were able to devise a one-fits-all

relationship, one of the main challenges will be to develop models with enhanced per-

formance while maintaining the calibration set reasonably small.
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Table 10 Comparison between the results obtained with the current procedure and the procedures
described in Cohen et al. (2014) and Linker and Kelman (2015)

Dataset

2013 July 2014

Number of apples according to visual inspection 6713 18288

Current procedure Relative estimation error, % 0.35 0.79

Std of estimation error, apples 6.96 15.39

Cohen et al. 2014 Relative estimation error, % 0.45 1.21

Std of estimation error, apples 10.52 16.8

Linker and Kelman 2015 Relative estimation error, % 0.00 -0.86

Std of estimation error, apples 10.78 17.02

Std standard deviation
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